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Abstract: Modelling, solution, control and even design of many 
ecological and engineering systems involve dealing with nonlinear 
partial differential equations of which analytic solutions are rarely 
available and numerical approach with or without linearization, or 
approximation is inevitable most of the time. Tn this paper the 
possibility of analysing such systems by using a fairly new method 
known as Differential Taylor (DT) Transform and its advantages are 
proved. The results obtained by this method are compared with the 
experimental results and shown to be within good agreement with 
them. It is emphasised that DT Transform is not effective for only 
filtration systems, but can also be used equally well for absorption, 
heat and mass transfer, convective diffusion and similar systems. 

1. Introduction 

Partial differential equations arise in connection with various physical and geo­
metrical problems when the system space parameters are of distributed nature, 
only the simplest physical systems can be modelled under certain assumptions 
by ordinary differential equations, and in reality almost all physical systems 
such as fluid and solid mechanics, heat transfer, electromagnetic theory are full 
of problems that must be modelled by partial differential equations. Since the 
number of independent variables in these equations is more than one, usually 
the time and one, two or three of the space coordinates, the problems encoun­
tered for their solutions are much more than those for the ordinary differential 
equations. The scope of this paper is not to introduce all the features of dis­
tributed parameters systems described by linear or nonlinear partial differential 
equations and to investigate all the present analytic and /or numeric solutions 
methods, instead it is to emphasise the importance of a fairly new but not widely 
used method " Differential Taylor Transform Method" and to prove its simplic­
ity and competitivity when compared with the others. Although the discussions 
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are confined to magnetic filtration, the arrived conclusions are general for any 
distributed system. 

Filtration of technological liquids and gases to clean them from tiny particles 
is one of the present problems of the modern word both from economical and 
ecological point of views. In recent years the use of magnetic filters (MF) is ac­
cepted as a perspective method for this purpose Watson (1973), Gerber (1994), 
Cuellar (1995). Unfortunately a general theory explaining the cleaning process 
in these filters has not been developed yet. The main reasons for this are that 
the physical events taking place in these filters can not be explained sufficiently 
and the determination of the parameters effecting the process is done empiri­
cally. The well known MF theory is valid for the stationary (time-independent) 
cases Watson (1973), Gerber (1994), Sandulyak (1988). Time dependence of the 
variation of the input-output concentrations of the particles occurring in liquids 
and gases has been obtained for the special cases and within certain approx­
imations Cuellar (1995), Watson (1978), Akoto (1977). In addition to being 
approximate and valid for special cases, these methods have another important 
fault: They assume that the particles are only hold an gathered in filter matrix, 
whilst they are both captured meanwhile some of the hold particles get free and 
move along the filter matrix. It is mainly due to this reason that the above con­
ventional filtration models are defective. In fact if the getting off process were 
considered, the differential equations used for the analysis would have come out 
to be nonlinear. Therefore many of the relations between the parameters of the 
MF have used to be obtained empirically. 

In principle, the filtration regimes in MF are similar to those in classical 
filters. The difference appears in characters of the forces holding the particles in 
the pours of the filters. Mass equilibrium in filter matrix and kinetic equations 
of the saturation of the pours by the hold particles are the basis of the filtration 
theory; in classical filtration theory these parameters are indirect so that they 
are characterised by the accumulation and detachment coefficients Ives (1980), 
Adin (1989). In other words, both type of filters are dynamic systems charac­
terised by these coefficients, and the filter performance is characterised by the 
ratios of the concentrations at the input and output of the filter. 

Even in the simplest situations, the main equilibrium and kinetic equations 
used in the filter theory are two dimensional nonlinear partial differential equa­
tions which do not have an analytic solution in general case. Several of the 
common approaches to analyse such systems are the use of numerical solution 
methods, approximate analytical methods, linearization techniques, etc. In par­
ticular cases, the solutions are usually complex and not enough clear as to be 
used for practical calculations and design purposes Adin (1989). On the other 
hand, the equations describing practically very important technological regimes 
such as absorption, flotation, coagulation, separation etc. have similar proper­
ties to the general filtration equations. For this reason the solution of the general 
filtration equations is very important for the investigation, automatization and 
control of similar technological processes. 
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In this paper, the solution of partial differential equations describing the 
above type of nonlinear systems is considered by a new method which is known 
as the Differential Taylor (DT) Transform method Puhov (1986, 1990). This 
method transforms the mathematical model of the system into differential spec­
trum on which simple operations can be carried to derive and understand the 
system performance. 

