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Abstract: A portfolio planning model which takes into acconut
a cost of purchase of market information is considered. Tu the pre-
sented model, the objective of the investor is to maxiinize probabi-
lity of attaining or exceeding the required retwrn 2. 1t is shiown that
the presented stochastic model reduces to a noulinear progrannning
problem that can be solved efficiently.

Keywords: portfolio, information cost, Fischer information

1. Introduction

Optimization under nneertainty deals with the sitnation where the information
available is limited at the moment the decision is taken. I the uncertainty
is stochastic, the decision-maker may only lave a probabilistic distribution of
some unknown quautities. I some cases the decision-aker can invest in getting
wore precise information about the probabilities of the nneertain values in his
problem. This leads to new, interesting and iinportant questions which tirn ont
to be diffienlt to solve. What does the more precise information really mean?
Wilien does a trade-off between the cost of buying information and futnre retinns
exist? Since, “buying information” is a kind of irreversible investinent, when is
the decision-maker to stop it?

The importance of these questions aud the problem as a whole was noticed
by rescarchers. In the series of papers, Z. Artstein and R. J-B Wets (see Art-
stein, Wets, 1993, 1994, 1995) developed a new coneept, called sensors and
llustrated how it works in some simple examples. Portfolio selection was also
recoguized as a natural sonrce of these kind of questions, and so, the poten-
tial field of futures applications. Using a computer-based set of experiments
R. Bricker and M. De Bruine (see Bricker. DeBrmine, 1993) analvzed the rela-

tionship between information cost and availabilitv, and the investient strateov



90 T. BANEK, P. KOWALIK, 5. KOZLOWSKI

However, it. becomes obvious that the problem needs further studies and a
more general and systematic approach. Examples of such an approach can be
found in Banek (1999A, B).

Investing, and investing in stock assets in particular, is inevitably connected
with risk. Various models of optimal portfolio selection, which have appeared
so far in the literature of the subject, can be briefly described as “how to obtain
the highest return at the lowest risk”. No matter how the above statement is
realized in particular models, one feature is comimon. Namely, these models do
not take into account the cost of obtaining information about particular assets
(their returns and risk), which is necessary to select the portfolio optimally, (see
Haugen, 1993). Whatever is the reason of neglecting the cost of information, it
results in a brutal simplification of the models when comparing with the real
world.

The current paper is based on Banek (1999A, B) presenting probably the
first attempt of the general approach to the problem. Assumptions [rom Banek
(1999a, b) are used here in order to create a mathematical model of portfolio
selection in which the objective of the investor is to maximize probability of
attaining or exceeding the required return z. [t is proved that, under realistic
assumptions, the model allows to select the optimal portfolio by reducing the
primary, stochastic problem to a nonlinear programming problem that can be
solved efficiently.

2. Mathematical model

We consider selecting a portfolio of n assets. Let us use the following notations:
x - a vector of investment, j - the n-element vector of 1's, M - the total capital,
z > 0 - a minimal level of return, required by the investor. Let t,0 <t < M
denote the amount of money spent on purchase of information.

The random vector £ represents future unknown returns on the assets whose
parameters are estimated by analysts. We assume that the investor knows a pri-
ori that the vector £ has a normal distribution with the parameters (estimated
in any way): m - a vector of expected values (returns) and @ - a covariance ma-
trix. The job done by analysts consists in further estimations of the mean vector
m and the covariance matrix Q. As a result of their studies they produce m(t),
Q(t). In general, m(-), Q(-) are stochastic processes and Q(+) = (¢i;(*))i j=1....n
is a square, symmetric matrix with differentiable elements, such that

2T Q(t)z < 0 for any z # 0.

The latter requirement comes from the fact that as work of the analysts
continues, the mean square error of estimation of m(-) should decrease. For
simplicity we make further assumptions.

