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12 M. GUGAT

3. The problem

We are interested in the minimal controlling time
T* = inf{T € [T, T): U(T,p,¢) # 0}.

The number T* is the infimun of the set of points T € [T, 7] for which there
exists a control u € Z(0,T) that satisfies the momwent equations. i.e. such that
(u,2;) 0,1y = ¢; for all j € IN and for whicl [|Spu — !JIiEUITJ e,

The lower bound T is introduced since only for T > 7T, (Al) huplies that
U(T,c0,c) is nonempty (sce Guerre Delabriere, 1992, Lenmna L6.2, where a
result for the more general case of reflexive spaces is given).

For T € [T, T)] define the paramctric optimization problem Pa(T):

min [|Szu = blifo ) = A st (w250 = ¢; forall j € IN.

Let w(T') denote the value of Pao(T).

Note that in the theory of mowent problems (e.g. in Vasin and Ageev, 1995),
usually instead of [|Sru — b"?ﬂ"f"} the objective funetion ”""""?0‘?”} is considered
that yiclds so called normal solutions. For the special case of the control of
a rotating beam with S as in (2), Krabs cousiders an objective function of
the form ||Syp - ~h||(20‘ﬂ (see Krabs, 1993), that is equal to the L? norm of the
mormentum at the axis of the beam.

In problem Pso(T), the controlling time is fixed and the coustraint fuuction
that is used to define the problem of time minimal control is taken as the
objective function.

4. The discretized problem

Since Poo(T') has an infinite nunber of equality coustraints, for munerical pur-
poses it is necessary to examine a discretized problem Py (T'), where only the
first N equality constraints of problem Py (T) are considered.

For T € [T, fhf], N € IN define the parametric optimization problem Py (T):

min || Sru — hHi"o_T) =% gt
(T.'., z,f)(U,T} =y for all j (= {]. wray N}

Let wy(T) denote the value of Py (T). Then for all T € [, 7], the inequality
wn+1(T) > wn(T) is valid.
In the following Lemma, the solution of problem Py (7)) is characterized.

LEMMA 4.1 LetT € [I,T), N € IN. For j € {1,..,N}, define H;j(T) =
(S)"1z;. Define nn(T) = (pN(T))X., € RN as the solution of the linear
system
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Then un(T) = S;l(Zilngw(T)H,—(T) + b) is the unique solution of problem
Pn(T).

For the proof of Lemma 4.1, we need the following trivial statement.

STATEMENT 4.1 Let S,T € [0,T). Let v, w € Z(S,T) and (v —w.w) sy = 0.
Then "T””(S,T} S "7’"(5‘.?’)'
Proof of Lemma 4.1. Define the svimnetric matrix

N
ij=1"

GN(T) = ((Hi(T), H;(T))0,1))

Assumption (A1) implies that Gy (T') is positive definite.
Define gy (T) as the solution of the linecar systewn given in Lennna 4.1 and
un(T) by the equation

N
on(T) =) 0l (T)Hy(T).
i=1
Then, for i € {1,..., N} the following equation holds:
N
Y (H(T), Hy(D))o.rym?Y (T)

i=1
= ¢ — (b, Hi(T))o.r)-
Define the set By (T) = {v € Z(0,T) :
(v, Hi(T))0,1) = ¢i — (b, Hi(T))0.7), 7 € {1,..., N}}.
Since vy (T) € spau{Hy(T), ..., Hx(T)}, for all v € By(T') we have
(v — o (T), o (T 0.1y = 0.

Thus, Statement 4.1 implies that vy (7)) is the clement of By (1) with minimal
LOTTIL.

For a point u € Z(0,T) the statcment (i, 2;) 0.y = ¢; (j = 1,.... N) holds if
and only if Sru—b € By(T). Hence un(T) = Szt (on(T) + b) is the solution
of Py(T). The fact that the solution of Py (7) is mniguely determined follows
from the strict convexity of ||St - —b||(o,1). O

(Hi(T),vn(T))0.1)

5. Solvability of problem P, (T)

To analyse the solvability of problem Py (T'), we need au additional assinption.
Assume that in the sequel, the following statement (A2) is valid:
(A2) ForallN € IN,S € [0,T],T € [T,T], S < T the functions 21|(s.77, -, 2n|(s.7]
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LEMMA 5.1 Forall S € [0,T), T € [T,T), S < T, v € Z(S,T) the following
inequality holds:

Z ((u, Hi(T))s:my)~ < P |ulls.py-

Proof. If S = T, the assertion is trivial.
Assume now that S < T. For N € IN we define the symmunetrie matrix
N
GN(S,T) = ((Hi(T), Hi(T))s.1),

=1
Due to Assumption (A2), the functions Hy(T')|is.77, ., Hn(T)]1s, ave lincarly
independent. Hence the matrix Gy (S, T) is positive definite.

