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Abstract: The paper gives a simple new method for computing 
envelopes of the magnitude and phase plots of the family of lin­
ear time-invariant interval plants with uncertain delay. The unde­
layed part of the plant is described by the family of interval transfer 
functions (the nominator and denominator polynomials are interval 
polynomials). The proposed method requires the knowledge of t he 
Kharitonov polynomials associated with the nominator and denom­
inator polynomials. 
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1. Introduction 

A linear time-invariant interval plant is described by a family of interval transfer 
functions . The magnitude and phase plots of such a. plant are a collection of 
the magnitude and phase plots corresponding to all transfer functions from the 
family. Therefore, knowledge of the envelopes of these plots is required in order 
to effectively carry out the analysis and design of linear time-invariant interval 
control systems in the frequency domain. 

The frequency domain properties of linear interval systems were developed 
by Bhattacharyya et al. (1995). The problem of computing the frequency 
response envelopes of families of linear uncertain systems without delay was 
considered by Levkovich et al. (1995), Garczarczyk (1997), Chen et al. (1998) 
and Buslowicz (1998). 

Bhattacharyya et al. (1995) showed that the Bode magnitude and phase 
envelopes of the family of the transfer functions are generated by the corre­
sponding extremal set of transfer functions. Levkovich et al. (1 995) provided 

1The original version of this paper was presented at the 9th International Symposium on 
System Modelling Control which was held in Zakopane, Poland during April, 1998. 

2 The work (Ref. No. PB W / WE/5/98) was supported by the State Committee for Scien­
tific Research of Poland. 
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an algorithm for computing the magnitude and phase envelopes of in terval ra­
tional transfer functions. Chen et a.!. (1 998) proposed a. numerical method for 
computing the frequency response template of a class of rational transfer func­
tions whose coefficients are affine functions of interval parameters. Garczarczyk 
(1997) presented a method for estimating (for all fixed frequencies) the upper 
and lower boundaries of the family of frequency responses. In this method, the 
solution of a corresponding linear interval equation is required. A simple com­
puter method for estimating the bounds of the magnitude and phase plots of a 
family of linear time-invariant systems with uncertain parameters was proposed 
by Buslowicz (1998). This method is based on the approximation of the value 
set of the family of transfer functions by rectangle with sides parallel to the axes 
of the complex plane. 

In this paper we give a simple new method for computing the envelopes of 
the magnitude and phase plots (and also the Bode plots) for the family of linear 
time-invariant interval plants with an uncertain delay. The proposed method 
requires knowledge of the Kharitonov polynomials associated with the nomi­
nator and denominator polynomials of the family of interval rational transfer 
functions which describe the undelayed part of the plant. This method is based 
on the approach similar to the proposed by Levkovich et al. (1995) but it is 
simpler to apply. 

2. Problem formulation 

Consider a family of linear time-invariant interval plants with delay described 
by the family of the strictly proper transfer functions 

N(s,p) 
G(s,p,q,exp(-sh)) = D(s , q) exp(-sh), p E P,q E Q,h EH, (1) 

where p = [po,p1, ... , pmf and q = [qo,q1, ... , qn-1]T (m:=; n) are vectors of 
uncertain parameters and H = [h- , h+] with 0 :=; h- < h+. 

The numerator and denominator polynomials are interval polynomials of the 
form 

N(s,p) = PmSm + Pm-JSm- 1 + · · · + P1S + Po, PEP, 

D(s, q) = sn + qn-1Sn-1 + · · · + q1s + qo, q E Q, 

where 

P = {p: Pk E [p;;,pt],pk :=; Pt ,k = 0, 1, ... , m} 

and 

Q = { q : qk E [q;;, qt], qk :=; qt, k = 0, 1, ... , n - l} 

(2) 

(3) 

(4) 

(5) 
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are the sets of uncertain coefficients Pk (k = 0, 1, ... , m) and qk (k = 0, 1, ... , 
n - 1), respectively. 

