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Abstract: This paper investigates the local convergence of the 
Lagrange-SQP-Newton method applied to an optimal control prob­
lem governed by a phase field equation with distributed control. 
The phase field equation is a system of two semilinear parabolic 
differential equations. Stability analysis of optimization problems 
and regularity results for parabolic differential equations are used to 
proof convergence of the controls with respect to the L 2 ( Q) norm 
and with respect to the L 00 (Q) norm. 
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1. Introduction 

In this paper we investigate the local convergence of the Lagrange--Sequential­
Quadratic- Programming- (SQP)-Newton method for the solution of an optimal 
control problem governed by a phase field equation. Phase field equations are 
used to model solidification. They are systems of partial differential equations 
(PDEs). The unknowns in the system of PDEs are the order parameter cp (also 
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called phase function) and the temperature u. Unlike in the classical Stefan 
problem which models a sharp solid-liquid interface, phase field models allow 
for a mushy region. The phases are identified using the order parameter cp . 
Assuming a suitable normalization, {x E !:t lcp(x) = 1} is the liquid region and 
{ x E !:tlcp(x) = -1} is the solid region. The interface is described by points 
x E !:1 for which the order parameter takes values in ( -1, 1). We consider the 
phase field model introduced in Caginalp ( 1 986), Collins and Levine ( 1985) , Fix 
(1982), that consists of the two partial differential equations 

0 £ 0 
ot u + 2 ot cp = "'t::.u + f (1) 

in !:1 x (0, T], 
0 

Tot cp = e /:::,cp + g( cp) + 2u (2) 

with boundary conditions 

0 
on u = 0, 

0 
on cp = o, on o!:l x (0, T), (3) 

and initial conditions 

u = uo, cp = cpo in !:1. (4) 

The function -g(z) is the derivative of a so-called double well potential G(z). 
Often G(z) = k(z2 - 1)2 . We assume that g(z) = az + bz2 - cz3 with bounded 
coefficient functions a , b, c and strictly positive c. In the model "' denotes the 
heat conductivity, £ the latent heat, T is the relaxation time, and ~ is the 
length scale of the interface. Other, more complicated phase field equations 
have been derived. See, e.g., Kenmochi (1994), Kobayashi (1993), Penrose and 
Fife (1990,1993), Sprekels and Brokate (1996) . 

In this paper we study a constrained distributed control problem in which 
the state equation is given by the phase field model. The objective is to find a 
heat input f such that the resulting temperature u and phase cp match desired 
temperature and phase profiles ud and cpd, respectively. Mathematically, the 
problem is formulated as 

min J(f), 
f E Fad 

where the objective function is given by 

(5) 

J(u,cp,f)= (6) 

faT In ~ ( u(x, t) - ud(x, t) )
2 + ~ ( cp(x, t) - 'Pd(x , t) )

2 + ~ (f(x, t) )
2 

dxdt. 

The set of admissible controls has the form 

Fad={! E L 2 (!:1 X (0, T)) I f(x, t) E F a.e. } , (7) 
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where F C lR is a closed interval, e.g., F = [ -1, 1] . 'Ne do not require F to 
be bounded. In the objective function u and rp are the solutions of (1) to (4) 
corresponding to the control f. Thus, the right hand side f is the control and 
the pair ( u, rp) is the state. In the objective function a and (3 are weighting 

parameters, and~ J: llf(t)ll 2 dt is a regularization term. We assume that 

are given functions and that a, (3, and --y are positive constants. Later we will 
require that ud,'Pd E Lq(D x (O,T)) with q > 2 if n = 2 and q > 5/2 if 
n = 3 to derive regularity estimates for the adjoint variables and our strongest 
convergence estimates for the optimization algorithm. The requirement --y > 0 
is important for our second order sufficient optimality condition. It can only be 
expected to hold if --y > 0. 

The infinite dimensional phase field model (l) to ( 4) has been analyzed in 
Caginalp (1986), Elliott and Zheng (1990), Hoffmann and Jiang (1992), Chen 
(1991). In Caginalp (1986), Elliott and Zheng (1990) the case f = 0 is conside­
red. Numerical investigations of the phase field model (1) to (4) can be found 
e.g., in Fix (1982), Lin (1988), Fix and Lin (1988), Ca.ginalp and Lin (1987), 
Chen and Hoffmann (1993), Chen (1991). Numerical simula.tions using other 
phase field equations have been performed, e.g., in Ca.gina.lp and Socolovsky 
(1994), Horn (1994), Koba.yashi (1993). 

The control problem stated above has been a.nalyzed in Chen (1991 ), Chen 
and Hoffmann (1991), Hoffmann and Jiang (1992). In Chen (1991), Hoffmann 
and Jiang (1992) the infinite dimensional control problem is considered. Exis­
tence and uniqueness results for the optimal control are derived and the differ­
entiability of the state with respect to the control is analyzed. In Chen (1991), 
Chen and Hoffmann (1991) a. discretiza.tion of the control problem is introduced 
and some of its approximation properties are a.nalyzed. The gradient method 
for the numerical solution of the control problem (5), (6), (1), (2), (3), (4) is 
studied in Chen and Hoffma.nn (1991). For optimal control problems governed 
by the Penrose-Fife phase field model, Penrose and Fife (1990), existence of so­
lutions and their characterization is studied in Horn (1994), Sprekels and Zheng 
( 1992), S prekels and Zheng ( 1993). 

The purpose of this paper is the analysis of the Lagrange SQP-Newton 
method for the solution of the above mentioned control problem. SQP methods 
are used to solve nonlinear constrained optimization problems. Their success for 
finite dimensional problems has sparked the research on their application to op­
timal control and other infinite dimensional problems. SQP methods treat states 
and controls as independent variables. The nonlinear problem is solved using a 
sequence of linear quadratic problems. In the context of control problems with 
linear control constraints the constraints of the quadratic program are given by 
the linearized state equation and the linear control constraints. In our analysis 
we use exact second order derivative information and, since we are interested in 
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the local convergence analysis, we use the quadratic model of the Lagrangian 
about the current iterate as the objective function in the quadratic program­
ming subproblems. This method is called Lagrange-SQP-Newton method. If 
no control constraints are given, then near to a local minimum point that satis­
fies the second order sufficient optimality conditions the Lagrange-SQP-Newton 
method is equivalent to the Newton method applied to the necessary optimality 
conditions. In the presence of control constraints it is equivalent to the gene­
ralized Newton method applied to a set of generalized equations Alt (1990), 
R.obinson (1980). 

Since states and controls are treated as independent variables the nonlinear 
state equation does not have to be solved in every iteration, but is part of the 
constraints and is satisfied in the limit. Another attractive feature is the fast 
local convergence speed of SQP methods. If exact second derivative information 
is used, these methods show a local q- quadratic convergence behavior. If quasi­
Newton approximations for the second derivatives are used , then they show 
some kind of q-superlinear convergence. SQP methods for finite dimensional 
nonlinear programming problems are discussed, e.g, in the overview article of 
Boggs (1995). Theoretical and numerical studies of SQP methods applied to 
optimal control problems in an infinite dimensional framework can be found, 
e.g. , in Alt (1990) , Alt and MaJanowski (1993 ,1995), Goldberg and Troltzsch 
(1998), Heinkenschloss and Sachs (1994), Kelley and Wright (1991), Kunisch 
and Sachs (1992), Kupfer and Sachs (1992), Troltzsch (J 994,1998). A local 
convergence analysis for reduced SQP methods in Hilbert spaces using quasi­
Newton updates is given in Kupfer (1996). Studies of the local convergence 
behavior of the Lagrange-SQP- Newton method for several classes of optimal 
control problems can be found, e.g., in Alt (1990), Alt and Malanowski (1993), 
Alt, Sontag and Troltzsch (1994) , Troltzsch (1994). 

The general outline of our convergence proof for the La.gra.nge-SQP-Newton 
method for (5), (6), (1), (2), (3), (4) is identical to the ones in Alt (1990), 
Troltzsch (1994). The details of the convergence proof, however, are very dif­
ferent from those in Alt (1990), Troltzsch (1994). These differences are due to 
differences in the governing equations. In Alt (1990) the governing equations are 
ordinary differential equations and in Troltzsch (1994) the governing equation is 
the linear heat equation with a nonlinear boundary condition. Here we carefully 
use the structure of the phase field equations (1), (2), (3), ( 4) to overcome a 
two-norm discrepancy and to show convergence of the controls with respect to 
the L2 (Q) norm and with respect to the L00 (Q) norm. In particular, we will 
show that 

llu+- u*llw;· 1 + II'P+- 'P*IIw,;· 1 + 111+- f*llu"' + 11>-+- >-* II A,1 

< C (Jiuc- u*llw;· 1 + II'Pc- 'P*IIw;· 1 + li fe - f*llu"' + ll.\c - A*IIA,J
2 (8) 

where C is some positive constant and q > 2 if n = 2 or q > 5/2 if n = 3. 
Here the subscripts *, +, c denote optimal solution, new iterate, a.nd current 
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iterate, respectively, and A = (p, '!{;) are the Lagrange multipliers in the dual 
space Aq = w;·1(Q) x w;·1(Q). A complete review of the notation applied 
in this paper is given at the end of this section. The surprising feature of the 
estimate (8) is that the L 00 norm of the error in the new control f + - f* can 
be estimated using the much weaker LP norm of the error in the current control 

fc- f*. 
It is necessary to discuss what we mean by a two-norm discrepancy. Often, 

differentiation of the objective and constraints is only possible with respect to a 
rather strong norm in the control space, say the L00-norm, whereas the second 
order sufficient optimality conditions hold only with respect to a weaker norm, 
say the L2-norm. This two-norm discrepancy principle plays an important role 
in the analysis of nonlinear control problems and we refer to Alt and Malanowski 
(1993), Dontchev, Hager, Poore and Yang (1995), Dunn and Tian (1992) and 
Maurer (1981) as a selection of references in which various aspects of this and 
related issues are investigated. More references can be found in those papers. 
In our case the situation is slightly different in that the nonlinear term g in 
the state equation is a polynomial of degree three. Using Holder's inequality 
it can be seen that <p -> g( <p) is infinitely often differentiable as an operator 
from L 6 (Q) to L 2 (Q). Using the smoothness of solutions of parabolic equations 
this enables us to prove convergence of the controls in L 2(Q). This seems 
to be the natural space if the set of controls Fad is unbounded. However, if 
Fad is bounded, then the controls are in L00