Let u € Z(S,T). Define

N
Uv = ((u, Hi(T))s1)) iy s
ay = (Gn(S,T)) ' Uy and
N
Uy = Zr}’:NH,(T)
i=1

Then we have (uy — u,uy) sy = 0. Thns, Statement 4.1 huplies

lunllis,ry < lullsz)-

Lemma 2.2 implies that for all N € IV, (ay,...,ay) € RN, the following
inequality holds:

N N
1> a:H(Dlsmy < 11D aiHi(T)lom
i=1 i=1
N 1/2
< P (Z u.?) .
i=1

This implies that for all y € IRY, we have
42 =
y'y < PyT (GN(S,T)) 7y

Thus the following statement is valid:

Z u, Hi(T))smy) UXUn

i=1

R e
P UN(GN(S,T))" U
ngr?\:GN(S. Tlan

IA

Il

.2
P lun Hfs.’r)

=

Il

"
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Since this inequality holds for all N € IN, the assertion follows. O

LEMMA 5.2 For all T € [T, T) there exists an element v, (T) of the closure of
span{H;(T) : 1 € IN} such that for all i € IN the equality

(0 (T), Hi(T)) 0,7y = ¢ — (0, Hi(T))0.7) (4)

is valid. Moreover, u,(T) = Sp' (v.(T) + b) is the unique solution of problem
Pes{T].

Proof. Let T € [I,T), N € IN be given and Gy(T), vn(T) as in the proof of
Lemma 4.1. Define

Vv = (¢i — (b, Hi(T))o.1)) I, € RN,
As in Lemma 4.1, let ny (T') be defined as
an(T) = (Gn(T)) ™ V.

Oun account of Lemma 4.1 and Lennna 2.2 we have the inequality

lon(D)Gory = (T TGN (T)n(T)
= VA (GN(D) 'V
< NVEIVy
< Ny(T),
>

with Y(T) =) (e — (b, Hi(T))o.1))*-

2

i
i

Due to Lemma 5.1, v(T') is finite. Hence the sequence (vn (1)) e is bonuded,
and thus contains a weakly convergent subsequence. Let v, (1) denote a weak
cluster point of (v (T))new. For all i, N € IN with i < N the following
equation holds:

(v (T), Hi(T)) 0,1y = i — (b, Hi(T))(0.1)-

Due to the definition of weak convergence, this implies for all 7 € IV tlic cquation

(e (T), Hi(T)) o,y = ¢i — (b, Hi(T)) (0,1)-
For all N € IN, the function vy (T') is in spau{ Hy(T), ..., Hx(T)} (sce the proof
of Lemma 4.1). Hence v, (7)) is in the closure of span{H;(T),7 € IN}.

Define the set B(T)

= {’l) € Z((),T) 2 <’“7[{1(T)>(O,T) = — <1'[[7(T)>(OT) 5 € ]/\7}

Since v (T) is in the closure of span{H;(T),7 € IN}, for all w € B(T) we
have (w — v (T),v.(T))0,r) = 0. Thus Statemnent 4.1 implies that v, (T') is the
clement of B(T) with minimal norin.

For a point v € Z(0,T) the equation (u, 2;).7) = ¢; (§ € IN) holds if and
ouly if Sru — b € B(T). Heuce ue(T) = S3' (v +b) is the solutiou of Puo(T).
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6. Continuity of the value function for the original prob-
lem

In this section, we demonstrate the continuity of the optimal valne function w.
First we prove that the solutions of Pa(T) for T € [T, T)] are nuiformly
bounded. Then we use this fact to show that w is lower scinicontinnons.
We introduce a dnal problem for Py (T') aud show that the corresponding
dual solutions are also uniformly bonuded on [, T]. We nse this fact to show
that w is upper semicontinnons.

LEMMA 6.1 (UNIFORM BOUNDEDNESS OF PRIMAL SOLUTIONS)
The solutions of Peo(T) are uniformly bounded on [L.T), that is there exists
r € IR, such that for all T € [T, T)

llue(T) 0.1y S 7

Proof. Let T € [T, T). Let v(T") and »,(T") be defined as in the proof of Lennna
5.2, Then due to Lemina 5.1 we have

1/2

YT) = (Z(u (b, H; T)m))
< ""f“!'-*“f“(zuf i(7 )){nr))
< el + P0l|, 7, =: R.