(A1) The m(-) is constant, i.e.
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(A2) The matrix Q(-) is deterministic and is of the form
Q)= QU +tHQ)™". (1)
where H is some square symnnctric matrix with trace of H, Sp H > 0. As
it 1s easy to sce, the inequality :erQ(i):r < () for any x # 0 is a cousequence
of (1).

We shall explain below our motivation for adopting (A2). Let G,(2,Q)
denote an n-dimensional Gaussian density with the mean z and the covariance
matrix Q.

The Fischer information on the vector € contained iu the distribution func-
tion with Gaussian density G, is the following

/' VG (z —m, Q(t) H
n C;n.( _’”aQ( ))

Sp Q7L(1) [/ ) (2 = m)[z = m)TGulz —m, Q1)) | Q71(t) =
SpQ7Yt) = Sp(Ql4+tH)=a+h-t

what shows that for Q(+) given by (1), I; increases lincarly with £. Thns, if the
cost of purchasing information is proportional to I, whichi we adopt as our next

I

assumption, 1.c.

(A3) ¢(t) =c- (It — Io),

then as a consequence we obtain
(A3) clt) =@t a=c- Sp H.

In other words (A3’) is in agreement with (A3) if Q(+) is of the form (1).

In order to simplify calculations, we will carry ont further cousiderations for
the particular case of H = 1.

Let us denote by & a random variable representing a vector of returns ob-
tained by analysts and purchased by the investor, who pays ¢(t) for if.

The amount ¢ caunot be negative becanse short-selling of inforination is
impossible. It caunot exceed M either, otherwise all the mouey invested in
asscts and a part spent on information wonld come from short-selling.  We
assue unlimited short-selling on all the asscts.

Since & ~ N(imn, Q(1)), then
(,6) ~ N ((,m) 27 Q(t)r) .

Under above assumptions we can formulate the following stochastic model
of the decision problem of the investor: given z > 0, M, m, Q(1), find (1opr, Zopr)
- a solution of the following stochastic programning problein

max P{z,&)>z+M). (2)

t+<m,i>=M 0<t<M

By Lemma 1 (sce Appendix) problem (2) reduces to the following nonlinear
programming problem

(r,m) —z— M

Try o
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Before formulating the theorem being the main resalt of the paper, we have
to introduce some necessary notations.
Let

p027Q7 (1) (-

M+2z ) _ GTQHt) (M — By — (M + 2)j)
M-t ') M—1 '

Function p(t) can have at most two real roots hecanse its mnnerator
r(0)Z5TQ7(t) (M — t)m — (M + 2)j)
is a square fimetion of one variable. Let us denote roots of »(1) (if they exist)
by t,1, respectively. Sct, T = {t: r(t) > 0} = (1,1).
Let h=M —t and v(h) denote the following polyuomial
v(h) = |m|*A® -
h(md+ﬂﬂuf+2uf+qﬂQ”m+2mwf+nomﬂ)+
+2ZM (M + 2)? |l3)1° + 2(M +2)%7Q ).

By hmax we denote the biggest real root of this polynomial.
Becanse, by the assumption, 1 € [0, M], in further reasoning we will cousider
P=[0,M]NT. By Lemma 2 we can sce that

i [0,#) ift<0
1 (@D ift>0.

THEOREM 2.1 If assumptions (A1), (A2), (A3) are satisfied and P # 0. lhe
solution of the problem (2) is a pair (o, top ). where

M-t — 2+ M
Topt = = opt —— Q 1(&,!,,) (m. T ,,)
57Q (topr) (m = 2L - ) M = Topt

topt = M — ho

and

h‘!naxv ’fb.. < h'umx < M and "'U"m:ux) < ‘:UU)
hg =
M, elsewhere

Proof. Let us consider problem (3) (equivalent to (2), by Lennma 1) now taking
into acconnt ouly the constraint (x, j) + 1 = M. The Lagrange fuuction is

(z,m) —z—=M
VaTQ(t)x

By differentiating it by 7, f and A, we obtain a systemn of 7+ 2 equations

m/axTQ()x + (M + z — (x,1m)) Tﬁz‘%

F(a,t,A) = - A+, 5)=M).
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L ({x,m) — z— M) 2T (e
e NG
2TQ(H)x =

t+ (x,7)— M=0.

