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Abstract: The continuous-time generalised predictive control 
(CGPC) is considered in the context of control of continuous-time 
systems having a. transportation delay. It is shown that the basic 
CGPC design strategy can be given in a. form which facilitates a. 
clear discussion of relevant design consequences concerning stability 
issues. The main results that follow incorporate several solutions 
to the delay-plant control design problem and a. verification of the 
proposed algorithms in terms of the closed-loop stability. 
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1. Introduction 

CGPC, the continuous-time generalised predictive control strategy (Demircioglu 
and Ga.wthrop, 1991, 1992, Demircioglu and Cla.rke, 1992, Kowa.lczuk et al., 
1996) being a continuous-time restatement of GPC design paradigm (Clarke et 
al., 1987, Soeterboek, 1992, Sa.nchez and R.odellar, 1996) and using a similar 
long horizon quadratic cost function, has proved suitable for pra.cticaJ non-delay 
plant systems applications using both classical and adaptive control schemes. 
Therefore it seems to be equally important to accommodate the CGPC strategy 
to plants incorporating a. transportation delay. Of consequence is also the fact 
that the traditional methods that use Pa.de approximation of the delay operator 
(Marshall, 1979, Gawthrop, 1987) have certain fundamental drawbacks in the 
CGPC control design context, which are connected with the design pa.rameter­
isa.tion, calculation, and realisation. 

In view of the above, the main objective of this presentation is such a. de­
velopment of the CGPC design that shows a. new perspective for the predictive 
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principle by covering the case of continuous-time plants with a transportation 
delay. Specifically, the AF-CGPC-plus-SSR algorithm incorporating anticipa­
tion filtering (AF) and tuned with the use of the swiftness method (Kowalczuk 
and Marcil'tczyk, 1996, Kowalczuk et a.l., 1996) is taken into consideration. 

2. AF-CGPC design 

Let a scalar linear continuous-time plant be described by the following aggregate 
model (Demircioglu and Gawthrop, 1991, Kowalczuk and Suchomski, 1 998a,b) 
given as 

B(s) C(s) 
Y(s) = A(s) U(s) + A(s) V(s) (1) 

where U(s) and Y(s) are the input and the output signals of the plant, V(s) 
represents a disturbance function, A( s), B ( s) and C ( s) are polynomials in the 
La.place domain. Let degA(s) = NA, degB(s) =NB< NA, degB(s) =Ne< 
NA, and p = NA- NB, denote the relative order of the plant. By performing 
an instrumental polynomial decomposition with the use of the following first 
Diophantine equation 

(Dl): 

the following operator form of the k-th 'derivative' of the plant output 

Yk(s) = skY(s) = Yk*(s) + EZ(s), k = 0, l, ... , 

can be obtained that has the predictable part of Yk ( s) 

y;*() = Ek(s)B(s)U() Fk(s)Y() 
k s C(s) s + C(s) s 

and the unpredictable-error part of Yk ( s) 

EZ(s) = Ek(s)V(s) 

(2) 

(3) 

(4) 

(5) 

where degEk(s) =Ne- NA + k fork 2: NA- Ne, with Ek(s) = 0 fork< 
NA- Ne and deg Fk(s) ::::; NA- 1 fork= 0, l, ... , while degFk(s) =Ne+ k 
fork< NA- Ne. By making another (second) Diophantine decomposition the 
transfer function Ek(s)B(s)/C(s) is represented by a strictly proper rational 
part G k ( s) / C ( s) and a polynomial part H k ( s) 

(D 2): Ek(s)B(s) = Gk(s) + H ( ) k > O 
C(s) C(s) k 

8 
' - ' 

(6) 

where Gk(s) = 0 and Hk(s) = 0 for k < NA - Ne. In a nontrivia.! case 
k 2: NA- Ne, one has: 
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• if k < p (possible only for Ne > NB): Hk(s) = 0, Gk(s) = B(s)Ek(s) , 
degGk(s) =Ne- p + k; 

• if k = p: degHk(s) = 0, degGk(s):::; Ne - 1; 
• if k > p: degHk(s) = k- p, degGk(s):::; Ne -1. 