©T)
The fact that v, (T) is a weak cluster poiut of the sequence (v (T)) ye v Buplies
9 -2 2
lou(T) oy < M7A(T) < MR,

According to Lemma 5.2, we have u, (T') = S3." (0. (T) + ). By Lemnua 2.1, this
yields the inequality
e (Tllory < NSEH Ul 0,7y + N0l 0,7)
-1 ¥ -
IS (LR + 0] ) =57

A

1A

and the assertion follows. O

LEMMA 6.2 (LOWER SEMICONTINUITY) The function w ts lower semicontinu-
ous on [T, T).

Proof. Let T € [T, T] and a sequence (Ti)iew € [T, T]W converging to T be
given. For k € IV, let uy, = v, (T)). Due to Lemma 6.1 there is » € IR such that
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Define fig(-) = up(- T3 /T) € Z(0,T). Then
Il o 7, = T/Te) el 0,109 < (T/Ti) 2.

Hence the sequence (i )re is bounded. Thus there exists a subsequence that
converges weakly to a point @, € Z(0,7). Assmme withont restriction that the
whole sequence (g )pen is weakly couvergent. B

The definition of 4, implies u;(-) = @;(-T/T;). Define w, () = 1, T/T). Let,
# = z(-T;/T). For all I € IN we have ¢ = (u;, 21)0.1;) = (T /T) (i, )

Let 27 (-) = z(-T/T). Then
=0.

oT)
Jim 12~ 2|l
Therefore for all [ € IN the following equation holds:
(i, Z) )(O,T) = ‘le“Lo<7‘.1’ = >(()"T)
= lim {g;, )T = _jl_'Hjloo(T/Tﬁf'l = (T/T)a.
Hence we get

(w22 = (/T i, ) o 7, = (T/D(T/T)er =

Thus we have w, € U(T, 00, ¢) and so w(T') <

“.(20‘7") - »‘1{2'

The function u = ||ullo. 1y, Z(0,T) — IR is sequentially weakly lower seini-
continuous (as the supremun of sequentially weakly continnons functions, sce
Pedersen, 1988, Prop. 15,12 _

Let b(-) = b(-T/T). Let v; = Syu; — b € Z(0,T;) and 9;(-) = v;(-T;/T) €

Z(0,T). Let v, = Spw, — b and 4,(-) = v, (- T/T) € Z(0,T). For f € Z(0,T),
let f;() = f(-T/T;) € Z(0,T;) and f(-) = f(-T/T) € Z(0,T). Then
(F,73) o7, = (s (Sryw) CT/T)) o 5, = T3/ T) o
Our definitions imply the equation
(f,(S,u)( T/T)) o7, = (/5 (Styu3))0,1,) T/ 1)
= {8k Fyr oy T/T)
= (S5 F T T) oT
Then, assumption (3) and the weak convergence of the sequence (1) je v imply

im (£, (Sr,u)(T/D) 7, = (SEHCT/T) ) 7,

= (Spf,won)(T/T)
(f, Srw.)o.m(T/T)

b
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Morcover, since [|[b(-T;/T) = b(-)||

0Ty — 0 (j — o00) we have

{f, b('Tj/T))(O.T} = (f, ﬁ)(u,Tl'

lim
j—0c0

Thus we can conclude that

i 1 M. = DT — -T ) = 5, 7
'jEElco(f, T:J)(O,T‘) (f,(s"]' Wy b)( j /I )I(U.T ) <f t ‘)(U,I}
so the sequence (9;);en converges weakly to 17,
So we obtain the statement
2 2
W)+ < o
= T T '.‘; = —
T/, 7,
< (T/T)liminf |5 o5,
= ] i fT T #5112 =
lim inf (T5/T) 19311 75,
i 9
= liminfllo;lito,r)
= liminfw(Tj) + 4,
j—s00
which implies w(T) < liminfy_ o w(T)), that is, w is lower saicoutimions in

1.0

To show the upper semicontinuity of w, we use the coctficieuts of v, (1)
written as a linear combination of the functious (7).

These coefficients formn a sequence in 12 and can be used to express the
optimal value w(T').