Let us multiply both sides of (4) by 27
the following cases
1. If M # 1, then
M4z B
(M —t)\/2TQ(t)x

m/xTQ(t)r — Jﬂ\/_th_“—_A Q)= M+

, fiud A and put it in (3). There are

/

aTQ(t)x T (M -0 /aTQhr )
For simplification, let us denote uv—% We obtain
w M+ 2
S — et { <ru.————-'j>. 7
= =0 (- (7)

Next, multiply both sides of (6) by j7. We have

w(M —1) = gJ‘Q(r):l:jTQ_l(f) (m - ;\\I[i—; /> :

The following cases can occur.

(a) If 57Q~1(t) (IH - %I— ) > 0 (ie. t € T), thew w is positive
for those z, for which the gradicut of the Lagrange function V. I
vauishes.

(b) If jTQ-1(1) < 11\\117:? j) < (), then w is negative for 2 for which
the gradient of the Lagrange function vanishies.  Nevertheless, for
arbitrary + one can always chioose such a vector ., (v, j) = M — 1
that the numerator of the objective function is equal to a lixed a.

The sign of w depends only on the sign of the wuncerator, hecanse
the denominator is positive (except for 2 = 0). It is obvious that the
maximum of w also mmst be positive, independently of the choice of
"

(¢) If j7Q~1(t) <m — A= 7) =0, then w = 0. Analogously as in 1.2
(the existence of positive w for arbitrary ), one can see that this case
inessential with respect to looking for the maxinnun (2).

2. If M =t, then (z,7) = 0 and the gradient of the Lagrange huction is
cqual to the gradient of the objective function (3). By comparing it to
zero, we have

eTQ(M)x + (M + z — (x, m))—ﬁ%
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For 2 = 0 the objective function is widefined and it tends to mins infinity,
so that its gradient does not exist. If 2 # 0 thew, nmltiplving both sides
of (12) by =T, we obtain
M+z
2TQ(M)x
Because M + z is positive, the equality above can be satisfied only asvinp-
totically for 2’s such that ||z| — oo and (7, 7) = 0. Obvionsly. also in this
case, one can choose such 2 that (2, j) = 0 and the valne of the objective
w corresponding to this x is positive. Nevertheless, there alwavs exists a
better solution for t+ < M, so we do not obtain the maximal valne of the
objective
Taking into account 1.1, 1.2, 1.3 and 2, we can limit onr frther cousidera-

tions only to the case 1.1 (w > 0). For t € T we Lave

z(t) = ;i: 2TQ()7 Q™1 (1) (m s ﬂ‘l}‘; ;) :

Again multiply both sides by j7. We obtain

VvVt Q(t)z _ 2T Q1) M-t (0)

v T Em =M o (m- 3k 5)
Put (9) in equation (8). Finally, we have
M-t : z+ M
T(f) = p e Q 1(!) (-;N. - m ‘J) i (l[}]
77Q1(t) (m - 5724 - 5)

Q' (m-— ;';M - 4).

In particular, if £ = 0, then 2(1) = 7 ;

= =+ M
T 1(,,,__1;r

M4z e X 7 = Ao s
Now pllt W‘ﬁ?ﬁ = Ain (LJ) We Uhtrllll

L ((x,ym) —z— M) 2T

Jraus M+
2TQ(t)x (M —1)\/2TQ(t)x

what, after multiplying both sides by 2/27Q(t)2, viclds

m — 2 — M) 2TO%(H\ s 5
Sl _fTQ?:;l;" QU _pHt 2 r g =0, (1)
Next, put (10) to (11).