For any fixed pEP, q E Q and hE H, the transfer function G(s, exp( -sh)) 
at s = jw can be written in the form 

G(jw, exp( -jwh)) = M(w) exp(j<p(w )), 

where 

M(w) = IG(jw,exp(-jwh))l, 

and 

<p(w) = arg G(jw, exp( -jwh)). 

Let us assume that w 2:: 0 is fixed and then define 

M-(w) = min ~~~~w , p~ exp(-jwh)l, 
pEP,qEQ,hEH JW, q 

+ I N(jw,p) . I M (w) = max D(. ) exp( -Jwh) , 
pEP,qEQ,hEH JW, q 

<p-(w) = min arg (~~jw,p~ exp(-jwh)) , 
pEP,qEQ,hEH JW, q 

+( ) (N(jw,p) ( . h)) <p w = max arg D(. ) exp -JW . 
pEP,qEQ,hEH JW, q 

From the above it follows that for a.ny fixed w 2:: 0 we have 

and 

It is easy to see that 

and 

M-(w) = minpEP IN(jw,p)l 
maxqEQ ID(jw, q) l' 

M+(w) = maxpEP IN(jw,p)i 
minqEQ ID(jw,q)l' 

<p-(w) = min(argN(jw,p)) -ma.x(a.rgD(jw,q)) -wh+ , 
pEP qEQ 

(6) 

(7) 

(8) 

(9) 

(10) 

(ll) 

(12) 

(13) 

(14) 

(15) 

(16) 

(J 7) 
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cp+(w) = max(arg N(jw,p))- min(arg D(jw, q))- wh-. (18) 
pEP qEQ 

The aim of this paper is to give a simple method for computing (for any fixed 
w ?: 0) the magnitude bounds M-(w), M+(w) and the phase bounds cp-(w), 
cp+(w). If these bounds are swept over frequency w?: 0, we obtain the envelopes 
of the magnitude and phase plots. 

From (15)-(18) it follows that when computing the magnitude and phase 
bounds for any fixed w ?: 0 we can consider the interval polynomials (2) and 
(3) separately. Therefore, we first consider the frequency domain properties of 
interval polynomials. 

3. Frequency domain properties of interval polynomials 

Consider an interval constant degree polynomial 

(19) 

where 

A= {a: ai E [ai,atJ,ai:::; at,i = 0, 1, ... ,n,a;; > 0}. (20) 

Denote by wk(s) (k = 1, ... , 4) the Kharitonov polynomials associated with the 
interval polynomial (19). These polynomials are of the form (see Busrowicz, 
1997; Bhattacharyya et al., 1995, for example) 

() + + -2 -3 +4 w1 s = a0 + a1 s + a 2 s + a3 s + a4 s + .. . 

() 
- + +2 -3 -4 w3 s = a0 + a1 s + a 2 s + a3 s + a4 s + ... 

(21) 

(22) 

(23) 

(24) 

For any fixed w?: 0 the value set w(jw,A) = {w(jw,a): a EA}, associated 
with the interval polynomial (19), is a rectangle with the vertices wk(jw) (k = 
1, ... , 4) and with sides parallel to the axes of the complex plane (Buslowicz, 
1997; Bhattacharyya et al., 1995, for example). 

Let us denote 

uk(w) = ~wk(jw), vk(w) = ':Swk(jw), k = 1, .. . ,4, (25) 

where the Kharitonov polynomials wk(s) (k = 1, ... , 4) have the forms given by 
(21)-(24). 