LEMMA 6.3 Let T € [T, T] Then there exist (o:(T))iew € 12 such that

w(T) = Y o(T)Hy(T) and
=1
W)+ = > ai(T)(ci = (b Hi(T))o,1)-
i=1

Moreover, for alli € IN the following equation is valid:

Z”j(T)(Hi(TL Hi(T))o,1) = i — (b, Hi(T))(0,1)- (5)
i=1
Proof. Lemma 5.2 implics that the function v, (T') is contained in the closure

of span{H;(T),i € IN}. Hence there exists a sequence (o5 (7T))iev such that

o0
w AT = N dMHET
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Lemma 2.2 implies that the sequence (04(7T))iev is an element of 12,
Since v,(T) = Sru,(T) — b, we have

w(T) + A*

||'“*(T}”?u,r)

= (_Z {(T)H(T). 0o (T o7y

]
.MB

vi(T) (Hi(T), v ( )([}I}

= Zn (T) (i — (b Hi(T))(0.1)5

where the last equality follows from equation (4), which also nplies equation
(6). O

In the next Lemmna, we introduce aaximization problemn with vaine w(7T) +
%, i.c. a dual problem for Peo(T).

LEMMA 6.4 (DUAL PROBLEM) For allT € [I.T} the following equation holds:
w(T) + % = sup - ZZ(\ ;i (Hi(T), Hy(T)) 0.1)
agl? §=x] =1

o

+2 3" (¢ = (b, Hi(T))omy) -

=1

Proof. For T € [T, T}, o € 12, define

e
il

h(T,a) = o (Hi (T), Hi(T)) 0.1

1

)

i i

Z H;(T))0.1)) -

Let oT) = (ei(T))iew be as in Lemmna 6.3, Then, Lemma 6.3 implics

WT,a(T)) = =l (T)|*+ >Zn 5 = (b Hy(T))om))
= —(w(T)+ %) + 2(w(T) + #°)
= w(T)+ . (6)
This hmplies the inequality

PRy T 1A LS ' R



20 M. GUGAT

For a € I?, v € Z(0,T) define ¢(T, v, )

= ||”||(o ) +2 Z aj (¢; = (b, Hi(T)) 0.1y — (v, Hi(T))(0,1)) (7)
=1

Lemma 5.1 implies that ¢(T, v, a) is well- defined.
According to Lemmna 5.2, we have

loa(T)Ifo,ry = w(T) + 2
and thus equation (5) implics that for all o € /2
$(T,vs(T), @) = [[0(T) .3y = w(T) + 1.
For all & € 12, the map ¢(T, -, &) is coercive and strictly convex, hence the set

Muin(T) = {v € Z(0,T) : ¢(T,v,00) = wei‘étg.}‘} O(T,w, )}

is nonempty and consists of a single clement.
Let a € 2 be fixed and Mupin(T) = {w.}. Since the wmap ¢(7T,,0) :
Z(0,T) — IR is Fréchet-differentiable, we can derive the equation

==}
W, = E o Hi(T
i=1

Thus, the following equation holds:
(T ‘m,,rr]

_ZZmu Hi(T),H;(T)) 0.1

=1 =1

+gza (T) (¢5 = (b, Hi(T))0.1)

- Z Z ;0 (Hi(T), H; (T))(O.»T)

i=1 j=1
= (T, a).
Hence for all a € 12 we have

h(T,e) = ‘UEiZl[lg T)é(T,v,fr) (8)

¢(T,v.(T), )
= w(T) -+ ﬁ2.

IA

This implies

sup h(T, @) < w(T) + 32,
acl?
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LEMMA 6.5 (UNIQUENESS OF THE DUAL SOLUTIONS) For all T € [T, T), the
point (ai(T))iew € 1* as defined in Lemma 6.3 is uniquely determined and the
unique solution of the dual problemn stated in Lemina 6.4.

Proof. Let a(T) = (ai(T))iepv be as in Lemma 6.3, Equation (G) implies that
a(T) solves the dnal problen.

Lemma 2.2 implies that the function h(T,-) : I* — IR is strietly coucave,
hence the dual solution is unique.

Therefore o(T) is uniquely determined. O

Note that for all T € [T, T), the dual solution is an clement of the space 1
that is independent of T'. This fact is very couvenicut for onr analysis.

LEMMA 6.6 (UNIFORM BOUNDEDNESS OF THE DUAL SOLUTIONS) Let T € [T, T]
and (o (T))ienw be as in Lemma 6.3, There exists v € IR, such that for all

Te(r,?)

o0

Z (i (T))? < .