M-t [ M-t I
~ 1

F3
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M+z T M+z
m — - m — <)
"= "=t

M+ z ,T ; M+ =z
- .4 YA T A =
(m- s 3) @) (m=3rerd) =0

By dividing both sides of the above equation by
(M —1t)?
3
FETIEE=)

we obtaln

(M =) {mT(M = 1) = (M + 2)57} {m(M — 1) = (M + 2)j} -
=2(M +2);7Q7H(t) {m(M —t) — (M + 2)j} = 0

where Q71(t) = Q7! + tH. This is an equation of the 3rd degree with respect
to the variable £, As it was stated previously, we will look for roots of (12)
only among t € P. By substituting these roots and 0 (the cud of the interval
P) iu the objective we find the optimal 7, i.c. maximizing (3). For reasons of
simplicity, denote A —t = h. Then, equation (12) looks as follows

v(h)= [|lm]* h*~
h <(M +2) |51 + 2(M + 2)§TQ L + 2M (M + 2) (m.,_«,'>) + (12)
+F2M (M + 2)?||5]]° + 2(M + 2)%7Q 15 = 0.
The derivative is
o'(h) = 3 llml* 2 = (M + )% 131+ 2AM + 2)27Q " m + 2M (M + 2) (. 7))
Let us compare it to zero. If
(M + 22 31? +2(M + 2)%57Q Y + 2M (M + =) (m1, §) > 0

then

L VM + 22 |17 + 20 + 2)25TQ=1m + 2M (M + ) (i, j)
= V3 [m]

are roots of v(h).
Let us denote by hy, ha, hg the roots of v(h). Let hypax=max(h;, i = 1,2,3 h; €
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By the definition of A and 1.1. we will restrict owr further considerations to
the analysis of the polynowial v(h) in the set S=(h, M], where b = A —t. Let

h { himax, LR < Bpax < M and v(hpax) < v(M)
0 =

M, clsewhere
For
Bl = ;)(_ﬁ#,)
Q1) (m - 524 - 5) -

the gradient of the objective fanction vanishes. By substituting «(f) in the
objective we obtain

(2(t),m) —z—-M
_If r—4 =
= T oammm
A=t AT = )‘”TQ l(f}( } }) - M ==z

- 'TQ_l(r)(m B
T ,\/ (7 - 322 57) Q1 (QIQ (1) (m = 4% - j)
- mTQ~1(t) (m— s -j) ~ dk2 4T Q-1 (m B ,,)

\/(mT - 4= -j?‘) Q(t) (u.- — A=z J)
= \/('m.T-—ijt; ) =1(t) (m— iitj;)

Thus the objective in terms of the variable b is expressed by

P(h) = \/(‘mT - ‘M;- = Jf) QY (M —h) (m. - j”}+ z ,:)
] |

After differentiating over h we obtain

1
202\ /(hmT — (z + M) - j)Q-Y(M — W)(hii — (= + M) - j)
UlelPR® = b (M + 2)? (15017 + 2(M + 2)% Q™ it
2M (M + 2)(m, 7)) +
+2M (M + 2)?|I5]1* + 2(M + 2)i7Q 4] =
1

RN S
T

Il

'd)’(h)

Thus o' (h) changes the sign in the following way. The first factor is negative for
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Thus the sign of ¢/(h) depends only on the sign of the second factor (that i
the square brackets). By Lemnna 3 it is casy to see that for hy the objective
function attains its maxinnn,

2. If P =0, theu for cach t € [0, M] we have jTQ~(1) (m. - 1‘;—:, ,l) < ().

That is why the solution of the problem (3) does not depend on the valne of 1.
what was described in 1.2 | |

3. Conclusions

The results obtained in the paper show a possibility of an essential hnprovemnent
in portfolio selection which can be achieved by taking into acconnt an optiou
of purchase of information. Despite the fact that purchiase of information is
costly, the probability of exceeding the requived level of return ean be higher
when using this option. I this ease, onr results can he a good illnstration of the
commouly known fact that information is the most precions connnodity, What, is
inportant, computational complexity of the portfolio selection model presented
in the paper is slightly higher than that of the classical Roy model, Ti partienlar,
the most time-consining computation. namely veversing the covariance watrix
remains nnchanged. The only compntation, which does not ocenr in the classical
model, is calenlation of the roots of a polyuomial of the 3rd degree. The time
of this computation can obviously be negleeted, as it does not depend on the
munber of portfolio compouents.

