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Abstract: The article deals with two fornmlations of the target
assigument problem. The first one coucerns a homogeucons collee-
tion of air raid means (different tyvpes of aiverafts aud missiles). We
propose a wethod for solving a subcelass of the problen. The ap-
proach consists of two parts. Ilirst, an equivalent assiginnent-type
problem is constructed, then a modified brauch-and-bonud method
is used to solve the problan.  The other fornmlation concerns a
heterogencons collection of means. To describe this problent a new
algebra is iutroduced.
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1. Introduction

The target assigmuent problem differs frow the elassical assiginent problens,
Hung and Rom (1980). It contains constraints associated with the air defeuse
activity and routes for air raid meaus. Sinee the resnlts of the air defense
activity (a number of destroved air meaus) are random the problem is stochastic,
We consider only the underlying deterministic problem, Prékopa (1995), which
provides only some estimates of features. There are many varictios of the target
assigrient problem depending on the information available for planuing an air
raid. Hence, we should not apply the algorithins like the oues by Bertsckas
(1981), Glover, Glover, and Klingman (1986), Goldfarb (1985). Huug, and Rom
(1980). After Ferland and Hertz, Lavoie (1996), we can call it an assigmuent-
type problem (ATP). It remains an ATP even for the shuplest considered case.

We make an attempt to solve the ATP that deals with the case of homoge-
neons collection of air raid means. Au optimal solntion of this simplest for of
the problems considered estimates the lower bonud of the required monber of
air raid means that can exceute the air raid.

In order to obtain the estimate, we transforn the master problem into an
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e a general assigminent problem (GAP),

e a system of linear inequalities.

Special properties of the obtained GAP (zero-oue cocfficients on the left-hand
side of the constraints) sugeest that we should not use the general approach
to integer programming but rather some modification of the hranch-and-bhonud
method.

The relaxed problem that we propose can be solved analytically innnediately.
We also explain that the transformation we used is efficient even if the GAMS
solvers are applied.

Let us introduce the following notation:

D the set of selected points i 3-D space of the cousidered activity,

i the index of location of the air raid means, i = 1.7, ic.i=1,....1,

4 the target index, j € .J,

n the type index, n = 1, N.

Vector d™ = (df",d3',... . d},... . d} ), where dit € D, djii € D. dj} # djj, if
h # h', will denote m-th ronte.

Here, 1 € M}, where

M the set of indices of the route frow place i to target j for the n-th type of
means,

H(m) the m-th route length.

The symbols introduced above will be used i the subsequent sections of the

paper.

2. Targets assignment problem for homogeneous air raid
means
Now, we assume that cach target can be only destroyed by one type of air raid
means (ARMS).
If we denote
23" the number of the n-th type of ARMS from location i ou the m-th ronte
assigned to destroy the j-th target,

—_— 1 if the j-th target can be destroyed by ARMS of type n
Yin 0 otherwisce

the set of feasible solutions 2 = (27") can be deseribed by the following con-
straints:

Z Z o S, =11, n=TN (1)

J€ES mEM

1
NN UM ™ > ciattin, i€, n=1,N (2)
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N

Z Yin = 1 .7 €J (“)

n==sl

3" > 0 and integer, y;, € {0,1} (4)
where

a;n the total munber of n-th type of ARMS stationed in the i-th location,

¢jn the munber of the n-th type of ARMS required to destroy the j-th target
(to achieve an assumed level of destruction),

UZm™(x7™) a function of decrease of the munber of n-th type of ARMS ou the
route m.

satisfying the following condition
(] S U;n7m( 77717) < l”"” fOI 1177” > () (5)

UZ™(@™) can be interpreted as the mnuber of the n-th type of ARMS that
remain aft(;l the task on the route m has heen completed. Here we asswune that
the initial assignment munber of ARMS is equal X7

Sometimes it is necessary to take other coustraints into acconnt. as well.

In order to construct the optimization problem, we should describe an ob-
jective function.