=1

Proof. According to Lemima 2.2, for all T' € [, T) we have

- 1/2 -
(Z U’i(T)z) < M| Z ai(T)Hi(T) |l 0,1)
i=] i=1
= Mv.(T)lo.1)
< MR

with R as defined iu the proof of Lennmna 6.1. The assertion follows with r =
MR. O

LEMMA 6.7 Let w € Z(0,T). For T € [T,T). i € IN define
d;(T) = (u, Hi(T))(0.1)-
Then for all T € [I,T), the following equation holds:

o0

im Y (di(t) - di(T))* = 0.
t—T e[l T) ;

Proof. Duc to Lemma 5.1, for all t € [T,T], we have (di(t))ienw € 1. The
definition of d;(T") and H;(T) imply

di(T) = (u, (S3) ™ 2i)0,1) = (ST', 2:)(0.7)-
Let Ty, Ts € [T, T], Ty < Tp. Theu Lemma 2.1 implies
di(T2) — di(Th) = (S w,z:)0.1) — (S5, w 2i)(0.1y)

1 .
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Analogously to Lemma 5.1 we can prove (by replacing H;(T') by z;) that for all
v € Z(11,T>) we have

oo

Z(T’:zi)fﬂ,n) £ PE“'””(TLTQ)-

i=1
This implies

[+s]

Z(d,‘ (Tz) = d,‘ (Tl ))2 Z (S;zl i, ‘-"I'){g'n T3z)

i=1 i=l

~9 ~
P ““H("r, Te)"

Il

IA

On account of

lim _ flufl =0,
t—1.te[T,T)

the assertion follows, O

LEMMA 6.8 (UPPER SEMICONTINUITY) The function w is upper semicontinu-
ous on [T, T).

Proof. Let T € [L,T] and a sequence (T);en € [ TN converging to T be
given. Then for all «w € Z(0,T), the following statement holds:

?lﬂflm el ory) = llullo,ry-

Morcover, Lennna 6.7 iiplies

oo

Jim Z;((h,Hj(i'l.‘l)w_ﬂ_)—(h._ Hi(T)omn) = 0 aud
1=

m Zl ((u, Hi(Ti)) 0.1y = (. Hi(T)) o)) ™ = 0.
J=

Let (v7)jenv € ()N be a weakly convergent sequence convergiug to the limit

i
Then for ¢ as defined in (7) we have

Jim o(Tk, uljo,z), )= i | | o.m)
+2 3" v (¢ = (0 Hy(T) om) — (s Hy (T o.m0))
i=1 :

. qﬁ(T, "'|(0.T}= Ux)‘

i.e. the map



Time-parametric control 23

is sequentially weakly coutinuous. Statemeut (8) nmplies

h(T,v)= inf_ ¢(T,ulwmr V).
uez(0,1")

Hence A is the infinnun of sequentially weakly continnons waps. Tlhns Propo-
sition 1.5.12 in Pedersen (1988) fplies that h is sequentially weakly upper
semicontinuous, i.c.

limsup h(T;, ") < h(T,v").

J—toe )

For t € [T,T), let a(t) = (o;(t))ien. According to Lemma 6.6 there exists

r € IR such that for all & we have

oo

Z (i(Tx))* < r.

i=1
Hence there exists a subsequence (£) ;e of (1) ;e for which

limsup (T, a(T})) = klim h(t, a(ty))

k—o0
and such that the sequence (o(ti))renw € (I°)Y converges weakly to a point
a* € 12, Then, due to Lemma 6.4 we have

limsup w(T}) + ° litnsup h(T),, or(T}))

k—00 h—00

;.]h“ h(f;.,(t(h‘.)}
T, a")
&«'(T) + ,H)')‘

I

I

IN A

Hence limsupg_, o w(Tk) < w(7T), i.e. w is npper semicontinmons on (T, 7). O
Now we state the main result of this section.

THEOREM 6.1 (CONTINUITY) The function w is continuous on the interval
[Z\ T]‘

Proof. Lemma 6.2 and Lemma 6.8 together yield the assertion. O
LEMMA 6.9 IfT* > T, then w(T™) = (.

Proof. Assumption (A0) implies T* < T.
By Lemma 5.2 the set U(T, 4, ¢) is noucipty if and ouly if

W(T) = [|S7ua(T) = blIFs 1y — A2 = 0e(T) | 0,7y — #* < 0.
Hence the definition of T* implies

T* = inf{T € [T,T) : w(T) < 0}. (9)
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7. Continuity of the value function for the discretized
problem

LEMMA 7.1  For all N € IN, the function wy is continuous on the interval
(L, 7).