PROPOSITION 2.1 In order to obtain a realisable transfer function 
Fk ( s) / C ( s) in the design the postulate Ne = N A - 1 will be observed. • 

The design polynomials are characterised as follows. 

LEMMA 2.1 Properties of design polynomials. For N A ~ 1 one has: 

d E ( ) { 
0 if k = O, .th E ( ) 0 ·1 k 0 eg k s = k _ 1 if k ~ 1, w2 k s = 2 " = ; 

d F ( ) { 
= NA- 1 if k = 0, .th F ( ) C( ) .1. k O 

eg k s = :::; N A _ 1 if k ~ 1, w2 k s = s 2 , = ; 

degHk(s) = k- p if k ~ p, with Hk(s) = 0 if k < p. 

With N A = 1 there is 

Gk(s) = O,k ~ 0, 

while for N A ~ 2 one has 

{ 
NB + k - 1 if 1 :S k < p, 

degGk(s) = NA _ 2 if k ~ p, with Gk(s) = 0 if k = 0, 

and 

Gk(s) = B(s)Ek(s) if 1:::; k < p. 

• 
Different forms of the second Diophantine decomposition (D2) of (6), that gov­
erns the way in which U(s) influences Yt(s) of (4), are characterised in the 
following lemma. 

LEMMA 2.2 Forms ofYk*(s) for p ~ l. 
(A) Zero solution: Ek(s) = Hk(s) = Gk(s) = 0 if k = 0. 
(B) Strictly proper rational solutions (p ~ 2): Hk(s) = 0 and degGk(s) = 

NB + k - 1 < N A - 1 if 1 ::::: k < p. 
(C) Proper rational solution: deg Hk(s) = 0 and deg Gk(s) :::; NA- 2 if k = p. 
(D) Improper rational solutions: degHk(s) = k- p and degGk(s):::; NA- 2 if 

k > p. • 
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Note that p = 0 is not taken into account, and that for p = 1 only the solutions 
(A), (C) or (D) are possible. 

The emulator equation of the predictable (4) thus becomes Yk* (s) = yk- (s) + 
Y/(s), k;:::: p, in which yk-(s) denotes an 'observer' part 

_ Gk(s) Fk(s) 
yk (s) = C(s) . U(s) + C(s) . Y(s), (7) 

with the control signal filtered by strictly proper Gk(s)/C(s) and the plant 
output filtered by proper transfer function Fk( s) / C ( s), and Y/ ( s) = H k ( s) · U ( s) 
stands for a 'predictor' part, that is based on polynomials Hk(s) = hk +hk_ 1s+ 
... + hpsk-p, k;:::: p, composed of the plant Markov parameters h;s, i;:::: 0, 

B(s) ~ - i 
A(s) =~his . 

t=O 

(8) 

Finally, the required estimate of the kth derivative of the plant output takes the 
form 

*(t) = L_ 1 [Y.*(s)] = { yJ:(t), if k < p, 
Yk k yJ:(t)+y:(t) ifk ;::: p, 

(9) 

where yJ:(t) = L- 1 [Yk- (s)], k;:::: 0, and y:(t) = "£7::6 hk-i · u;(t), k ;:::: p, with 
u;(t) = diu(t)jdti, i;:::: 0. 