( Q) and one wants to establish 
convergence with respect to this stronger norm. It is in this case that the 
two-norm discrepancy issue arises. The difficulties that have to be overcome 
are the same. However, the reason for the two-norm discrepancy is different. 
Differentiability can be shown if <p-> g( <p) is viewed as an operator from L 6 ( Q) 
to L 2 (Q). For the problem under consideration these norms are "compatible". 
The desire to have convergence of the controls with respect to the L 00 

( Q)- norm, 
which is important from a numerical point of view, e.g., for the identification of 
active indices, causes the incompatibility. 

In Heinkenschloss (1997) a multilevel Newton method is applied to solve the 
unconstrained control problem (5), (6), (1), (2), (3), (4), and in Heinkenschloss 
and Sachs (1994) the constrained control problem studied in this paper is treated 
numerically. The multilevel Newton method in Heinkenschloss (1997) is an 
extension of the SQP method in that it incorporates an efficient solution method 
for the computation of the steps. Its convergence, however , requires controls in 
Lq(Q) with q > 4. The numerical method in Heinkenschloss and Sachs (1994) 
is a combination of the multilevel Newton method in Heinkenschloss (1997) and 
the projected Newton method in Kelley and Sachs (1995). While no convergence 
analysis for the algorithm in Heinkenschloss and Sachs (1994) exists, the strong 
convergence results for the Lagrange-SQP-Newton method proven in this paper 
might serve as an indication why the algorithm of Heinkenschloss and Sa.chs 
(1994) perfomed well numerically. 
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As in Troltzsch (1994), our second order sufficient conditions requires the 
positive definiteness of the Hessian of the Lagrangian on the space of fLmc­
tions satisfying the homogeneous linearized state equations. In the presence of 
bound constraints on the controls this seems to be too strong, because the active 
bound constraints limit the space of functions on which the Hessian of the La­
grangian has to be positive definite further, see, e.g. , Maurer and Zowe (1979). 
In the papers of Goldberg and Troltzsch (1 998), Troltzsch (1 998), convergence 
of the Lagra.nge-SQP-Newton method for some semilinear parabolic control 
problems is proven under second order sufficient optimality conditions weaker 
than the ones we use. Active bound constraints are incorporated into the pos­
itive definitness conditions. The mathematica.J tool in Goldberg and Troltzsch 
(1998), Troltzsch (J 998), is the convergence analysis of Newton's method for 
generalized nonlinear equations, Alt (1 990), R.obinson (1980). The price for 
the relaxation of the second order sufficient optimality condition, however, is 
that a constraint involving the optimal control has to be introduced into the 
quadratic-programming (QP) which generates the new iterate. Since the pur­
pose of the Lagrange-SQP-Newton method is the determination of the optimal 
control, such a constraint is not practical. Fortunately, its inclusion does not 
seem to be necessary in practice, Goldberg and Troltzsch (1998,1998a). This 
shows, however, that there still is a gap between practical, efficient algorithms 
for semilinear control problems and their theoretical justification. This paper is 
meant to narrow this gap. 

The outline of the paper is a.s follows: In Section 2 we review some results 
on the existence and uniqueness of solutions of the state equation and of the 
optimal control problem. Necessary and sufficient optimality conditions are 
discussed in Section 3. The SQP method and basic properties of the iterates 
will be discussed in Section 4. The convergence proof for the SQP method is 
based on the observation that the iterates can be interpreted as solutions of 
a perturbed quadratic problem obtained from a linearization of the original 
problem around the solution. This relation and some important estimates for 
the solutions of the perturbed problem are discussed in Section 5. The results 
of 4 and 5 are used in 6 to derive the desired convergence estimates. 

Before we start with the discussion of the control problem, we state the 
assumptions which are assumed to hold throughout this paper: 

(A1) The domain n c JR.n, n = 2, 3, is a bounded C 2-domain. 
(A2) The coefficients in (1), (2) satisfy 

r;,,~,f,T > 0 
and the function g is given by g(z) = az + bz2 - cz3 with 

a(x, t)::; a, b(x, t)::; b, 0 < _g::; c(x, t)::; c. 
(The results can be generalized to the case where r;,, ~' 1!, and Tare strictly 
positive, sufficiently smooth functions.) 

(A3) The initial conditions satisfy 
uo, r.po E W!(O) 
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and the compatibility conditions 
a a 

an Uo = an <{JO = 0. 
We use the following notation: The space-time-domain is denoted by Q 
0 x (0, T) . For p E [1, oo) we define 

2,1 - { a1t a
2
u au p } wp (Q)- u 1 u, -;;-,-;;--;;--,-;:;-EL (Q) . 

UXi UXiUXj ut 

The space w;·1 ( Q) equipped with the norm 

is a Banach space. We often omit the space Q and use Hi£· 1 , LP instead of 
W£· 1 (Q), LP(Q), respectively. By (·, ·/ and 11 · 11 we denote the scalar product 
and norm in L2 (0). 

In the SQP method we use the following notations: The current iterates 
are denoted by the subscript c, the new iterates are indicated by the subscript 
+,and the optimal values have a subscript *· Thus, (uc, <fJc, !c), (u+, <fJ+, f+), 
(u*, r.p*, f*) denote the current iterate, the new iterate, and the minimum point, 
respectively. Moreover, we use the notations 

v = (u,r.p,f), A= (p,7);), (9) 

for the triple of states and control and the pair of eo-states, respectively. Similar 
notations are used for v*, v, etc. Finally, we introduce the product spaces 

For q = 2 we simply write V= V2 and A= A2 . 

In all our proofs, C will be a. generic positive constant. 

2. Well-posedness of the state equation and existence of 
optimal controls 

Existence and uniqueness of the solution of the state equation (1), (2), (3), (4) 
are proven in Chen (1991) and in Hoffmann and Jia.ng (1992). Other proofs for 
the case f = 0 can be found in Ca.gina.lp (1986) and Elliott and Zheng (1990). 
The following result is taken from Hoffma.nn and Jiang (1992). 

THEOREM 2.1 If the assumptions (A1)-(A3) are satisfied, then for each f E 

Lq(Q), q ~ 2, there exists a unique solution (u,r.p) E Wi· 1 (Q) x W£· 1 (Q) of the 
state equation (1) to (4). Moreover, the solution obeys 



184 M. HEINKENSCHLOSS, F. TROLTZSCH 

Here the parameter p is given by 

ifqE [2,~) andn = 3, 
{

2.q_ 
p = 5-2q 

any positive number if q;:::: ~ and n = 3, or if q;:::: 2 and n = 2. 

Note that since 5qj(5 - 2q) > q for q E [2, 5/2) we may set p = q in Theorem 2.1. 
In addition to p = q we will frequently use Theorem 2.1 with q = 2, p = 10. 

The proof of Theorem 2.1 uses the Leray- Schauder fixed point theorem and 
the following imbedding results due to Lions and Peetre: 

THEOREM 2.2 lf D C IR.2 is a bounded domain having the cone property, then 
the imbeddings 

and 

are continuous; the imbeddings Wi· 1 (Q) C LP(Q) , p E [1,oo) , q E [2 , oo) are 
compact. 

IfD C IR3 is a bounded domain having the cone property, then the imbeddings 

where 

p = { :y positive number 
2.q_ 
5-2q 

ifq > 5/2, 

ifq = 5/2, 

ifq < 5/ 2, 

are continuous; the imbeddings Wi· 1 ( Q) c LP-€ ( Q)! where p is given as above 
and € > 0, are compact. 

Proof: The assertions are proven in pp. 14,15,24,25 of Lions (1985). • 

We will frequently use this theorem with p = q, or q = 2,p = 10, or q = 10,p = 
00. 