Proof. The assertion follows analogously to Theoran 6.1, by replacing the
infinite series by finite swns and the infinite systems of moment equations by
the corresponding finite systems. The dual solutions of problem Py(T) are
elements of RN, O

8. Uniform convergence of the value functions for the dis-
cretized problems

In this section we present the resulf that is announced i the title of the present
paper, a theorem abont nniform convergence of the optimal valne fuuctions for
the discretized problems. This theoremn shows that if the discretization level is
large enough, the discretized problem yields an arbitrarily good approximation
for the optimal value function w, uniformly on the whole inferval [I_“i’-]

THEOREM 8.1 (UNIFORM CONVERGENCE) The sequence (wy)nen converges
uniformly and monotone to w on [T,T].

Proof. The definitions of Poo(T) and Px(7') imply that for all N € IN the
following inequality holds:

wn(T) £ wy1(T) < w(T).
Hence for all T € [T, T]‘ the sequence (wy(7))new 1s convergent and

Nlim wy (T) < w(T).

The proof of Lemma 5.2 immplies that

i -f% = limi (T o
Nl_l__mmwN(T) f },}{11{1;£|["1\(T)||(03)
2 ||'”=-(T)||i?0_.7‘)
= w(T)w;'iB,

where we have used the fact that the fuuction || - [[o7y is sequentially weakly
lower semicontinuous. Hence for all T' € [T, T, we have

Nli_n‘lm wn(T) = w(T).

Thus the sequence of fnctions (wy) e converges pointwise to the huction
w. By Lemma 7.1, for all N € IN the functions wy are coutinnous. By Theorein
6.1, the limit function w is also continmous. Hence Dini’s Theoremn (see Pedersen,
1988) implies the uniform converpence. O,
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THEOREM 8.2 For all N € IN, the optimal value functions wy of the discretized
problems are continuous. The value function w of the original problem is also
continuous.

The sequence (wy)new converges uniformly and monotone to w on [T, T).
REMARK 8.1 For N € IN, T € [T, T) define N, T) = wy (1) and let (o0, T) =
w(T). Then Theorem 8.2 implies that for all sequences (N ey with Ny €
IN U {0}, (Ty)kew where Ty € [T, T) with

lim (Ny,Ty) = (M,S) € (IN U {o0}) x [T, 7]

k—s00

the statement

lim Q(Ng, Ty) = Q(M, S), (10)
v —— 00
holds, that is the function §2 is continnons on (IN U {oo}) x [T, T]. Tor M € IN,
(10) is equivalent to the continiity of was. If Ny = oo for all k € IV, (10) is
equivalent to the continuity of w. Usiug the compactuess of [T, 7], we can also
deduce from (10) the equation

lim  max_ |[Q(Ng,T) — (o0, T)| = 0,
k—so% e T T

i.e. the uniform convergence of the sequence (wy)yewy 10 w.

Hence except for the statement abont monotone convergence, Theorem 8.2
is equivalent to the statement that the function  is coutinmons on (INU {oo}) x
[T, T). Note, however, that in the proof of Theoremn 8.1 Dini’s Theoren can only
be applied due to the fact that for fixed 7' € [T, 7], the sequence of munbers
(wn(T))New 1s increasing. Morcover, in the proof of the continnity of w, we
have used the fact that for fixed T' € [I,T], Poo(T) is a couvex problen.

Coutinuity results of the type of Theorem 8.2 are well knowu iu different
settings, for example Theorem 5.5.1 from Rolewicz (1987). This theorem basi-
cally states that with feasible sets that eive a continmons set valned map of the
paraneter, the corresponding optimal value fuuiction is coutinnons.

To show that the feasible set map is continmons, both lower awd upper seini-
continuity of the sct-valued map has to be shown. This approach requires at
least as much work as to show that the optimal valne fuuction is both npper
and lower semicontinuous, as we have doue.

The purpose of this paper is to examine the bhehavionr of optimal value
functions that occur if the method of moments is used so that the moment
cquations appear as coustraints. This problemn is importaut since the method
of moments is suitable for a munerical treatiment of problems of time optimal
control and in this approach the optimal valne hinctious that we consider occur
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To compute T nmmnerically, we consider the sequence (T ) vew defined as
follows. For N € IN, let

Ty =inf{T € [T,T): wn(T) < 0}.

Since wy € wy+1 S w, forall N € IN we have T}, < Thy, £ 77 Hence
limy oo Ty < T*.

Analogously to Lemma 6.9 we can prove the following: If T3 > T, then the
equation wy(Ty) = 0 holds. Hence if there exists No € IV such that T3 > T,
Theorem 8.1 yields

w(Nll_II.lmTN] = NE.]MNN(TN) =0
since limy oo Ty < T, by (9) this yields
lim T =T".

_.m‘

This implies the following Lenuna.

LEMMA 8.1 If T > T the sequence (TN )new converges monotonically to T
and for N large enough, we have wy(Tyx) = 0.