The commonly used objective functions are:

I
L. 33 Y 5 diape (6)

i=1j€J n=1 mEJ\I;.",.
which is the total distance to be covered by all ARMS from their locations
to all objects, here,

di" the distance from location 7 to the object j for the n-th type of ARMS
on the m-th route,

. ErSTo (

i=1 jeJ n=1 'mE]\[:'7

~
~

which is the total mumber of ARMS participating in an air raid at the
initial time,
3. max 7" g(x") (8)

1,0,m,m w
which is the exccution time, here,

(,I.nm _ { 1 if .73;;’7-7" > ()

i (0 otherwise

and #7™ is time required by the n-th type of ARMS to cover the distance
.

In this case we assune that ARMS start at the same thne. By combining
functions (6)-(8) with counstraints (1)-(4) we obtain different. target assigument
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3. Target assignment problem for multiple types

In this model we assume that a target can he destroved by different types of
ARMS at the same time.
In this case we use by, nstead of ¢,
bin the level of destrietion of object 3 by the n-th type of ARMS.
Due to the introduction of by, we define an algebra ou the set Z = {2 € R :
2> 0}. Here, Z denotes all possible levels of destruetion.
We define two operations on clements of the set Z:
1. the sum of elements from 7, denoted by 6 or o in general casae:
r®y=2z Vr,ye s
which has the properties
(a) z@y=ydr,2,y€Z
(b) By @2z=20(y62),r,y,2€Z
(¢) 0®r=2,2€2
(d) 2@y<a+y =yeZ
For example
@Y=V +2 (9)

2. the multiplication defined as follows
e}

r=rgprg...8n,
where 2 € Z and o € N the set of natural wanbers, az = 0. il » € Z,
a = ().
Having defined the above operations we can define the set of feasible plaus:

Y, Y dLom i=T1,n=T,N (10)

JEJ mEM],

1

N
Yo o > obu Wi 2 i€ (11)

=1l mn=l mEM'"‘

Tij 2 0, ':""“ € C — the set of integer wunbers (12)
Here
Wi (") an integer fuuction of decrease of the munber of n-th type of ARMS
on the route m L;;ﬂ.l‘i»;l‘\'iu;,' the following couditions
0 < WD (@) < & for 22 > 0 (13)
W;;'.! F‘l"?} E C (I"l]

where /4 required level of destruction of the target j.
As we said before, the form of function W7 (27" ) strongly depends on the model
of air defense and the air combat escort. ‘wmv examples of this funetion are
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The other proposals can be based on linear or non-lincar birth-and-death
processes, Barucha-Reid (1960).

The constraints (10)-(12) and chosen objective functions define assignment
problems for different ARMS. We do not know a method for solving the as-
sigmnent problems formulated in this way, However, an adequate wmethod for
solving a particular class of these problems can he proposed.

4. Special assignment problem for homogeneous arms

We will consider the assigument problem defiued by coustrains (1)-(4) and the
objective fumetion (7). The latest experience in local wars allows us to assmne
that,

U;Ijﬂ! mn ) — i'l IT! { 1 5]

Assmuing that an air defense is weak but an air combat escort s very strong,
the master problem can be writfen as follows

F(xz*) _“'”‘ZZZ Z S (16)

i=1 jeJ n=1me ’U"

subject to

Z Z um £ i, ,'_:_“___-17’ n :1.—_&7 {l?)

J€EJ me '.u',"]

3 T o8 St FEANSTE (18)

i=1 mEM‘";

Z"hn—l J€.J (]f))

™ > 0 and integer, ¥, € {0,1} (20)

In this problemn we could cancel index m since the optimal solution does not
depend on the routes. We keep it to have the nuiforin notation.
Let us formulate the following GAP problemn (the subproblem 1)

N

Iniuz Zr'}-,,y_]-,. (21)

jeJ n=1

subject to

N
T‘ Win = 1. 1€ .1 1994
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Z(Ju?fjn < zﬂm =1,N (25)

Jjed

yin € {0,1} (24)
We denote by Y the set of feasible solutionus of this problem ie.

Y = {y=(jjnj € J, n = T,V : y satisfics (22)-(24)} (25)

We can notice some interesting links between the main problem (16)-(20) and
the binary problem (21)-(24).