Theorem 2.1 allows us to define the solution operator 

S: L9(Q) 
f 

-4 Wi·l(Q) x w;•l(Q) , 
~--> (u,<p), 

(11) 

mapping the right hand side into the solution of the state equations (1)- (4). It 
is shown in Hoffmann (l.nd Jiang (1992) that the solution operator is continuous 
and Frechet differentiable. In particular, it holds that 

llu ll w;· 1 + ll<pllw;· 1 :::; c (lluollw~ + ll<pollw~ + llfll£2), (12) 
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where c = c(£,~,T), and 

llu1- u2llw2·1 + II1P1- 1P2IIw2·1 :S Cllh - hiiP 
2 2 

(13) 

for (u;,<p;) = S(f;), i = 1,2, where C depends on llu;llw2,1, II~P;IIw2,1, i = 1,2. 
2 2 

lfu;,<p;, i = 1,2, are contained in bounded subsets B c (Wi' 1 )2, which will be 
the case in our analysis , then C can be assumed to depend only on B, but to 
be independent of individual u;, <p; E B, i = 1, 2. In particular, if !J, h are in 
a bounded set Fb C Fad, then (12) implies that (13) holds with C depending 
only on Fb. If Fad is already bounded, then there is a C such that (I 3) is valid 
for all h, h E Fad· 

Since the objective function (6) includes a regularization term ~ {{ llf(t) 11
2 dt, 

1 > 0, one can show the existence of a minimizing sequence {in}, which is 
bounded in L 2 (Q). 

Using the existence of weakly converging subsequences and the weak lower 
semi- continuity of the objective function one can prove the existence of an 
optimal control. For details we refer to Chen (1991) and Hoffmann and Jiang 
(1992). If 1 = 0 and if F is bounded, then one can extract a subsequence out of 
the minimizing sequence that is weak* convergent in L 00 (Q). Using arguments 
as before, one can establish the existence of an optimal control. In Hoffmann 
and Jiang (1992) it is also shown that the optimal control is unique if the final 
time T is sufficiently small. The existence and uniqueness results for optimal 
controls are summarized in the following theorem taken from Hoffmann and 
Jiang (1992): 

THEOREM 2. 3 Let the assumptions of Theorem 2.1 be valid. If 1 > 0 or if F is 
bounded, then there exists an optimal control f* E L 2 

( Q) . The optimal control 
satisfies f* E L 00 (Q) if F is bounded. Moreover, if 1 > 0 and if the final time 
T is sufficiently small, then the optimal control f* is unique. 

For our analysis we do not need this strong result. All statements in the following 
sections hold for local solutions ( 1L*, <p.) that satisfy the second order sufficient 
conditions. 

Characterizations of the optimal controls are given in the following section. 
We introduce the auxilia.Iy system 

"'t:,'L + fJ1u + h 
el:,<p + f32<p + 2u + h 

in D x (0, T], (14) 

with boundary conditions (3) and initial conditions (4). 
This linear system will play a.n important role. In fact, if h = h, h = 0, 

uo = 0, <po = 0, and /31 = 0, fJ2(x, t) = g'(<pc(x, t)), then the solution (u, <p) 
of (14), (3), (4) is the first Frechet derivative (u,<p) = (1LJ(jc)h,<p1(fc)h) of 
(u(f), <p(f)) at the control fc. Moreover, with h = j, h = g(<pc), /31 = 0, and 
fJ2 = g'(<pc) the system (14), (3), (4) essentially defines the pair (u+, lP+ ) of the 
new iterate in the SQP method, see Section 4. 
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THEOREM 2.4 Let the assumptions (A1) - (A3) be valid and suppose that h , h E 

Lq ( Q), q 2:: 2. If (31 ,f}z E L3 ( Q), then there exists a unique solution ( u, <p) E 
W,i· 1 (Q) x W,i• 1 (Q) of the system (14) , (3), (4). The solution obeys 

llullw;· 1 + II'PIIw;· 1 :::; C(lluollw;, cn) + II'Pollw;,(o) + llhiiL" + llhiiLo) 
with constant C = C ((31, (32) depending only on 11 f3Iil £3 , 11 f32ll £ 3 . Moreover, the 
function ((31, (32) f--7 C((31, (32) maps bounded sets into bounded sets. 

Proof: The proof is given in the Appendix. • 
The conditions on f3i, i = 1, 2, are clearly satisfied if f3i E L00

. However, they 
are also satisfied if f3i is of the form 

f3i(x, t) = a(x, t) + b(x, t)ip(x, t)- c(x, t)ip(x, t) 2 

or, more generally, of the form 

m 

f3i(x, t) = L cj(x, t)ip(x, t)1, 
j=l 

with Cj E L00 (Q) and ip E £ 3= . 

3. First and second order optimality conditions 

The first order necessary optimality conditions for the optimal control problem 
under investigation are established in Chen (1991) and Hoffmann and Jiang 
(1992). We state the first order necessary conditions in the form needed for our 
purposes and derive second order sufficient conditions. 

The Lagrange function for the optimal control problem is given by 

L(u, <p, f ,p, ,P ) = J(u, <p, f) - 1 Tln p [ut+ ~'Pt- K.,/:,u- f] dxdt 

-la Tin 'lj! [T<pt - e 6.<p- g( <p) - 21t] dxdt 

which, using integration by parts, can be written as 

L(u,<p,f,p,,P) = J(u,<p,f) -1T(ut + ~<pt,P) + K.,(\lu, \lp)- (f,p) dt 

-loT T(<pt, 'lj!) + e (\l<p, \l'lj!) - (g(<p) + 2u, 'lj!) dt. (15) 

For fixed p and 'lj! the Lagrangian splits into a linear part £ 1 and a nonlinear 
part £2, L = £ 1 + £2, where 

(16) 
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In all what follows we use subscripts to denote partial Frechet-derivatives of 
L. For instance, L(u,<p) denotes the first order derivative of L with respect to 
the pair (u, rp), and Lvv stands for the second order derivative with respect to 
the triplet v = (u, rp, f). The first order necessary optimality conditions for the 
optimal control problem are: 

L(u,<p)(u., rp., f.,p., 'lj;.) 0, (17) 

L(p,,p )(u., rp., f.,p., 'lj;.) 0, (18) 

Lt(u.,rp.,f.,p.,'lj;.)(f- f.) > 0 1::/ f E Fad, (19) 

f . E Fad · (20) 

The equation (18) means that the state equation has to be satisfied. An evalu­
ation of (17) shows that the pair (p., 'lj;.) has to satisfy the ad joint system 

- gtP 

-T gt'lj;- ~ gtp 

K,/:::,.p + 2'1j; + a(u. -1td), 
in D x (0, T], (21) 

e/:::,.'lj; + g'(rp.)'lj; + fJ(rp.- l.f!d), 

with boundary conditions 

8 
8n'lj; = O, on 8D x (0 , T) , (22) 

and final conditions 

p(x, T) = 0, 'lj;(x, T) = 0 in D. (23) 

The inequality (19) is equivalent to the variational inequality 

Since 1 > 0, a standard discussion gives 

f.(x, t) =Pp( -~- 1p.(x, t)) a .. e. on Q, (24) 

where Pp : IR--+ F denotes the projection onto the closed set F. 

THEOREM 3.1 Let the assumptions (A1) - (A2) be valid and Sltppos e that the 
right hand side function f in (1) obeys f E Lq(Q). If ud, l.f!d E L'"(Q) , {t E 
[2 , oo), then there exists a unique solution (p,'lj;) E w:·1 (Q) x lV:· 1 (Q) of the 
adjoint system (21) to (23 ). Moreover, the solldion obeys 

where v = min{f.l , 5 ~~ } if 2 ::; q < 5/2 and n = 3, and v = /-l if q ;::=: 5/2 or 
n = 2. The constant C depends only on rp •. 



188 M. HEINKENSCHLOSS, F. TROLTZSCH 

Proof: The assumptions (A1)-(A2) and f E Lq guarantee that the solu­
tion of the state equation obeys tt., cp. E TV;•1 (see Theorem 2.] ). Thus, by 
Theorem 2.2 , u. - ud, cp. - cpd E Lv, where v is defined above. 

If one introduces the transformation t --; T- t, then (21) to (23) is equa.l to 
(14) with homogeneous initial and boundary conditions and with .f1 = a{u .• -
ud), h = f3(cp.- cpd), and /31 = g'(cp.), /32 = 0. Thus the assertion follows from 
Theorem 2.4. • 

In the following we use the notations (9) and (10). 
We will show that v. is a locally optimal point if it satisfies the first order 

optimality condition and 

(25) 

for all v = ( u, cp, f) E V satisfying the linearized state equation 

K6.u + .f, 
e 6.cp + g'( cp.)cp + 2u, 

in D x (0, T], (26) 

with homogeneous initial and boundary conditions. Note that Theorem 2.4 
shows that the solution of (26) obeys 

llf llu ;::: C(llullw2 •1 + ll cpllw 2 ·1 ) · 
2 2 

Hence, 

(27) 

for all v = ( u, cp, f) satisfying the linearized state equation (26) is necessary and 
sufficient for (25). 

THEOREM 3.2 Suppose that the necessary optimality conditions (17) - (20) are 
satisfied at (u* , cp*, j.) and that (25) holds. Then there exist E > 0 and c > 0 
such that 

for all feasible (u,cp,.f) with llf- J.IIL2:::; E. 

We omit the proof of this quite standard and expected result. The interested 
reader might consult the full version of our paper Heinkenschloss and Troltzsch 
(1998). 