For the problem of time-minimal control of an Evler Bernoulli beam, Lennna
8.1 has been stated in Krabs (1996).

9. Lipschitz and Holder conditions

In this section, we consider the standard mininnn norm problem
Qoo(T) : min [|ul?) 4y s.t.
e min (0.7)
(u,zj)or) = ¢ (J € IN)
for T € [T, T) with optimal value ¢(7):

o(T) = Ini“{“””?&'ﬁ) tu€ Z(0,T), (u,z)om) =¢; (j € IN)}.

We give an assumption that ensures that the optimal valne fuction satisfies a
certain Holder condition with exponent 1/2. We also present an assiuption that
implies a certain Lipschitz condition. Our assumptions are regularity conditions
for the solutions of problem Qs (7).

We need some additional notation. Let a sequence (Aj);en of mmubers
greater than or equal to 1 be given. Assmme that there is a munber s > 0 such
that

oL L
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For a sequence (a;);epn of real munbers and r € IR let,

1/2

oo

llelle = | D lagP(A)"

J=1
Define the space of sequences

7 = {(a;)jewv : llall- < oo}.

For t € [T,T), define the lincar operator A(t) : 17 — 2

= (S )

Up to now we have studied the optimal value function. The following leimna
contains a result about the seusitivity of the optimal solutions with respect to
the parameter f.

LEMMA 9.1 Let ¢ € I2. Fort € [T, T), let n(t) = A(t)"Yc. As before, assume
that Al and A2 hold. Then for all t1, ty € [T,T), the following inequality is
valid:

o
In(t1) = nta)llie < M2PID i)zl ry.a)-
=1
In particular, this implies

ti (1) = n(ts) e = .
to—t

Moreover, if the functions z; are continuous and

max |z (t)| <1, i € N, (11)
tefo.7)

and for some r > s the sequence ¢ is in A(t1)(12), then the following inequalities
hold:

1/2
In(t1) = n(t2)llie < vt = ta| M Plln(t) 2 (Z i,') (12)

i=1 i

lp(t1) — p(t2)] < VIt1 — t2]

- 1/2
2|In(t1)lz <Z %) (13)

Inequality (13) shows that the optimal value function o satisfies « Holder con-

=T
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Proof, The definition of n(t) huplics

A(tz)(n(ty) = n(t))
A(ta)n(ty) — ¢
(A(t2) — A(t1))n(t1)

o
(Zi,Zﬂj(tl)zﬁ)m.tz)) :
1EIN

i=1

Let u =332, ni(t1)z; € L*[0, T). Then Lenima 5.1 implies

oo

IAt2)((t2) = n(t2)lF = D (20,007, 0y < PG, 00

i=1
Hence the following inequality Lolds:
lIn(t) = n(ta)lliz < M| A(t2)(n(t1) = n(t2) ]z < MPllulls, 129,

and the first assertion follows. Due to (11) we have

fal, .y = i/ s
< ZZ |mi(t1) {26, 23) (1 by i (1)

i=1 j=1
£ (Z!’?i(h“) (Zhh‘(f:“) [ty — ta]
i=1 j=
< (Zim(ﬁ)|A”°A"”) It — o]
1

1
< ety (X5 o=l
i=1 "t

hence if n(t;) € 12, (12) follows. Now (13) is a consequence of the equation
@(t1) — @(t2) = T (p(ty) — n(t2)) and the Canchy Schwarz inequality. O

The proof of Lemmmna 9.1 ouly works for the standard miniunun norn problem
Qoo (T') and not for problemn Poo(T').

Note that the dual space of 12 is 12 .

LEMMA 9.2 Fort € [L,T), a € 12, let

o0

P T e VNG, U VA .
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Assume that (11) holds. Let r > s. Then D(1) is a continuous linear map from
r'.',z_ into I and forall o € !2

-7

ID@aliz, < lallg (Z A:*‘) . (1)

Proof. Let 3 € I2. Then

1l

18T D(t)a| | Pizi(t)zi(t)o]

i=1

i

NgE:
i)

s Zz|ﬂf'-”.1|
i=1 j=1
= ( iﬁ-l) >l
i=1 j=1
) (Zlﬁflhf”ﬁ?'ﬂ) Y lasAg2asm/?
= i=1
oo
S 1Pl (E f\:") oz,
i=1

where for the last line we have applied the Canchiy Schwarz inequality twice.
Hence the inequality (14) follows. O

LEMMA 9.3 Assume that (A1) and (11) hold. Assume that the functions z; are
continuously differentiable with

max |z(t)| < Vi, i€ . (15)
tef0,1]

Letr>s+1. Fort€[T,T), a €2, let

oo

E(t)a = Z(Z,‘, 2.’.3;)(0“)(1{.1
=1 ielV

Then A(t) is a bounded linear operator from 12 into I2,. A(t) is Fréchet
differentiable with respect to t, and

(X(f.)r}){ = Zz,-(t)zl,-(t)rrlf = (D(t)ar);.
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Proof. Due to (A1), for o € 12 we have
[A(allz, < [A®)alliz < PPllalle < P?lalie.