Further investigations focused on testing the model by nmmerical simmla-
tions, inclnding nsage of real-world data. The results of these simnlations con-
firmed usefulness of the model and will be pnblished soon. Obviously. the model
considered is not a mathematical deseription of anv existing information-seller
but just a proposal how such an information-scller might work. This is why
these simulations are a kind of “what-if” analvsis rather than performance of
real portfolios.
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Appendix

LEMMA 3.1 Problemn (1) reduces to the following non-linear programming prob-
lemn.
(z, m) —z—M
max e
t+<r,i>=M 0<t<M T r)
Proof.

max P({x,&) > 2+ M) =
r,+<m‘3'>l=M 0<t< M ((w,&) > 2 )

E /°° (5 — (2,m))
= _max ] P | e ol
t<m,i>=M 0<I<M \ 2maTQ()x s nr 2:T Q)
S=(T.m

. Then we obtain
2T Q(t)r

Let us make a substitution v =

1 / (1 m))
1max X - s =
t+<m i >=M 0<t<M \/2meQ(t)1 M 3TTQ(
= 12
max e — exp | —— | du=
t+<z,i>=M 0ZtSM /27 /W—_<_ : ( 2 )

2T Q1)

max 1=G ﬂ;(ﬂ) ‘
t+<r,j>=M 0<I<M R'TQ(I);:-

where G() is a distribution function of N(0,1). Now omr stochastic problem
reduces to the following nonlinear problem

- z+ M — (z, m) - (r,m) — 2z — J‘.f.
t+<z,j>=M 0<I<M rTQ( N ?+€:r,_f>=.“l-ﬂ'0§tgﬂ." W
O
LEMMA 3.2 IfT #0, then T < M.
Proof.
r(t) = FTQ7Nt) (M —t)m— (M + 2)j) =
FT Q7Y + I (M = tym — (M + 2)j) =
— (i, ) 12 4 (=37 Q7 Ym + M (i, 5) — (4, 7) (M + 2)) t +
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For all 2 >0
r(M) =T [Q! + MI] (M — M)m — (M + 2)j) = =(M + 2);7Q7*(M)j < 0.
The mean of roots

_ —iTQ Y+ M {m, §) = (G.5) (M + z)

t :

. 2 (e )
decreases as z increases. We can see that 1, < ML 16 implies that for all 2, for
which 1,7 exist the inequality 7 < AF. &

LEMMA 3.3 1. For arbitrary values of the polynomial v(h) there exisls a real
negative root hy.
2. If hye ezists and v(hy) = 0, then there exists also one double real root
ha = h3
3. Ifhy exists and v(hs) < 0. then there exist two different real positive rools
hag,h-;;, ho < hg.

Proof.
1. For arbitrary values of paramecters of the polvuomial #(h) we have
0(0) = 2M(M + 2)* |l + 2(M + 2)7Q 5 > 0,
Because v(h) is of the 3rd degree with a positive coefficient at the highest
power, its valiue tends to —oo when i tends to —oo and it nmst have one
real, negative root hy. If
(M + 2)?|I5]° + 2(M + 2)%57Q " 4 2M (M + 2) (m, §) <0,
then w(h) >0 for all h, so the ouly solution of the cquation () = 0 is
hy < 0. If
(M + 2)2 |Gl + 2(M + 2)%7Q i + 2M (M + 2) (m.j) > 0
and v (hy) > 0, then positive roots do not exist,
2. If w(hy) =0, then by = h4 is the ouly positive root.
3. If v (hy) <0, then there exist two ditferent positive roots he. hy, ha < ha.
|