We conclude this section with a remark on the differentia.bili ty of the Ne­
mytski'l-operator "g" defined by cp --; g( cp). Since g is a polynomial of degree 
three we can view "g" as an operator from L 6 (Q) into L 2 (Q ). In this setting 
"g" is infinitely often differentiable. Note that we apply "g" to solutions cp of 
parabolic equations. The regularity of solutions and the imbedding theorem 
guarantee that cp E W:?'1 (Q) c L6 (Q). We make use of this particular form 
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and this will enable us to derive convergence estimates for ( 1L, <p , f) in the space 
Wi· 1(Q) x Wi·1(Q) x L 2 (Q). This is a reasonable choice if the admissible set 
Fad is unbounded. However, we may also wish to view the NemytskiT-operator 
"g" as an operator in L 00 

( Q), which is the appropriate setting if Fad is bounded. 
This setting usually also has to be chosen if g is not a polynomial. In this case 
one has to overcome the so-called two-norm discrepancy: The second order suf­
ficiency condition (25) can only be expected to hold in the L2 (Q)- norm, whereas 
differentiability is given only with respect to the L 00 (Q)- norm. In our situa­
tion, we will not have to cope with these difficulties. However, the two-norm 
discrepancy would be connected with the desire to obtain the convergence of 
controls in L 00 (Q). 

4. The Lagrange-SQP- Newton method 

The La.grange- SQP-Newton method solves the nonlinear, non- convex optimal 
control problem (5), (6), (1) , (2), (3), (4) through a sequence of linear-quadratic 
control problems. 

We continue to use the notations (9) and (10). Moreover, we denote the 
current iterate by ( Vc, A c) = ( Uc, <pc, fc, Pc, 7/Jc) and the new iterate by ( v+, A+) = 

(u+, <p+, f+, P+, 7/J+). 
In the Lagrange-SQP-Newton method the new iterate is computed as the 

solution of the following minimization problem: 

subject to the linearized state equation 

r;,b,.u + f (29) 

inn X (0, T], 

eb.<p + g(<pc) + g'(<pc)(<p- <pc)+ 2u (30) 

with boundary conditions 

8 
on <p = o, on an X (0, T), (31) 

and initial conditions 

u = uo, <p = <po inn, (32) 

and subject to the control constraints 

f E Fad. (33) 
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LEMMA 4.1 Let the assumptions (A1) - (A3) be valid. lf(uc ,'Pc) E TV,;•1(Q) and 
f+ E Lq(Q), then there exists a unique solution v+ = (u+, 'P+• f +) of (29)-(32). 
The solution obeys 

The constant C depends only on 'Pc and can be chosen independent of 'Pc if 'Pc 
is contained in a w;· 1 -bounded set. 

Proof: The pair (u+, 'P+) satisfies the system (14) with h = f +, h = g(cpc)­
g'(cpc )'Pc, fJ1 = 0, and fJ2 = g'(cpc)· Since q E [2,5/2) implies 5q/(5- 2q) 2: 3q 
the imbedding Theorem 2.2 implies that (uc, 'Pc) E L 3q(Q) if q E [2, 5/2), that 
(uc , 'Pc) E Lv(Q) for all v E [2, oo) if q = 5/2, and that (uc, 'Pc) E L00 (Q) if 
q > 5/2. Moreover, since g is a polynomial of degree three with coefficients in 
L 00 (Q) it holds that 

llh iiL'I = ll g(cpc)- g'(cpc)'PciiL'I ~ CII'Pc iiL3 '1 ~ CII'Pcllw2 ·1 • ,, 

Inserting this estimate into Theorem 2.4 we obtain the desired result. • 

The objective of the quadratic subproblem is given by 

qc( U , cp, f) = 

laTln a(uc- ud)(u- Uc) + f3(cpc - 'Pd)(cp- 'Pc)+ lfc(f- f c) dxdt 

+~ laTln a(u- Uc)2 + (J(cp- 'Pc) 2 + 1(!- fc? dxdt 

+~ laTln 'I/Jc9"(cpc)(cp- 'Pc) 2 dxdt. (35) 

Using standard techniques one can show that a solution ( u+, 'P+, f +) of the 
quadratic sub problem (28)-(33) , if it exists , satisfies (29)-(33) and 

la Tin (P+(x, t) + 1 f +(x, t)) (f(x , t) - f+ (x, t)) dxdt 2: 0 \I f E Fad, (36) 

where (P+, '1/J+) is the solution of the ad joint equation for the linearized problem 
which is given by 

-ftp = K!:J.p + 2'1/J + a(u+ - 1Ld) 

-T ft'I/J- ! ft p = in n X (0, T ], (37) 

e!:J. 'IjJ + g'(cpc )'I/J + '1/Jc g" (cpc)(cp+- 'Pc)+ f3(cp+ - 'Pd), 

with boundary conditions 

8 
onp = o, 

8 
-?J, =0 
on y ' 

on 80 x (0, T), 
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and final condit ions 

p(x, T) = 0, '1/J (x , T) = 0 in D. 

Analogously to Theorem 3.1 one can show that if ud, 'Pd E V ' (Q), fJ E [2, oo), 
the adjoint system (37) has a unique solution (p+, '1/J+ ) E 1ii13 ·1 (Q) x lV3·1 (Q) 
which obeys 

The constant C depends only on 'Pc and can be chosen independent of 'Pc if 'Pc is 
contained in a Wi' 1-bounded set. T he parameter vis given by v = min{J.L , 5 ~~q} 
if q E [2, 5/ 2) and n = 3, a.nd v = J-l if q 2': 5/2 or n = 2. Here q is determined 
by the control f+ E Lq(Q). Note that f+ E L00 (Q) if :Fad is bounded a.nd 
f+ E L 2 (Q) otherwise. 

Since 1 > 0, then (36) is equivalent to 

(39) 

If qc is convex, then the first order conditions a.re not only necessary but also 
sufficient. In the following we will establish the existence of a. unique solution 
of the quadratic subproblem. This will be done by showing that the objective 
function qc is strictly convex on t he null space of the linearized constraints if vc 
is close to a. point v. at which the second order sufficient optima.lity condi tions 
are satisfied. The following lemma. shows that the positivity of the Hessian of 
the La.gra.ngia.n (25) is preserved if ( v., -\.) is replaced by a. sufficiently close 
point (vc, Ac) · 

LEMMA 4.2 Let the assumptions (Al)-(A3) be valid and let v. = (u . , rp. , f . ) E 

V satisfy the second order sufficient optimality conditions. Then there exist 
E > 0 and IJ > 0 such that 

(40) 

for all v = ( u , rp, f) E V satisfying 

K6.u+f 

e l:::,. rp + g' ( 'Pc)'P + 2u , 
in D x (0 , T], ( 41) 

with homogeneous initial and boundary conditions and for all Vc, A c with live -
v. ll v + IIAc - -\.IIA :S E. 

Proof: Let v = (u, 1{5, [) satisfy the linearized state equation (26). Then, by 
Theorem 2.4, 

111LIIw2 •1 + II V51I w2 •1 :S CII JIIu · 
2 2 

(42) 



192 M. HEJNKENSCHLOSS, F. TROLTZSCH 

The definitions of the Lagrangian and g give 

Lvv( Vc, Ac) [v, v] = 1T allu ll2 + P'l lcpll 2 + 1ll fll 2 + ( (2b- 6ccpc) cp2
, ?/!c) dt, 

see (15), (16). Thus, 

ILvv( v., >-.) [v, v] - Lvv ( Vc , Ac)[v, vJI 

11T (6c(cpc - cp.)cp2
, ?/;.) + ((2b - 6ccpc)Cf52

, (?/;. - 'tPc)) dt I 

< C (llcpc- cp. II P II Cf511}Aw. IIL6 + ll 2b- 6ccpc iiPIICf511}A w. - Wc ii L6 ) • 

If cpc is in an neighborhood of cp., then ll2b - 6ccpciiL2 :S C. From this bound 
and ( 42) we find that 

ILvv(v., .A.)[v, v]- Lvv(Vc, Ac)[v, vJI 

:S C (llcpc- cp. IIPIIw. IIL6 + llwc - ?/!. II L6 ) ll i lli2 . 

Thus, there exists [ > 0 such that 

( 43) 

for all v = (u, cp, [) satisfying the linearized state equation (26) and for all vc, Ac 
with live - v. llv + 11-A - Ac iiA :SE. 