Let h # 0 be such that t + h € [T, T]. The Taylor expansion implies the
existence of numbers &; € (0.T) such that

1
tg(zhzj)(r,r-f-h) — z{t)z;(t)

|| o

h 4
= % | (&) 25 (&is) + 2 (&3)2i (€5)| < ?(\/k_{ + ).

Let a € 12, Define a; = Z?i] (Vi + /Aj)aj. Then for all 4 € I2, the following
inequality holds:

Zaiﬁ{ < YN IBIVN + VAol

i=]1 j=1
< (Z lﬁ,-|\/,\7-) s
i=1 i=1

+ (2 |ﬂ,-|) i |”.-:'lvf)‘_.f\) ‘

J=1
For g > s, we define a positive imunber €, by the equation
q I

- 1/2
Cy = (Z %) < . (16)

i=1

For v € 2, we have

oo - - -
Zh’ih//\—i = Zh‘l’\:/-’\sl_i”-
i=1

=1
— 1
< "“f”fE (Z /\TT) = ||'THI:-{O,-—1'
i=1 "
Morcover,
oo
> il < Il Cr.
i=1

Hence for all 3 € 12 we have the inequality

‘T a;fi| < 1Bz lall22Cr_1C:..
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Thus we conclude that
H(a'l?)i”l'-'_,_ < 2“(1‘”(:.{(/'7‘_16',-.

Then we obtain the statement

| [AU_JF’Z*_A@ o D(t)] alle

=1

= | Z[E@? 27)(f t+h) — 1(1)3.7'(7‘/)}”7 ”I:
=1 .
hoos, =

£ = Z Va+ V)| e,

l||<a il
Ih/I lelli2Cr—1C,. (17)

|h

Il

IA

So for h — 0 the assertion that A is Fréchet differentiable in ¢ follows. O
The following theorem contains a sufficient condition for a kind of Lipschitz
condition for .

THEOREM 9.1 Let r > s + 1. Assume that (A1), (11) and (15) hold. Let
t € [L,T) be such that ¢ € A(t)(I2). Then there exists a constant L(1) > 0 such
that for all ty € (t,T), the following inequality is valid:

©(t) 2 @(ta) 2 () — L(t) (t2 — 1).

Proof. Let to € (t,T) and h =t —t > 0. Let u, be the solution of Qu(t).
Define 4(s) 1= u.(s), if s € [0,1], @(s) := 0 if s € (#,t2]. Then for all i € IN we
have

(, Zi)(o,r,g) = <'“'*,Z1‘)(o‘r,) = G,
hence
plta) < llll%,

Moreover, due to Lemma 6.4 we obtain the statcement

= [lullfo. = ().

= T sup —
h -\ a€gl?

__(——(l Z ¥y Qg <Z7'7 Zj)(O.f-é—h) + 2 Z Vi

i,j=1 J=1

o0
+ y ni (O ()2, 2 0.0 — 2?774(1)(";\'
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1 o0
= 3 m OOz 2 m)

2
i.7=1
= =20 h;,i =L
= —nt)7 (w - D(f)) n(t)
—n(t)" D(tyn(1)

> —n(t)TD(On(t) = [In(t)l|ECraaCrlhl.

where the last line follows fromn (17). B
Let L(t) = n(t)"D(t)n(t) + [n(t)[|7: Cr-1 [T — 1] > 0. Then

@(t + h) > p(t) — L(t) h,
and the assertion follows. O

REMARK 9.1 The fact that ¢ is decreasing is well knowu, but the lower hound
for ¢(t2) in Theorem 9.1 appears to be new.

Conditions (11) and (15) hold for trigonometric moment problems of the
form

T
/ Tl‘.(t) Si]!( \/A_,F) dt = 951,
J0

T
/G u(t) cos( \/A_,f) dt

that appear for example in the characterization of the set of feasible coutrols for
the exact confrol of hyperbolic partial differential equations (see, for example
Krabs, 1982).

i, 7 (< lf\'f

I
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