2. Basic interaction 

2.1. Model filtration theory 

In filtration theory, the mass equilibrium and kinetic equations are linear or 
nonlinear partial differential equations which can be classified for the following 
situations: 
i) Nonlinear models for the filtration of the low velocity suspensions with high 

concentration and carrying rather large particles grater than micron size. 
ii) Linear models for the filtration of the high velocity suspensions with low 

concentration and carrying particles of micron or smaller size. 
iii) A general nonlinear filtration model which considers and is valid for both 

of the above cases. 
In the first model, since the detachment (get away) of the hold particles is hardly 
possible, they are completely ignored. In the second model, the detachment of 
the hold particles is highly possible and should also be considered. And finally in 
the third model, both of the events, being captured and escaping are considered. 

In the first model, the partial differential equations in the axial symmetric 
filter matrix are; 

Pt+Vex =O;e(O,t) =eo, (1) 

Pt = f3v ( 1 - :n) e; p (x, 0) = 0. 

For the second model 

Pt +vex= O;e(O,t) =eo, 

Pt = (3ve- ap; p (x, 0) = 0. 

And finally for the third model 

Pt +vex = 0; e (0, t) = eo, 

Pt = (3v (1 -1p) e- ap; p (x, 0) = 0. 

(2) 

(3) 

(4) 

(5) 

(6) 

In the above equations e(x, t) and p(x, t) are the concentrations of the free 
and captured particles, respectively; eo is the initial concentration, Pn is the 
limiting value of the concentration of the hold particles; (3 and a are the ac­
cumulation and detachment coefficients, respectively, which should be properly 
determined according to the physical, chemical and geometric properties of the 
filtration system; finally v is the filtration velocity of the suspension. 
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2.2. Differential Taylor (DT) transform 

It is well known that linear differential equations with constant coefficients 
can be transformed into algebraic equations and then easily solved in complex 
frequency domain by using Laplace and/or Fourier transformations Kreyszig 
(1988). For time varying systems, although the application of these techniques 
is possible by some modifications, it is not as easy and simple as the former 
case. For nonlinear differential systems, the problem gets more complex due to 
the frequency domain convolution integrals which result from the time domain 
products of dependent variables or their derivatives; therefore the use of ordi­
nary transform techniques is impractical for nonlinear systems. Fortunately, 
the use of DT Transform override most of the mentioned difficulties and the 
convolution integrals are replaced by simple sums of algebraic terms. 

DT Transform method converts the differential form mathematical model of 
a system in to its spectral form on which algebraic operations can be carried to 
derive and understand the system performance. For an analytic function x(t) 
described by its Ma.claurin series 

oo 1 dkx (t) I k 
X (t) = t; k! ~ t=O t ' (7) 

in the interval t E [0, T], the spectral model (or transform) is defined to be the 
discrete function 

X(k) =Tk dkx(t)l 
k! dtk t=O 

(8) 

which is known to be the Differential Transform. Using this transform the 
Taylor series in (7) can be written as 

00 

(t)k x(t)=t;X(k) T (9) 

which is now named as the Taylor Transform (Puhov, 1986, 1 990). In this 
equation the interval length T is known to be the scale factor of the transform. 

An important property of the DT Transform is its applicability to systems 
involving two independent variables and naturally partial differential equations. 
The DT Transform expressions of a function of two variables (generally space 
and time) are given by 

_ LPTk (JP+kc (x, t) I 
C (p, k) - p!k! fJxPfJtk x=O t=O' (10) 

00 00 (t)k 
c(x,t) = LLC(p,k) (:[f T 

p=Ok=O 
(11) 
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where p, k = 0, 1, 2, . . . ; L and T are the scale factors with respect to x and t , 
respectively. The use of DT Transform will be shown in the following section 
as applied to the mass equilibrium and kinetics equations of filtration models 
expressed in (1)-(6). 

3. Solution of filtration equations by DT transform 

Applying the well known rules about the DT Transform (Puhov, 1986, 1990) to 
the nonlinea.r partial differential equations in ( 1), we obtain 

k+1 p+1 
y-R (p, k + 1) + v--y-C (p + l , k) = 0; C (0, k) = cobk, (12) 

k+ 
1 
R(p,k+ 1) = j3v [c(p,k)- _!_R(p,k) · C(p, k)] ;R(p,O) = 0, (13) 

T Pn 

where k is the Kronecker delta. which is equal to 1 if k = 0, otherwise it is zero. 
Simplifying and rearranging, (12), (13) can be expressed for the spectrums of c 
and p as 