PROPOSITION 4.1 If a pair (v,1y) satisfies the constraints (17)-(20) then y € Y.

Proof. (22) follows directly from (19). From (17) we have

Zz Y e Ain, =1, N (26)

i=1 ',-'EJmEM i=

J -
|

and from (18):

I
ZZ z il Zr}-,.y_w, n=1,N (27)
i=1

i=1 jeJ mEM‘
(20) together with (27) give (23).

PROPOSITION 4.2 If at least one pair (v,7) evists, satisfying, (17)-(20), then
for each y € Y the problem (18)-(20) has a feasible solution.

Proof. Assume that problem (16)-(20) has at least one feasible solution.
For y € Y we construct the following scts

-}n(?)‘) o {J E ')Y : y,?'!l = 1}7 n= 11N (28)
From (23) we have

I

Z Cin S Zﬂ-im R T,_N (20)

J€Ju(u) i=1

Thus, for the fixed ronte e (it may be different for different n) and fixed n we
can get the values that satisfy the coustraints

St <qin.i=1.1 (30)
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I
Y 2l > i, G € Tu(y) (31)
i=1
by using, for instance, the method for finding an initial solntion in the cost
trausportation problem,
We should solve N systes of inequalities (30), (31) to find all valnes of

Jrm
T

The system of inequalities corresponding to (30), (31) cau be solved in par-
allel.

PRrOPOSITION 4.3 The optimnal value of objective function (16) is equal to the
optimal value of objective function (21).

Proof. Let y* be the optimal solution of the problem (21)-(24). The valne

N
W)=Y Gnlll (32)

jeJ n=1

can be interpreted as the minimum wunber of ARMS needed o destroy all
targets in required level of destruction. This hmplies that F(2*) should equal
G(y").
To obtain x* = (237") we should do as in Proposition 2. For cacli n we
define the set J, (") aud rednce coustraints (31) to equalitios
I
Y =, § € J50) (33)
i=1
From the above propositions, we can conchule that in order to solve problem
(16)-(20) it is necessary to solve the problem (21)-(24). We can nse a branch-
and-bound method to solve the subproblem 2 which we will also call PLDB.

5. A branch-and-bound method

According to the general idea of our method, we st constrnet a set. of PLB
subproblems and a suitable set of their relaxation. Suecessive partitions of Y
can he constructed step-by-step, formiug a tree. A current partition of Y is
created by the nodes of the current tree. These nodes do not have sneeessors,

By Yi, k=0,1,..., (Yo = Y) we denote not ouly a subset of Y bat also a
node of the corresponding tree. The PLIB problem at node Yy is given by

minGy(y) = mi inlin 2

in Gio(y) = min Y > cjny; (34)
1€J

subject to

JN'
N Vo - | -
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I
Z‘:‘T'"y-?'“ < Zn.,—,,,, n=1N (306)
i=]

J€d

yin € {0,1}, j€J, n=1,N (37)

We consider the following relaxation of the problem (34)-(37)

N
min Z Z CinYin (38)

jeJ n=1

subject to

N

Y vin=1j€J (39)

n=1

yin € {0,1}, j€ S, n=1,N (40)
The set

To = {y = (Yjn, j € J, n=1,N : y satisfies (39), (40)} (41)

contains the set Yy (Yp C Tp).
Let 4°(0) denote the optimal solution of the problem (38)-(40).
This matrix can be obtained as follows:

1 forn=n;
s I 50 — )
for each j € J y;,(0) = { 0 Gl (42)
where
n; = min{fg : ¢ja, = Minc;, } (43)
mn

since for each j € .J only one variable y;,, can equal 1.
Denote by
Dy the path (in the tree) from the node Y to the node Yy,
Wi, the set of pairs of indices (j,n), whose variables v, have fixed valnes ou
the path Dy,
W: = {(j:ﬂ') eEW,: Yin = 1}
w‘:‘ = {(_j', ﬂ,J e W : Yin = “}
F, = (JxN)\W;
The PLB problem associated with the node Yy is as follows

minGuld =min Y Cinttin + Y T (44)
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subject to