2.1. Estimation of future output of the plant 

Let i be the variable of future time and T E [0, T], T E R+, stands for the 
relative variable of future time: i = t + T. Moreover, let 

(10) 

denote the weighted polynomial basis. Assume that the future output can be 
approximated in Bo,Nv ( T; 0, T) 

Ny k 

y(t) 3:! y(i)lt=t+r = L :! · Yk(t), (11) 
k=O 

where Yi(t) = diy(t)/dti, i :::0: 0, while Ny denotes the plant output prediction 
order. Seeking for a realisable form i;( i) of the predictor ii( i), one can replace 
the derivatives by their estimates (9) 

Ny k 

y(i) 3:! y(i)lt=t+r = L :! 'Y~(t). (12) 
k=O 

PROPOSITION 2.2 The control sequence can be designed for Ny :::0: p (see Lemma 
2, C and D). • 
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The following matrix representation of y(i) can then be obtained 

y(i)lt=t+T = t[N"(r)HNy,Ny-pUN"-p(t) + t~,NJr)y:N.,(t), 
where 

hN, hN,-1 

N1 ~ p, 0 ::; N2 ::; N1 - p, 

0 
0 
0 

ui(t) = [u(t) u1(t) · · · ui(t)]r , ui(t) E R i+1 ,i ~ 0, 

Y:t(t) = [y(t) Yr(t) · · · m(t)]T , Y:t(t) E R i+l, i ~ 0. 

2.2. AF-CGPC classical strategy 

295 

(13) 

(15) 

(16) 

(17) 

Let w(t) denote the reference signal sample and e(t) = w(t) -y(t) be the control 
error sample at time instant t. Assume that the evolution of the reference signal 
can be anticipated in the future time domain as 

w(i)li=t+T = y(t) + ow(i)li=t+T' (18) 

Where 0w(i) lt=t+T = e( t) · f3r ( 7) iS an incremental referenCe COmpOSed Of a SCaling 
factor e( t) and a normalised reference f3r ( r) , which can be represented in the 
basis Bo,N" ( r; 0, T) as a function {f3r : T -+ f3r ( T)} via a set of co-ordinates 
rN" : f3r(r) = t6,N)r) · rN"' where the vector ri = [ro · · · ri]T, ri E R i+l, 
i ~ 0, is composed of the initial Markov parameters of a fictitious anticipation 
filter (AF), employed in the design. The AF mechanism, introduced in order to 
moderate the command signal (Demircioglu and Gawthrop, 1991, Kowalczuk et 
al., 1996), can easily be implemented by using a simple first-order filter FA(s) = 
1/(1 + rs), r > 0, that leads to the following co-ordinates of rN,, : ro = 0 and 
ri = (-l)i-l.r-i,i= l, ... ,Ny. Insteadofthefutureerrore(£) =w(£)-y(i)one 
can take the following prediction e(i) = w(i)-y(i), in which both the anticipated 
reference and the predicted output are employed. Denoting an incremental 
prediction Of the OUtpUt by ofj(t)it=t+T = y(i)li=t+T- y(t) one ObtainS e(t) = 
ow(i) - oy(i). Now, let us assume that the current and future control u(i) can 
be represented in the basis Bo,N, ( r; 0, T) as a function {f3u : r -+ f3u ( r)} of 
the incremental variable of future timer, that is u(t)li=t+T = f3u( r) = f3t( r) = 
t~,NJr)uNJt), where the co-ordinate vector uNJt) is now parameterised by 
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the current time instant t and the control prediction order Nu, which satisfies 
the design constraint Nu :::; Ny - p. Hence, the error prediction e(£) takes the 
form 

e(t)it=t+r = 
e(t) · t6,Ny ( T)r N

11 
+ y(t) - t6,N)T)Yf.r, (t) - t6,N) T)HN11 ,N,. UN., (t) , (19) 

that, by virtue of ( 17), can be simplified to 

e(t)it=t+r = t6,N)T) (e(t) · TN11 - Y:NJt)) - t6,N)T)HN",N" UN, (t), (20) 

where Y;;,(t) = [0 YJ. · · · w(t)JT, Y"(t) E Ri+ 1
, i 2:: l. Having determined the 

" ~ " " 
predicted control error e(t) as a. function of control u(t), fort = t + T , one can 
seek an optimal shape of this control. 