C(p+ 1,k) = -( L )j3 [_!_R(p,k) · C(p,k)- C(p,k)] ;C(O,k) = cobk,(l4) 
p+ 1 Pn 

R(p,k + 1) = k T j3v [c (p, k)- _!_R(p,k) · C (p, k)]; R(p,O) = 0, (15) 
+ 1 Pn 

respectively. Where the algebraic convolution term R · C is 

p k 

R (p, k) · C (p, k) = L L R (p - m, k - n) C (m, n) . (16) 
m=On=O 

Starting from the given initial conditions and increasing the values of p and 
k from 0 on sequentially, the spectrums C(p, k) and R(p, k) can be computed 
upto any desired order (say P for p, K for k ). Then knowing its spectrum, the 
output concentration can readily be computed by the inverse transform 

c(x,t) ~ tt (zf (f r C(p,k) · 
p=Ok=O 

(17) 

In the applications the choice of P and K are made properly by considering 
the convergence properties of the series; however, in many cases P and K are 
chosen so that terms upto a. certain order (say S = P + K) are sufficient and 
the summa.tions in this equation are carried upto S for p and S- p for k. 

In a. similar manner (3) , (4) and (5), (6) can be transformed into spectral 
domain. For (3), (4)- (14), (15) take the following form 

L 
C(p+ 1,k) =- ( l) [f3vC(p,k)- aR(p, k)] ;C(O , k) = c06k, (18) 

V p+ 
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T 
R (p, k + 1) = k + l [,BvC (p, k)- aR (p, k)]; R (p, 0) = 0. (19) 

As the first example to show the application of DT Transform, consider (1) 
and (2) with the numerical data: v = 200 m/h, e0 = 2 x 10-3 kgjm3 , ,8 = 1.2 
m-1 , Pn = 10 kgjm3 . The explicit analytic solution of these equations for e(x, t) 
can be derived to be 

e (x, t) = eoe Pn I ef3x + e f'n - 1 . [ ~] [ ~ ] (20) 

The filter quality factor defined by 

F(x, t) = 0.8 ( 1 - e(~~ t)) (21) 

is computed at x = 1m by using the explicit solution in (20) and plotted against 
time as in Fig. la. In the same figure the results of DT Transform solution with 
L = 1 m and T = 5 h are also shown for different values of S = P + K; 
S = 10, 20, 30. Obviously the results of DT Transform method converges to the 
actual solution rapidly and when S = 30 the maximum deviation becomes less 
than 1% at t = 5 h. The execution time for the solution for S = 30 is about 
only 15.27 s in a PC Pentium 133. 

As the second example the magnetic filters which are used to clean the tech­
nological condensats used in thermopower stations from the magnetic particles 
of micron size are considered. The experimental change of quality factor of such 
a filter is shown in Fig. lb. The system parameters are: e0 = 0.1 x 10-3 kgjm3 , 

L = 1 m, v = 200 m/h, ,8 = 3.08 m- 1 ; and a= 0.74 h- 1 . These parameters 
belong to a magnetic filter with filter elements of diameter d = 0.005 m, and an 
external magnetic field intensity of H = 70 kA/m Sandulyak (1988). For the 
case considered, Equations in (3), (4) are valid and their analytic solutions are 
not available. However when the equivalent Differential Transform equations in 
(18), (19) are solved and Taylor Transform in (17) is used for S = 40 to compute 
e(x, t), (21) yields the quality factor plotted by the continuous curve. Obviously 
the curve follows the experimental data fairly well. The discrepancies are not 
due to the approximate nature of the DT Transform method (since sufficiently 
large S is checked to be chosen), but they are originating from the imperfectness 
of the original mathematical model. 

4. Conclusions 

As a result of the observations in the proceeding sections and applications of 
DT Transform to many other systems, the following conclusions are arrived: 
i) DT Transform can be used as a tool in modelling of physical systems of which 

many properties are described by nonlinear partial differential equations. 
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ii) Depending on the properties of the system, the number of spectrums can 
be chosen as to satisfy the desired accuracy. And within this accuracy 
the model of the system can be obtained both in analytic and/or discrete 
forms. 

iii) DT Transform can equally be used in the analysis of similar nonlinear sys­
tems having vital importance in engineering applications, a few of which 
are absorption, fluid-solid mass and heat transfer, diffusion, etc. 
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Figure 1. Change of the quality factor of the analysed magnetic filter; a.) bold 
curve is calculated by using the explicit solution and the others are calculated 
by the DT Transform for different values of S, b) continuous curve is calculated 
by the DT Transform, and o indicates the experimental data. 
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