Let V= (u,cp,[) satisfy (41). Then v-v satisfies (14) with h = 0, h = 
(g'(cp.)- g'(cpc))cp, P1 = 0, P2 = g'(cp.), and homogeneous initial and boundary 
conditions. Hence, Theorem 2.4 yields 

llu- ullw2,1 + llcp- Cf511w2,1 
2 2 

< Cll (g'(cpc)- g'(cp.))cpllu 
< Cllg'(cpc)- g'(cp.)IIL4 IIcp ii L4 

< Cll2b(cpc- cp.)+ 3c(cpc +cp.) (cpc- cp.)IIL411[ 11 L2 

< c(llcpc- cp. IIL4 + llcpc + cp.IILs ll cpc- cp.IIL 8 ) llfll£2 

< Cllvc- v. ll vllfll£2 · (44) 

Suppose that Vc , Ac obey live- v.l lv + 11-A- >-ciiA :S E. Using (42), (43) , (44), 
the imbedding Theorem 2.2, and the definition of Lvv we find that 

Lvv(vc, >-c)[v + (v- v) , v + (v- v)] 

Lvv(vc, >-c)[v, v] + 2.Cvv(vc , >-c)[v, (v- v)] + Lvv(vc , >-c)[v- v , v- v] 
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> ~a* (llull£2 + 11 4?11£2 + llfll£2) 

-CloT 21 ( (2b- 6ccpc)tP( cp - t/?), 'lj;c) I + I ( (2b- 6ccpc) ( cp - t/?) 2
, 'lj;c) I dt 

> ~a*(llulli2 + llt/?lli2 + llflli2) 
-CII2b- 6ccpciiPII7j;ciiL6 (llt/?II£6 11'P - tf?IIL6 + II'P- t/?111,6) 

> ~a* (llulli2 + llt/?lli2 + ll flli2) 

-CIIfiiP IIvc- v*llvllfll£2- Cllvc - v*ll~llflli2 · (45) 

With the equality v = v + (v- v) and the estimate (44) the assertion follows 
from (45). • 

The definition (28) of qc and Lemma 4.2 imply the following result: 

COROLLARY 4.3 Let the assumptions (Al) - (A3) be valid and let v* = 

(u*, cp*, f*) E V satisfy the second order sufficient optimality conditions. Then 
there exists E > 0 such that qc is strictly convex on the null space of the linearized 
constraints for all Vc , Ac with live - v* llv + I lAc- A* I lA ::::; E. 

The strict convexity of the objective function on the null space of the linearized 
constraints implies the existence of a unique solution of the linear quadratic 
control problem. Moreover, one can derive an estimate for the difference between 
the new iterate and optimal point: 

LEMMA 4.4 Let the assumptions (Al) - (A3) be valid. If v* = (u*, cp*, f*) E V 
satisfies the second order sufficient optimality conditions, then there exists E > 0 
such that if live - v* llv + I lAc - A* I lA ::::; E the linear quadratic optimal control 
problem (28}-(33} has a unique solution v+ = (u+, 'P+, f+) obeying 

(46) 

Proof: (i) The existence and uniqueness of v+ follows from standard arguments 
using the convexity of the problem established in Corollary 4.3. 

In the following we consider points Vc, Ac with 

(47) 

where E is determined by Corollary 4.3. 
(ii) First, we derive a bound for the value of the objective of the subproblem 

at the new iterate. 
Let (u,cp) be the solution of (29)- (32) with f = fc· We set v = (u,cp,fc)· 

Since vis a feasible point for (28)-(33), we find that qc(v+)::::; qc(v). Using the 
definition (35) of qc, the imbedding Wi• 1 (Q) c L10 (Q), and Holder's inequality 
we can conclude that 

( 48) 
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Next we estimate v- v •. The pair ( u -t•*, <p- <p*) satisfies ( 14) with (31 = 0, 
fJ2 = g'('Pc), h = fc- f., h = g(<f'c)-g(<p.)+g'('Pc)(<p.-<pc), and homogeneous 
initial and boundary conditions. Using the definition of g, Theorem 2.4, and 
the imbedding Theorem 2.2, we can show that 

Here, we have used the simple estimate 

Thus, 

llv - Vcllv::; llv- v.llv + llv*- Vcllv::; Cllvc- v.llv · 

Inserting this inequality into (48) and using live - v.llv::; 1 yields 

(50) 

(iii) Next we prove the uniform boundedness of the new iterates. 
If the set of admissible controls Fad is bounded, then Lemma 4. 1 and (47) 

imply the boundedness of the new iterate. 
If the admissible set Fad is unbounded , we can use the convexity of qc on 

the null-space of the linearized constraints to establish the boundedness of the 
iterate. 

Let (u~, <p~) be the solution of (41) with f = f+ and homogeneous initial 
and boundary conditions. Moreover, let (ut, 'Pt) solve 

11,/:::,.U 

e /:::,.<p + g( 'Pc) - g' ( 'Pc)'Pc + 21£, 
inn X (0, T], 

with initial conditions (32) and boundary conditions (31). Then 

Using Theorem 2.4 we find that 

Using the definition (28) of q, the convexity of the Lagrangian (40), and the 
bounds (50), (51) we find that with some C > 0 depending onE, but independent 
of v+ the inequalities 

o-(llu~III2 + ll<p~III2 + llf+III2) 
-C(l + llutlli2 + II'P~III2 + llu+llu + II'P+IIL2 + lli+llu) 

< qc(v+) ::; Cllvc- v.llv· 
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are valid. This gives the boundedness of ll ·u~ 1112, II'P~ 1112, and I If+ 1112. With 
Lemma 4.1 we can deduce the bound 

This shows that the new iterates are bounded, if ( 4 7) holds true. 
(iv) The definition of qc yields 

1 
qc(v+) = Jv(vc)(v+- Vc) + 2Lvv(Vc , Ac)[v+- Vc, V+- Vc] 

= Jv(vc)(v+- v.) + lv(vc)(v.- Vc) + ~Lvv(vc, Ac)[v+- v., V+ - v. ] 

l 
1 

+Lvv(Vc,Ac)[v+ -v.,v. -Vc + 2Lvv(vc,Ac)[v. -Vc,V* -vc] 

(52) 

1 
2: lv(vc)(v+- v*) + 2Lvv(Vc, Ac)[v+- v., V+- v.]- Cllvc - v.llv. (53) 

In the last estimate of (53) we used the boundedness of the new iterate, Holder's 
inequality and the imbedding Theorem 2.2. These estimates are analogous to 
(45). 

We will show in (v) that the estimates 

lv(vc)(v+- v*) 2: -C live - v. ll v, 
Lvv(Vc,Ac)[v+ -v.,v+ -v.]2: 

~* llv+- V~ 11~ - C (live- v. llv + II.Ac- .A. I lA), 

hold. Using the estimates (54), (55) in (53) yields 

qc(v+) 2 ~* llv+- v.ll~- Cllvc- v.llv- Cll>-c- >-.IIA · 

(54) 

(55) 

(56) 

If we combine (50) and (56) we obtain the desired Holder estimate (46). 
(v) For the proof of (54) we proceed as follows: 
From the necessary optimality conditions for the nonlinear optimal control 

problem we find that 

for all v = ( u, <p, f) with f E :Fad and 

fft(u-u.)+tft(cp-cp.) = K,/::.(u-1t*)+(f-J.), 

Tgt(cp-cp.) = inDx(O,T], 
et:::..(<p- <p*) + g'(cp.)(cp- cp.)+ 2(u -1t.), 

with homogeneous initial and boundary conditions. 
Let v= (u,ip,f+) be defined by (58) with f = f+· 

(57) 

(58) 
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The triple v+- v. = (u+- u., <p+- cp., f+- J.) satisfies (14) with (31 = 0, 
!32 = g'(cp.), h = i+- j., 

h = g(cpc)- g(cp.)- g'(cp.)(cp+ - cp.)+ g'(cpc)(cp+- <pc), (59) 

and homogeneous initial and boundary conditions. 
The triple v+ - v = ( v+ -v.)- (v -v.) satisfies (14) with /31 = 0, (32 = g' (cp.), 

h = 0, h given by (59), and homogeneous initial and boundary conditions. 
Using 

h = g(cpc)- g(cp. )- g'(cp.)(<p+ - cp.)+ g'(cpc)(<p+- <pc) 

= g(cpc)- g(cp.)- g'(cp.)(cpc - cp.)- g'(cp.)(cp+- <pc)+ g'( cpc)(cp+- <pc), 

the boundedness of v+, vc, the definition of g and Holder inequality, we can show 
that 

Thus, Theorem 2.4 yields 

ll(v+- v.)- (v- v.)ll = llv+- vllv ~ Cllvc- v.llv. 
Combining (57), (60) and using (52) yields 

Jv(vc)(v+- v.) Jv(v. )(v+ - v.) + (Jv(vc)- Jv(v.))(v+- v.), 

This proves (54). 

> Jv(v.)(v+ - v.) - C live- v. ll v, 
Jv(v.)(v- v.) + 
Jv(v.)(v+- v.- (v- v.))- C live- v. llv, 

> Jv(v.)(v- v.)- C live- v.llv · 

(60) 

The estimate (55) can be derived in a similar way. The boundedness of 
llv+- v.llv yields 

Lvv(Vc, Ac)[v+- v., V+- v.] ?::: 

Lvv(v., >..)[v+- v., V+ - v.] - C(llvc- v.llv + 11>-c- >-. IIA), (61) 

cf. ( 45). As before, let v = (u, i/5, f+) be defined by (58) with f = f+, i.e. v- v. 
satisfies the linearized state equation. Using (25) we can show that 

Lvv(v., >..)[v+- v., V+-~.] 
Lvv(v., >..)[v- v., v- v.] 
+2Lvv(v., >-.)[v- v., V+- v] + L vv (v., >..)[v+- v, V+- v] 

> Lvv(v.,>..)[v-v.,v-v.] 