Consider the following quadratic cost index 

(21) 

where A 2:: 0 denotes a control weighting factor, and the pairs (T1 , T2) and 
(T3,T4), with Ti:::; Tj in each pair (Ti ,Tj), determine the error and control sig­
nal observation horizons for the predicted error and control effort, respectively. 
Minimisation of (21) 

yields the solution 

u'JvJt) = KN,.,N"(e(t) · rN"- Y:NJt)) , 

where 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Tm,n(T T ) = t (T)tT (T)dT Tm,n(T T ) E R(l-k+l)x(n-m+l) 1
72 

k,l 1' 2 k,l m,n ' k,l l' 2 ' 
TJ 

0 :::; k :::; l, 0 :::; m :::; n. (28) 

As it has been shown in Kowalczuk and Suchomski (1997) for any A 2:: 0 the 
solution (23) exists. 
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2.3. Implementation of control law 

The first co-ordinate of u'fv, (t) determines the optimal control input 1L*(t) at 
the time instant t 

u*(t) = k~)e(t) · rNv - YN)t)), (29) 

where k'f.:,v, k E RNv+l, is the first row of KNv,Ny· The resulting closed-loop 
control law takes in the Laplace domain the following form 

U*(s) = g(W(s)- Y(s))- M(s) · U*(s)- N(s) · Y(s), (30) 

where g = kTN rN is the controller scalar gain, while M(s) is a strictly proper 
y y 

transfer function 

GNc(s) 
M(s) = C(s) ' 

and N ( s) is a proper one 

F!VA (s) 
N(s) = C(s) ' 

The numerator polynomia.ls F!V A ( s) and GN 
0 

( s) are defined as 

(31) 

(32) 

F!VA(s) = k'f.:, FN NASNA-1' degF!VA(s) = NA- 1, (33) y y, 

where si = [s0 s1 · · · sijT, i :::0: 0, while elements of matrices 

0 0 0 

p= - [ h,o h,1 h,NA-1 1 F~ E R (N,+')" N, Ny,NA- ' Ny,NA ' 

fNy ,O fNy,l fNy,NA-1 

0 0 0 

c= - [ gl,O g1,1 91,Nc-1 l G~ E R(N,I ')•No Ny,Nc- ' Ny ,Nc ' 

gNy,O gNy,1 9Nu,Nc-1 

are composed of the coefficients of the polynomials of (2) and (6) 

Fk(s) = h,o + · · · + !k,NA-lsNA-1, 1:::; k:::; Ny, 

Gk(s) = gk,O + · · · + gk,Nc-lSNc-1, 0:::; k:::; Ny. 

(35) 

(36) 

(37) 

(38) 

To facilitate further discussion let us define the following three polynomials 

(39) 
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HN= (s) = kTN HN N SN deg HN= (s) = N 
1 1. 11 y, 11. ,, u u' 

Lf{A(s) = k~vLN",NASNA-1' degLf{A(s) = NA -1, 

where the matrix 

0 
0 ~ ] E= E R(N11 +l)xN, 

. . . ' N 11 ,Ny ' 

eo 

is composed of the coefficients of the quotient polynomials of (2) 

{ 
0 k = 0, 

Ek(s) = k-1 k N 
ek-1 + ek_zs + · · · + eos ·· 1 :S :S Y' 

and the matrix 

0 

lt,l 

is composed of the coefficients of the residual polynomials 

Lk(s) = lk,o + lk,1s + · · · + lk,NA-lsNA-I, 1 :S k :S Ny, 

defined by the third Diophantine decomposition 

(D3): 

( 40) 

( 41) 

( 42) 

(43) 

(45) 

( 46) 

From the above it follows that deg Lk ( s) :S N A - l for k ;:::: 0, while deg Lk ( s) = 