Because the value set w(jw, A) is a rectangle with sides parallel to the axes 
of the complex plane, for any fixed w ?: 0 we have: 
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1. the maximum and minimum arguments of w(jw, a) occur on one of the 
vertices of the rectangle w(jw, A), that is 

maxarg(w(jw,a)) = max{arg(wk(jw)), k = 1, ... ,4}, (26) 
a EA 
minarg(w(jw,a)) = min{arg(wk(jw)), k = 1, ... ,4}, (27) 
a EA 

2. the maximum absolute value of w(jw, a) always occurs at a vertex of the 
rectangle w(jw, A), that is 

max lw(jw, a)l = max{lwk(jw)l, k = 1, ... , 4}, (28) 
a EA 

3. the minimum absolute value of w(jw, a) can occur on an edge of the rect­
angle w(jw, A). This value, from the geometrical point of view, is the 
distance d(w) of the rectangle w(jw, A) from the origin of the complex 
plane. This distance can be computed by the following algorithm: 

• if ul(w)uz(w) S 0 and vl(w)vz(w) S 0 (that is 0 E w(jw,A)), then 
d(w) = minaEA lw(jw, a)l = 0, 

• if u 1 (w)uz(w) < 0 and v1 (w)vz(w) > 0 (that is w(jw, A) crosses the 
imaginary axis), then d(w) = min(lvl(w)l, lvz(w)l), 

• if u 1 (w)u2 (w) > 0 and v1 (w)v2 (w) < 0 (that is w(jw,A) crosses the 
real axis), then d(w) = min(lul(w)l, luz(w)l), 

• if u 1 (w)u2 (w) > 0 and v1 (w )v2 (w) > 0 (that is w(jw, A) does not cross 
the axes of the complex plane), then d(w) = min{lwk(jw)l, k = 
1, 00 0 ,4}. 

4. Computation of magnitude and phase bounds 

Let us denote by Nk(s) (k = 1, ... , 4) and by D; (s) (i = 1, ... , 4) the Kharitonov 
polynomials associated with the interval polynomials N(s, p), pEP, and D(s, q), 
q E Q, respectively. These polynomials are of the form given by (21 )-(24) for 
the interval polynomials N ( s, p) and D ( s, q), respectively. 

For any fixed w;:::: 0 the value set N(jw,P) = {N(jw,p): pEP} associated 
with the interval polynomial (2) is a rectangle with the vertices Nk(jw) (k = 

1, ... , 4) and with sides parallel to the axes of the complex plane. Similarly, the 
value set D(jw, Q) = {D(jw, q) : q E Q} associated with the interval polynomial 
(3) is a rectangle with the vertices D;(jw) (i = 1, ... , 4) and with sides parallel 
to the axes of the complex plane. 

Hence, from (26) and (27) we have 

max(arg N(jw,p)) = max{arg Nk(jw), k = 1, ... , 4}, 
pEP 

min(arg N(jw,p)) = min{arg Nk(jw), k = 1, . . . , 4}, 
pEP 

ma.x(arg D(jw, q)) = max{arg D;(jw), i = 1, ... , 4}, 
qEQ 

(29) 

(30) 

(31) 
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min(arg D(jw, q)) = min{ arg Di(jw ), i = 1, ... , 4}. (32) 
qEQ 

From (17), (18) and (29)-(32) it follows that for any fixed w ;:::: 0 the phase 
bounds cp-(w) and cp+(w) can be computed from the formulae 

cp-(w) min{argNk(jw), k = 1, .. . ,4} 

max{argDi(jw), i = 1, ... ,4}- wh+, 

max{argNk(jw), k = 1, ... ,4} 

- min{argDi(jw), i=1, ... ,4}-wh-. 

Let us introduce the following notation 

UNk(w) = iRNk(jw), 

UDi(w) = iRDi(jw), 

VNk(w) = "SNk(jw), k = l, ... ,4, 

VDi(w) = "SDi(jw), i = 1, . .. ,4. 