-C(IIv- v.llvllv- v+llv + llv+- vll~) 
> a.llv- v. ll~- C(llv - v.llv llv- v+llv + llv+ - vll~) 
> a.llv- v.ll~- Cllv- v+iiv 

> a.llv- v.ll~- Cllvc- v.llv. (62) 
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In the last two estimates of (62) we have used the boundedness of v+ and the 
inequality (60). If we use v = v+ + (v- v+), (52), and (60), the inequality (62) 
yields 

Lvv(v*, A*)[v+- v*,v+- v*] > O"*llv- v*llt,.- Cllve- v*llv 
> O"*llv+ - v*llt..- Cllve- v*llv. (63) 

This lower bound, together with (61) yields the desired estimate (55). 
(vi) It remains to prove the estimate for the Lagrange multiplier A+· This 

estimate follows easily from (38), (47), and (52). In fact, we find that 

IIP+IIw2·1 + 117/J+IIw2·1 :::; 
2 2 

C(llu+- udll£2 + llttJ+- ttJdll£2 + ll ttJ+- ttJell£2):::; C · 

This concludes the proof. • 
In the following we improve the estimate (46). We will show that the error in 
the new iterate can be bounded even in a stronger norm. The proof is based 
on the regularity estimates for the system (14). We have to require that the 
iterates, the optimal point and the Lagrange multipliers satisfy Ve, v+, v* E Vq 
and Ae, A+ , A* E Aq, where Vq and Aq are defined in (10). The parameter 
q > 5/2 if n = 3 and q > 2 if n = 2. The regularity of states and adjoints 
can be guaranteed if the initial iterate is sufficiently smooth, if the desired 
temperature and phase function obey ud , tpd E Lq(Q) , and if f e, f+, f* E Lq(Q), 
see Theorems 2.1, 3.1 and equations (34), (38) . Since 1 > 0, the conditions 
fe, f+,J* E Lq(Q) are implied by the regularity A+, A* E Aq of the adjoint 
variables, see (36), (39) . 

LEMMA 4.5 Let the assumptions (A1)-(A3) be valid, let Fad be bounded, 1 > 0, 
and suppose that the second order sufficient optimality conditions are satisfied 

at v* = (u*,rp*,J*) E V. 
If for q E [2, oo) the iterates and the optimal point satisfy Ve, v+, v* E Vq, 

then there exists c > 0 such that live- v*llv + IIAe- A* IIA < c implies the 
estimates 

(64) 

and 

(65) 

Moreover, if n = 3 and q > 5/2 or if n = 2 and q > 2, then ( 64) can be replaced 
by 

llu+- u*llw2·1 + llttJ+- rp*llw2·1 + llf+- !*IlL"" :::; q q 

C (live- v*llv + IIAe- A*IIA//q · (66) 
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Proof: Using (46) and the boundedness of Fad we can conclude that 

llf+- !.IlL = lTfnii+ - J.\ 2 If+- J.lq- 2 dxdt :S: Cllf+ - !.1112 

:S: C (live- v.llv + 11>-c- >-.\\A)· (67) 

The difference v+ - v. satisfies (14) with h = f+ - j., h = g( cpc) - g( cp.) + 
g'(cpc)(cp. - cpe), /31 = 0, !32 = g'(cpe), and homogeneous initial and boundary 
conditions. Using the definition of g, the rigbt band side h can be estimated 
by 

Thus, from Theorem 2.4 and (67) we obtain 

iiu+- u.l\w 2 ·1 + \lcp+- cp.\lw2·1 :S: C(llhllu' + ll hllu~) • • 
< C(\\f+- J.\\L• + \\cpe- cp.\\£3•1) 
:S: C(\lvc- v.\\v + 11>-e- >-.\\A) 1/q + Cllcpe- cp.\\£3'1 · (68) 

Note that lV,i·1 (Q) c L3q(Q) for q E [2, 5/2) and W,?·1 (Q) c Lv(Q) for arbitrary 
v E [2, oo) otherwise see Theorem 2.2. If E < 1, then (68) yields 

for all Ve, Ae with live - v. llv + 11>-e ->-.!\A < E. 

The adjoints can be estimated in a similar way. In fact, the difference ,\+->-. 
satisfies 

- gtp = ,D,p + 27/J + a(u+- u.), 

-Tft 'I/J -~ftp= (70) 

eD.'IjJ + g'(cp.)'ljJ + (g'(cpe)- g'(cp.))'I/J+ + g''(cpe)(cp+- cpe) + j3(cp+- cp.), 

in n X (0, T] with homogeneous initial and boundary conditions. Using the 
boundedness of the iterates and of the Lagrange multipliers in 11 and A, respec­
tively, and Theorem 2.4, this yields 

liP+- P·llw2 •1 + 117/J+- 7/J.IIw2 •1 

• • 
< C(\lf+- J.l \u' + \\cpe- cp.jjp,) 

< C(llve- v.\\v + 1\>-e- >-.\\A)l/q + C\\cpe- cp.\\L3•I 

< C(\lvc- v. \\ v + 11>-e- >-.\\A)l /q, 

provided li ve - v.\\v + 11>-e- >-.\\A :S: 1. 

(71) 

Suppose that n = 3, q > 5/2 or n = 2, q > 2. For the estimate of iif+- j. \\£= 
we use the first order optimality conditions. From (24), (39), (69), and the 
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imbedding Wi'1(Q) c L 00 (Q) we can deduce that 

lf+(x, t)- J.(x, t)i IPF( -ry- 1p+(x, t))- Pp( -ry-1p.(x, t))i 

< ry- 1 IP+(x,t) - p.(x,t)l 

( ) 
1/ q 

< C live - v. ll v + 11 >-c- >-. IIA · 

5. A perturbed quadratic problem 

199 

(72) 

• 

In the convergence proof of the Lagrange- SQP-Newton method we will view 
the SQP subproblem (28) to (33) as a perturbation of the SQP subproblem at 
the strict local minimizer (u. , r.p., j.). To obtain convergence estimates we have 
to study the dependence of the solution upon the perturbation 1f = (1f8 , 1fa) E 

(Lq ( Q)) 2 . Here 1f 8 will be a perturbation on the right hand side of the linearized 
state equation and 1fa will be a perturbation in the objective fun ction, which 
relates to a perturbation in the adjoint equation. 

The perturbed quadratic subproblem is given by: 

Minimize q.(v) + (1fa , 'P) £2 = 

lv(v.)(v- v.) + ~Lvv (v. , >- . )[v- v. , v- v.] + (1ra , r.p)u (73) 

subject to the linearized state equation 

8 c 8 
u + rn = K6.u + f 

at 2 at'" 

8 
T-r.p 

at 

in D x (0, T], (74) 

e6.r.p + g(r.p.) + g'( r.p .)(r.p - r.p.) + 2u + 1fs 

with boundary conditions 

8 
on 'P = o, on 8D x (0, T), (75) 

and initial conditions 

U = Uo, <p = 'PO in D, (76) 

and subject to the control constraints 

f E Fad. (77) 

In the state system (74), the perturbation occurs only in the second partial 
differential equation. This is due to the fact that the first equation is linear 
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and, hence, a perturbation is not needed there. We recall see (35), that the 
objective of the quadratic subproblem is given by 

q*(u, <p, f)+ (1fa, <p)£2 = 

foTl a(u*- ud)(u - u*) + {3(<p*- <fJd)(<p- <p*) + rf*(f- !*) dxdt 

+~ fr f a(u- u*)2 + {3(<p- <p*) 2 + 1(!- !*)2 dxdt 
2 Jo Jn 

+~ foTl 'lj;* g"(<p*)(<p- <p*) 2 dxdt + foTl1fa<pdxdt. (78) 

Since the second order sufficient optimality conditions are satisfied at ( u*, <p*, f*) 
the objective function is strictly convex and one can use standard techniques to 
show the existence of a unique solution (u1l', <p1l', !1!' ). Of course, if 1r5 = 1fa = 0, 
then (u1l',<p1l',f1l') = (u*,<p*,J*). Moreover, one can show that the solution 
( u1l', <p1l', !1!') of the quadratic subproblem (73)- (77) satisfies (74)-(77) and 

foTl (p1l'(x, t) + rf1l'(x, t)) (f(x, t)- f1l'(x, t)) dxdt :2: 0 V f E Fad, (79) 

where ,\1!' = (p1l', 'l/;1!') is the solution of the a.djoint equation for the linearized 
problem which is given by 

- gtp = 1\:l::.p + 2'1j; + a(u1l'- ud), 

- T_§_.;, - g _§_p = in n X (0, T], (80) 
8t 'f/ 2 8t 

~2 f::.'lj; + g1(<p*)'lj; + 'lj;*g 11 (<p*)(<p1l'- <p*) + {3(<p1l'- ipd) + 1fa, 

with boundary conditions 

8 8 
8np = O, 8n'lj;=O, on 80. x (0, T), 

and final conditions 

p(x, T) = 0, 'lj;(x, T) = 0 in D. 