Y wa=LieI\R (45)

nENJk

T
Z Cinlin < Z"'in = Z Cin =Ty, N = —1,_N (40)
=1 7

JeINJT I

yin € {0,1}, (4,n) € Fy (47)
Here,

Ny = f{n:(j,n) € Fi}

J¥r = {jeJ:(Gn) ew}

T o= {jeJi(n) ewr)

The set of feasible solution of the problem (44)-(47), denoted by we Yy, can
be described as follows:

e 1 for (j,n) e W,
Y == {y :y satisfies (45)-(47), yjn = { 0 for 8 77% e ‘/V’“'_ }}
J,n I

We denote by y* (k) the optimal solution of the problem (44)-(47).
We propose the relaxation of the problem (44)-(47) in the forn of

min G () = miu Yo CinYint Y Cin (48)

(1,m)EFy (im)ew;t

subject to

Y ym=1jeJ\J} (49)
NnEN;r

yin € {0,1}, € J\JF, n=T,N (50)

The set T (Yy, C T}) is defined by the coustraints (49), (50).
The optimal solution of this problem can be casily obtained:

1 forn=n;

s ok 7 0 (1Y — J

for each j € J\ Ji yj,, (k) { T T
where n; is given by (43) and Jy = J;F U J,

i I T (1 forn=n.
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where

fij =min{fi: ¢z = min ¢}, (53)
nEN\NZ,

N ={1,2,...,N}, N ={n: (j,n) e W }.

Now, we establish the elimination rules of nodes. As usual, the node is
eliminated if it does lead to the improvement of a solution. The node that Las
not been eliminated is called the active node.

Let Gy, and of G, be the upper and lower bounds of Gy (3*) i. e. the optimal
value of the objective function of the problem PBL at the node V.

A node Y}, is eliminated if one of the following conditions holds:

a') Gk = gk!
b) & 5 s
(:) Yk = iﬂ

These conditions can be treated as the elimination rules of nodes.

It can be observed that the optimal solution y°(k) gives 1s the lower bound
of G;,-,(y*).

If (k) € Yi, then Gi(3°(k)) = G is also the upper bound of G (3*). This
allows us to eliminate the node Y.

If y°(k) € Yy then we should select a node for partitioning and a variable
which helps us to obtain the partition of the selected node (brauching variable).

We establish it as a principle that we will choose this node to partition,
which was just obtained by assigning some variable y;, the value 1.

We will construct a procedure to obtain the index of this branching variable
as follows,

Let Y be the sclected node. Then the index (jg,n;) of branching variable
Vi, b0 partition Yi into subsets is given by the formula:

Ciumye SMINS MIN Gy M Gip (54)
F=TAN T (i.n)EW
where

Wi ={0G.n) : Uy x M)\ Wy UGE NJ3) x W)

The expression (54) comes from the form of the objective fuuction of the
PLB problem and the form of constraint (35).
Y}, is partitioned into two subsets

Yi 0 {y 2 Yjmy, = 1} and Y N {y : Yy, = 0} (55)

which become the successors of Y.
Now, we can propose the procedure for solving the problem (34)-(37).
1. Set Fo=.J0 x N, Gy =00, Gy = —o0, k=0.
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(1]

6.

. If there are no active nodes, go to 5.

Otherwise, we cousider the previously obtained node (if k = 0, this will
be Yp, if & > 1, this will be the node obtained from Yy by assigning 1 to
yjknk)'

Define the set Ay = {1 : 7 <0}, If A # 0 or Yy, = 0, eliminate node Yi
and go to 4.

Otherwise, determine the optimal solution y°(k) to relaxation (48)-(50)
by using (51)-(52) and the lower bound G, = G (y°(k)).

Verify 3°(k).

If 4O (k) € Y}, determine G = G = Gi(y°(k)) and eliminate node Y.
Set Go = lnin{_éo,_G"k}. Remove any mode for which G, > Go. Go to 4.
If 4°(k) ¢ Y, determine index (jr,ni) by using (54). Construct the
successors of Yy according to (55) and go to 2.

If there is no active node, go to 5. Otherwise, set the index of the lately
calculated node among the currently active nodes at k.