The formula (15) can be written in the form 

M -(w) = Nmin(w)/Dmax(w), 

where 

Nmin(w) = min JN(jw,p)J, Dmax(w) = max JD(jw, q)J. 
pEP qEQ 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

From the above and Section 3 it follows that for any fixed w ;:::: 0, M- ( w) is 
computed from (37), where 

Dmax(w) = max{ JDi(jw)J, i = 1, ... , 4} 

and Nmin(w) is computed by the following algorithm: 
• if UNl(w)UN2(w) ~ 0 and VNl(w)VN2(w) ~ 0, then Nmin(w) = 0, 
• if UNJ(w)UN2(w) < 0 and VNl(w)VN2(w) > 0, 

then Nmin(w) = min(JVNJ(w)J, JVN2(w)J) , 
• if UNJ(w)UN2(w) > 0 and VNJ(w)VN2(w) < 0, 

then Nmin(w) = min(JUNJ(w)J, JUN2(w)J), 
• if UNJ(w)UN2(w) > 0 and VNJ(w)VN2(w) > 0, 

then Nmin(w) = min{JNk(jw)J, k = 1, ... ,4}. 

The formula (16) can be written in the form 

M+(w) = Nmax(w)/Dmin(w), 

where 

Nmax(w) = max JN(jw,p)J, Dmin(w) = min JD(jw, q)J. 
pEP qEQ 

(39) 

(40) 

( 41) 

From Section 3 it follows that for any fixed w ;:::: 0, M+ (w) is computed from 
(40), where 

Nmax(w) = max{JNk(jw) J, k = 1, ... , 4} (42) 

and Dmin(w) is computed by the following algorithm: 
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• if Um(w)Um(w)::; 0 and Vm(w)Vvz(w)::; 0, then Dmin(w) = 0, 
• if Um(w)Um(w) < 0 and Vm(w)Vm(w) > 0, 

then Dmin(w) = min(JVm(w)J, JVm(w)J), 
• if Um(w)Um(w) > 0 and Vm(w)Vm(w) < 0, 

then Dmin(w) = min(JUm(w) J, JUm(w)J), 
• if Um(w)Um(w) > 0 and Vm(w)Vm(w) > 0, 

then Dmin(w) = min{JDi(jw)J, i = l , ... , 4}. 

287 

On computing the magnitude bounds M-(w), M+(w) and the phase bounds 
cp-(w), cp+(w) for all frequencies w E [wm in , Wmax] with the step b..w by the 
proposed method we obtain the magnitude and phase envelopes of the family 
of the magnitude and phase plots. 

5. Illustrative example 

Consider an interval plant, the transfer function of which has the form 

N(s,p) 
G(s,p,q,exp(-sh)) = -(-) exp(-sh), hE H = [0 .1 ,0.3], (43) 

D s,q 

where 

N(s,p) =p1s+po , Pl E [10,20], Po E [20,60], 

D(s, q) = s2 + q1s + qo, q1 E [30, 80], qo E [0, 20]. 

(44) 

( 45) 

The Kharitonov polynomials associated with the interval polynomials (44) 
and ( 45), respectively, have the following forms 

N1(s) = 20s + 60, N2 (s) = lOs + 20, 

N3(s) = 20s + 20, N4 (s) = lOs + 60, 

D1(s) = s2 +80s+ 20, D2 (s) = s2 + 30s, 

D3(s) = s2 +80s, D 4 (s) = s2 + 30s + 20. 

On computing the magnitude and phase envelopes by the proposed method, 
we obtain the Bode envelopes (i.e. plots of 20 log M- (w) and 20 log M+ (w) 
versus logw and plots of cp-(w) and cp+(w) versus logw) shown in Figure l. 
These envelopes were computed using the programs of the MATLAB package. 

6. Conclusion 

In the paper a new method for computing the envelopes of the magnitude and 
phase plots of the interval plant with delay is given. The proposed method re­
quires knowledge of the Kharitonov polynomials associated with the nominator 
and denominator polynomials of the family of interval transfer functions which 
describe the undelayed part of the plant. Therefore, this method is simple to 
apply. 
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