If 1 > 0, then (79) is equivalent to 

f1l'(x, t) = PF( -~- 1 p1l'(x, t)). (81) 

Using Theorem 2.4 one can see that the solution ( u1l', <p1l') of (7 4) satisfies 

llu7l'llw;·' + jj<p7l'\lw;·' :::; C(\\uollw!(n) + \\<po\lw!(n) + 11!1!'\lu~ + \\1fsllu~), (82) 

provided f1!',1fs E Lq(Q). Moreover, if 1fa E Lq(Q), then the solution of the 
adjoint equation (80) satisfies 

IIP7l'llw~· 1 + l\'l/;1!'\lw~·' :::; 

c(j\u7l' - ud\\L" + jj<p7l'- <p*\\w,~·' + jj<p7l'- <fJd\\v• + ll1fa\\Lq) · (83) 

where the parameter v is given as in (38). 
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LEMMA 5.1 Let the assumptions (Al) - (A3) be valid. Ifurr, u* , 'Prr, 'P* E wg•1 (Q) , 
then there exists a constant C > 0 such that 

Proof: The difference (p, '1/J) =A= (>-rr- >.*) satisfies the system 

-gtP = K:6p+2'1/J+a(urr-u*), 

-T gt '1/J - ~ gtP = in D X (0 , T ], 

et.'l/J + g'(zp*)'l/J + /3('-Prr- 'P*) + '1/J*g"(zp*)('Prr- 'P*) + 1fa, 

with homogeneous initial and boundary conditions. The assumptions on urr , 
u*, 'Prr, 'P* imply Urr, u* E Lq(Q) and, since 5q/(5 - 2q) > 3q for q E [2, 5/2), 
11 '1/J*g" ( 'P* )( 'Prr- 'P*) 11 Lq ~ 11 '1/J* 11 L 3" llg" ( 'P•) 11 £3'1 11 'Prr- 'P* 11 £3q. Thus, the assertion 
follows from Theorems 2.2, 2.4. • 

The next statement is rather standard for linear-quadratic control problems. 
Therefore, we skip the proof and refer again to the full version of the paper, 
Heinkenschloss and Troeltzsch (1998a). 

LEMMA 5 .2 Let the assumptions (Al)-(A3) be valid. There exists a constant 
C > 0 such that 

llvn- v*llv ~ Clln ll (£2) 2 

for alln E (£2 ( Q) )2 . 

The next result is an immediate corollary. 

LEMMA 5 .3 Let the assumptions (Al) - (A3) be valid, let Fad be bounded, and 
suppose that the second order sufficient optimality conditions are satisfied at 

v* = (u*,zp*,f*) E V. 
If for q E [2, oo) the solution of the perturbed problem and the optimal solu­

tion satisfy Vn, v* E Vq , then 

llvn- v*llv" ~ Cll nll(£<1)2 
for alln E (Lq(Q)) 2 . 

Moreover, if 1 > 0 and if n = 3 and q > 5/2 or if n = 2 and q > 2, the 
previous estimate can be replaced by 

Proof: As in the proof of Lemma 4.5 we can conclude that 
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After establishing the linear system for the difference v = v. - v1f we ca.n appeal 
to Theorem 2.4 to show that 

This gives the first estimate. We can use this inequality and Lemma. 5.1 to 
conclude that 

The desired estimate for 11 f 7f - f. 11 L'"' can now be proven analogously to 
Lemma 4.5. • 

As we have mentioned at the beginning of this section we interpret the SQP 
subproblem (28) to (33) as a. perturbed quadratic problem about the solution 
v •. The relation between the SQP subproblem (28) to (33) and the perturbed 
subproblem (73) to (77) is exploited in the following lemma.: 

LEMMA 5.4 Let the assumptions (Al) - (A3) be valid. Ifv. = (u.,r.p.,f.) E V 
satisfies the second order sufficient optimality conditions, then there exists E > 0 
such that if live- v.llv + II .Ac- .A. IIA :::; c. the solutions of the SQP subproblem 
(28) to (33) are solutions of the perturbed subproblem (73) to (77) with 

1fs g(r.pc)- g(r.p.) + g'('Pc)('P+- 'Pc)- g'(r.p.)('P+- cp.), (84) 

1fa g'('Pc)'l/J+ + 'l/Jcg"('Pc)(r.p+- 'Pc) -g'(r.p.)'lj;+- 'l/J.g"(r.p,.)(r.p+- r.p.). (85) 

Proof: From Lemma 4.4 we know that there exists E > 0 such that if 
live- v.llv + 11>-c- .A. IIA :::; E there exists a. unique solution (u+, 'P+, f+) of the 
SQP subproblem (28) to (33) which can be characterized by the linea.rized state 
equations (29)- (32), the a.djoint equations (37), and the conditions (36), or (39). 
From a. comparison of (29)-(32) and (7 4)- (76) one can see that ( u+, 'P+, f +) sat­
isfies the perturbed system (74)- (76) with 1r8 given in (84). Moreover, one can 
see that (u+,'P+,P+,'lj;+) satisfies the perturbed a.djoint system (80) with 1fa 

given in (85). This implies the assertion. • 

LEMMA 5.5 If the assumptions of Lemma 5.4 are valid, and if 'Pc, 'P+• r.p., 'l/Jc, 
'lj;+, 'lj;. E Wi· 1 (Q), then 

ll1r s IlL• :::; c (I I 'Pc - r.p. 11~,;·' + I I 'Pc - r.p. llw,;·'II'P+ - r.p. ll w,;·') , (86) 

ll7faiiL• :::; C[II'Pc- 'P• II ~,;.,II'l/J+IIw,;·' + ll 'l/J+- 'l/J.IIw,;·'II'Pc- 'P•IIw,;·' 
+(ll'l/Jc- 'l/J.IIw;·' + II'Pc- 'P·IIw;·') (I I'P+ - 'P· II w,;·' + II'Pc- 'P· II w,;·')]. (87) 

The constant C depends on I.(Jc,'P+>'P•,'l/Jc,'l/J+,'lj;*, but is uniformly bounded if 
'Pc,'P+•'P•,'l/Jc,'l/J+,'lj;• are contained in a bounded set in 1¥i·1 (Q). 
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Proof: From (84) we find that 

1fs = g(<pc)- g(<p*) + g'(<pc)(<fJ+- <fJc)- g'(<p*)(<p+- <p*), 
= g(<pc)- g(<p*)- g'(cp*)('Pc- 'P*) + (g'(cpc)- g'(cp*))('P+- cpc) · 

Using the definition of g, Holder's inequality, and the imbedding W,7· 1 (Q) c 
L3q(Q) which holds true since 5qj(5- 2q) 2': 3q for q E [2, 5/2) or for q 2': 5/2, 
this gives the first estimate. 

Similarly, (85) can be written as 

1fa g'(<pc)'I/J+ + '1/Jcg"(<pc)(cp+ - 'Pc)- g'(cp*)'I/J+- '1/J*g"(cp*)(cp+- <p*) 
[g'(cpc)- g'(cp*)- g"(cp*)(cpc- cp*)] '1/J+ + g"(cp*)('I/J+ - '1/J*)(<pc- 'P*) 
+ [ '1/Jcg'' ( <fJc) - '1/J*g" ( <p*)] ( 'P+ - 'Pc) · 

Applying estimates analogous to the ones above gives the assertion. • 

6. Local convergence of the SQP method 

As we have described in Section 4, the Lagrange-SQP-Newton method solves 
the nonlinear, non- convex optimal control problem (5), (6), (1), (2), (3), (4) 
through a sequence of linear-quadratic control problems. Given current approxi­
mations for control, states, and La.gra.nge multipliers ( Vc, >-c) = ( Uc , 'Pc, fc , Pc, '1/Jc) 
the new approximations for control, states and La.grange multipliers (v+, >-+) = 
(u+,<fJ+,f+,p+,'ljJ+) are computed as the solution of (28)-(33). In the previous 
section we have shown that this subproblem can be viewed as a. perturbation 
of the linear quadratic optimal control problem (28)-(33) at Vc = v*. This 
observation and the Lipschitz continuous dependence of the solution of the per­
turbed problem upon the perturbation can be used to establish the quadratic 
convergence of the La.grange-SQP- Newton method. 

THEOREM 6.1 Suppose that the assumptions (Al)-(A3) are satisfied, 1 > 0, 
and that for q E [2, oo) the desired temperature and phase profiles satisfy ud, 'Pd E 

Lq(Q). Moreover, let the current iterate satisfy (vc, Ac) E 11q x Aq. 
(i) If q = 2 and 1 > 0, then there exists E > 0 such that live- v*lh' + 11 >-c­

A* I lA :::::; E implies 

llv+- v*llv + 11>-+ - >-*1111:::::; C (l ive- v*llv + 11>-c - >-*IIA) 2
. 

(ii) If q > 2 and if :Fad is bounded, then there exists E > 0 such that live -
v* llvq + 11 >-c -A* II Aq :::::; E implies 

llv+- v*llvq + 11>-+- A*IIAq :::::; C (live - v* llv,, + 11>-c- >-* II11 J 2 
· 

(iii) If n = 3 and q > 5/2 or if n = 2 and q > 2 and if :Fa.d is bounded, then 
there exists E > 0 such that live- v*llv,, + 11>-c- >-*1111,

1
:::::; E implies 

llu+ - u*llw,;· 1 + II'P+- <fJ*IIw,;·1 +Ill+- !*IlL=+ 11>-+ - >-* ll11,,:::::; 
C (live- v*llv,, +!lAc- A* IIA,J 2

. 
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Proof: By Lemma 4.4 there exists .:1 > 0 such that for all vc E V, Ac E A with 
live- v. llv + IIA.c- A.. I lA :::; EJ there exists a unique solution v+ E V of (28)- (33) 
with corresponding Lagra.nge multiplier ,\+ E A. Moreover, the assumptions 
ud, 'Pd E Lq(Q), (vc, Ac) E Vq x Aq imply that (v+, A.+), (v., A..) E Vq x Aq, see 
Theorems 2.1, 3.1, Lemma 4.7, and equation (38). 