Determine Ay = {i:r; <0} If A # 0 or Vi = 0, remove Yy, aud go to 4.
If A = 0, determine the optimal solution y°(k) of the relaxation problem
(48)-(50) according to (51), (52) and G}, = Gi(y°(k)). Go to 3.

. If G = oo, then the problem (34)-(37) does not have any feasible solution

(Yo = @) and STOP. If G < oo, then the matrix y where G(y) = Go is the
optimal solution of the problem (34)-(37) i.e. y =y*. STOP.

Numerical results and comments

The experiments were done on a PENTIUM - Pro200. We used the GAMS
(CPLEX) system to solve the master problemn (16)-(20) aud the subproblem 1

(21),

(24). The coefficients and parameters of these problems were generated

randomly.

The parameters [, .J, N were close to reality.

We implemented the proposed method for solving subproblem 1 in MOD-
ULA. All the results are sminmarized in Table 1. In fact, we compare here not
only the methods but the computer prograns, as well.

We assume that the time devoted to solving subproblemn 2 is negligible, so
it is excluded from the comparison.

We conclude, from Table 1, that:

e the transformation of master problem into equivalent pair of two subprob-

lems is advantageous,

e in most cases the proposed method runs faster than the professional solver

(the sample contained one hundred problems).
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CPU time (sec.)
I| J | N | Master problem | Subproblem 1 Subproblemn 1
GAMS (CPLEX) | GAMS (CPLEX) | Proposed methods

MODULA
3(120] 9 0.11 0.05 0.05
41201 9 0.16 0.06 0.00
7120 (10 0.17 0.06 0.00
3|16 8 0.06 0.06 0.00
2117 5 0.06 0.06 0.05
5 (17| 8 0.11 0.06 0.00
71201 9 0.22 0.06 0.00
4 (17| 10 0.11 0.05 0.05
4 16| 6 0.11 0.05 0.06
2117 | 5 0.06 0.05 0.06
2|15 | 8 0.11 0.05 (.00
2120 6 0.11 0.05 0.05
312010 0.11 0.05 0.00
2115 6 0.05 0.05 0.05
21151 9 0.11 0.00 0.00
3017 7 0.11 0.06 0.00
4119 |10 0.16 0.05 0.00
3120 10 0.11 0.06 0.05
3120 8 0.11 0.05 0.11
4118 | 8 0.11 0.06 0.00

Table 1.



Target assignment problem for air raid 113

References

Bavas, E., Savrzman, M.J. (1991) An algoritlun for the three-index assign-
ment problem. Operations Research, 39, 150-161.

BArRUCHA-REID, A.T. (1960) Elements of the Theory of Stochastic Processes
and Their Applications. Mc Graw-Hill Book Company, New York.
BERTSEKAS, D.P. (1981) A new algorithm for the assigmment problem. Math-

ernatical Programming, 21, 152-171.

FERLAND, J.A., HERTZ, A., LAVOIE, A. (1996) An object-oricnted method-
ology for solving assigmuent - tvpe problems with neighborhood scarch
techniques. Operations Research, 44, 347-359.

GLOVER, F., GLOVER, R. and KLINGMAN, D. (1986) Threshold assigmment
algorithim. Mathematical Programining Study, 26, 12-37.

GOLDFARB, D. (1985) Efficient dual simplex algorithms for the assigument
problem. Mathematical Programming, 33, 187-203.

HUBER, R.K. (1984) Systems Analysis of Modelling in Defence. Trends and
Issues. New York and London.

Hung, H.W. and Rom, W.0. (1980) Solving the assigmuent problem by re-
laxation. Operations Research, 35, 9G9-982.

KENNINGTON, J., WANG, Z. (1992) A shortest angenting path algoritlan for
the semi-assignment problem. Operations Research, 40, 178-187.

MuURTHY, I. (1993) Solving the multiperiod assigiment problem with start-np
costs using dual ascent. Naval Rescarch Logistics, 40, 325-344.

PREKOPA, A. (1995) Stochastic Programming. Kluwer Academic Publishers,
Dordrecht, Boston, Loudon.