(i) Lemma 4.4 guarantees the existence of E2 E (0, .:I) such that llv+ 11 v, 
IIA.+IIA :S C for all Vc E V,Ac EA with live- v.llv + II A.e- A..IIA :S E2. The 
constant C depends only on .:2 . 

If we define the perturbation 1r = (1r" Ka) as in (84), (85) , then Lemma 5.5 
and the boundedness of the iterates and Lagrange multipliers imply that 

IIKsll£2 + ll'lfall£2 ::S: 

C[(llve- v.llv + II A.e- A..ll~) 2 + live- v. ll v + II A.e- A..IIA] · 

Since live- v.llv + IIA.e- >-.IIA :S E2 this gives the estimate 

(88) 

Lemma 5.4 shows that v+ is the solution of the perturbed problem with pertur­
bation 1r = (1r8 , Ka) given by (84), (85) and corresponding Lagrange multiplier 
>-+· Hence, the estimates in Lemmas 5.1, 5.2 and (88) show that 

and 

Inserting these estimates into (86), (87) gives 

(89) 

Using the estimates in Lemmas 5.1, 5.2 and (88) again we derive the desired 
inequalities 

(90) 

and 

(91) 

(ii),(iii) These assertions can be proven analogously. We have to replace 
Lemma 4.4 by Lemma 4.5 and Lemma 5.2 by Lemma 5.3. • 

The previous theorem shows a quadratic reduction of the error for a single 
iteration. Standard induction arguments can now be used to show that all 
iterates (vk, Ak) satisfy llvk- v.llvq + 11 >-k- >- .IIA,, ::S: E which implies the local 
quadratic convergence of the SQP method. 
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Appendix 

Proof of Theorem 2.4: Again, C denotes a generic constant independent 
of u and cp. 

(i) An a- priori estimate: 
Suppose that u, <p E { v [ v E L 2 (0, T; H 1 (D)), ftv E L 2 (0 , T ; (H1 (D))')} solve 

(14) together with the associated initial and boundary conditions (4), (3). Mul­
tiplying the first equation in (14) by u(t) + ~cp(t) and the second one by cp(t) , 
using integration by parts, and applying the Sobolev imbedding H 1 (D) c L6 (D) 
yields 

and 

! ~ 1 (u(t) + ~cp(t)) 2 dx + 1 K:[\7u(t)[ 2 dx + fK: 1 \7u(t)\7cp(t) dx 
2 ut !1 2 !1 2 !1 

fo f3l(t)u(t)(u(t) + ~cp(t)) dx + jn (u(t) + ~cp(t))h(t) dx 

< [[/31 ( t) 11 £3(!1) [[u( t) 11£2 (!1) [[u( t) 

£ 1 f!. 2 1 2 
+-2cp(t)[[£6(f1) + 2llu(t) + 2cp(t)llu(n) + 211h(t)llu(o) 

::::; C [[!31 ( t) 11 £3 (>1) llu( t) 11£2 (D) 11 u( t) 
£ 1 f!. 2 1 2 

+2cp(t)[[H1 (!1) + 2llu(t) + 2cp(t)llu(o) + 2 11h(t) ll u(o) 

C2 2 2 
< 2/'i: llf3I(t)[[£3(o) ll u(t) [l u(o) 

K; £ 2 l+K: £ 2 1 2 
+2[[\i'(u(t) + 2cp(t))llu(o) + -

2
- [[ u(t) + 2cp(t)llu(o) + 2 11 h(t) ll u(o) 

K £ 2 
< 2 [[\i'(u(t) + 2cp(t))llu(o) 

+C(l + [[f3I(t)[[I3(f1)) ([[u(t) + ~cp(t)[ [ I2(f1) + [[ u(t)[[I2(f1)) 

+C[[h(t) [[I2(o) (92) 
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l f32(t)cp(t) 2 dx + 2l u(t)cp(t) dx + l h(t)cp(t) dx 

< llf32 ( t) 11£3 (!1) 11 <p( t) 11 £2(!1) 11 'P( t) 11 L 6 (!1) 

+21n (u(t) + ~cp(t))cp(t) dx + Cllcp(t)IIL2(!1) + Cllh(t)IIL2(!1) 

e < 2 11Vcp(t)lli2(n) 

+C(1 + llf32(t)IIL3(n)) (llu(t) + ~cp(t)IIL2(!1) + llcp(t)IIL2(!1)) 

+CIIh(t)lli2(n)· (93) 

Multiplying (93) by A and adding the result to (92) yields 

1 8 r £ 
2 8t ln (u(t) + 2cp(t))2 + TAcp(t)2 dx 

11 e r;£2 +2 n "'IV'u(t)l2 + (A2- 4 )IVcp(tW dx 

< C(l + llf3l(t)IIL3(n) + llf32(t)IIL3(n)) 

( £ 2 2 2 ) llu(t) + 2cp(t)llu(n) + llu(t)llu(n) + llcp(t)llu(n) 

+CII!I(t)lli2(n) + Cllh(t)lli2(nJ· (94) 

If we choose A :2': 2(r;£2 /4 + 1)/e, then (94) implies 

1 8 r £ 
2 8t ln (u(t) + 2cp(t))2 + TAcp(t)2 dx 

+~ k "'1Vu(t)l 2 + IVcp(tW dx 

< C(l + llf3I(t)lli3(n) + llf32(t)IIL3(n)) 

( £ 2 2 2 ) llu(t) + 2cp(t)IIL2(n) + llu(t)IIL2(n) + llcp (t)IIL2(nJ 

+CII!I(t)lli2(n) + Cllh(t) lli2(n)· (95) 

Integration over t and by parts gives 
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+C fat (1 + llf:li(s) lli3(0) + llf:l2(s) ll i3(o)) 

(llu(s) lli2(0) + llrp(s)lli2(o)) ds. (96) 

If A 2: (1/2 + 1!2 /4) jT, then a+ l!b/2) 2 + TAb2 2: a2 /2 + b2 /2 for all a, b. Thus, 
for A 2: (1/2 + 1!2 /4)/T equation (96) gives the estimate 

llu(t)lli2(n) + llrp(t) lli2(0) +fat r.;IIVu(s)l li2(0) + IIVrp(s)lli2(0) ds 

< c(llu(O) II i2cnl + ll rp(O) II i2cnl + II !IIIi2cQl + llh lli2cQl ) 

+C fat (1 + ll f:li(s)III3(0) + llf:l2(s)III3(o)) 

(llu(s)III2(0) + ll rp(s)III2(o)) ds. (97) 

Now we can use the Gronwa.ll-Bellman inequaJity Brezis (1973, L. AA) to derive 
the inequality 

llu(t)lli2(n) + llrp(t)lli2(0) :S 

c(llu(O)IIi2cnl + ll rp(O)IIi2cnl + llh ll i 2cQl + llhlli2cQl)· 

Inserting this equation into (97) yields the a-priori estimate 

llu(t)lli2(0) + llrp(t)III2(0) +fat ;;;11Vu(s)III2(0) + IIVrp(s)lli2(0) ds 

< c(llu(O)IIi2cnl + llrp(O)IIi2cnl + llhlli2cQl + llh lli2cQl)· (98) 

(ii) Uniqueness of the solution: If ( ui, <pi), i = 1, 2 are solutions of (J 4), then 
(u ,<p) = (u1,<pl)-(u2,<p2) solves (14) with h = h = 0 and homogeneous initial 
and boundary conditions. The a-priori estimate (98) implies that 1i = <p = 0. 

(iii) Existence of the solution: From the a-priori estimate (98) we can deduce 
the existence of a solution 

{ 
8 }2 (u, cp) E vI v E £ 2 (0, T; H 1 (0)), fJtv E £ 2 (0, T; (H1 (0)) *) 

c (c(O,T;£2 (0)))
2 

using the Galerkin method. This proof uses standard techniques , see e.g., pp. 
509ff in Dautray and Lions (1992), § 23.9 in Zeidler (1990). We omit the details. 

(iv) Regularity of the solution: To establish the regularity resul t, we first 
consider the second equation in system (14) with given u E £ 2 (0, T; H 1 (0)) on 
the right hand side. From the LP theory of linear parabolic equations in p. 341 
of Ladyzehnskaya, Solonnikov, Uraltseva (1968) we find that the solution <p is 
in wi·1 (Q). Using this regularity estimate, i.e. that ftrp E L2 (Q), in the right 
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hand side of the first equation in (14) , we can show by the same arguments that 
u E Wi' 1(Q). 

Now we can apply the same arguments to show the desired regularity result . 
In the second equation of the system (14) we view f32'P + 2u + h as given. Since 
rp E L 10 (Q), see Theorem 2.2, it holds that 

llf32'Pii£30/13 (Q):::; llf32IIP(Q)ii'PIIuocQ) · 

From this we deduce that rp E w;0~ 13 (Q) c L 30 (Q). Inserting this into the first 

equation gives u E w;0~ 13 (Q) c L 30 (Q). Hence, 

llf32'Pii£S/2 (Q):::; llf32iiP(Q)ii'PIIu scQ) 

and u, rp E w;· 1(Q) with p = min(q, 5/2). If 5/2 < q we can use the imbedding 
w;;; C L11-( Q) for all J-l E [1, oo) and repeat the previous steps to show that 

u, rp E Wi·1(Q). • 