NB+ k for k < p, and Lk(s) = B(s) for k = 0. Moreover, it can easily be 
checked that 

A(s)Gf{0 (s) + B(s)FNA (s) = C(s)Lf{A (s). (47) 

From (6) and (46) we obtain the following representations of FNA (s), G'N
0

(s) 
and L'NA (s) 

FNA(s) = kTN s'N · C(s)- E'N (s)A(s), (48) 
y y y 

G'N0 (s) = EN"(s)B(s)- HNv-P(s)C(s), (49) 

L'NA (s) = k~"sNy · B(s)- HNv-P(s)A(s), (50) 

where si = [0 s1 · · · si]T, i ;:::: 0. With >. = 0 certain nontriviaJ properties of 
G'N

0
(s) and L'NA (s) can be proved. Namely, from (15) and (24) it follows that 

if Nu< Ny- p, 

if Nu= Ny - p, 
(51) 
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where 

H~:jjy-p = [ HN~~~:~·:.~:~:~~,-1 ] . (52) 

As a result H;:;,(s) = 1 if Nu= Ny- p. Thus for .A = 0 and Nu= Ny - pone 
obtains 

G'N
0

(s) = EN-)s)B(s)- C(s), 

L'NA (s) = k~"s'N!/ · B(s) - A(s). 

3. AF-CGPC design for delay plants 

(53) 

(54) 

The following plant with a transportation delay in the control channel will be 
considered 

_ B(s) -sTo C(s) 
Y(s) - A(s) · U(s)e + A(s) · V(s) , T0 ;::: 0. (55) 

3.1. Delay-predictive solution: AF-DpCGPC 

The future k-th derivative, k ;::: 0, can be denoted by Yk~T0 (s) = Yt(s) esTo. 
From the development presented in Section 2 it results that 

* Gk(s) Fk(s) * 
Yk,To(s) = C(s) · U(s) + C(s) · Y0 ,r0 (s) + Hk(s) · U(s). 

From (55) the future output Y0~r0 (s) can be computed as 

Y,* (s) = Y(s)esTo = B(s) · U(s) + C(s) · V(s)esTo 
O,To · A(s) A(s) ' 

or approximately by the following 'foreseeable' emulation 

A* B(s) C(s) 
Y0,r0 (s) = A(s) · U(s) + A(s) · V(s) . 

Taking again (55) into account, one arrives at 
A • A /j 
Y0 ,r

0
(s) = Y(s) + Yr

0
(s), 

where the delay-correcting part 

(56) 

(57) 

(58) 

(59) 

(60) 

Consequently, the realisable form of Yt""' ( s), representing the prediction of 
,10 

future output derivatives with negligence of future disturbances, can be shown 
in the following form 

(61) 
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having the 'observer' and 'predictor' parts as follows 

Y,- (s) _ [Gk(s) + Fk(s) B(s) (1 _ e-sTo)] . U(s) + Fk(s) . Y(s) (62) 
k,To - C(s) C(s) A(s) C(s) ' 

Y/(s) = Hk(s) · U(s ). (63) 

With the advanced-future-time variable i = t +To+ T, the future output tra­
jectory can be represented in Bo,N

11 
( T; 0, T) by the following equation (see (13)) 

y(i)it=t+To+r = t5,N)T)HN11 ,N,uN..(t) + t5,N)T)YN
11
,r

0
(t) , (64) 

where 

YNy,To(t) = lYO:ro(t) i/1,To(t) · · · YNu,To(t)]T, YN
11
,To(t) E RNv+l, (65) 

Yi;r
0
(t) = L- 1 ['f:~r0 (s)], i 2:0. (66) 

From (62) it also results that :YO:ro (t) = y( t)+y~0 ( t) , where y~0 ( t) = L -l [Y.fc ( s) ]. 
Now let 

8y(i)li=t+To+r = y(t)li=t+To+r- Y0,r0 (t) (67) 
be the advanced-future incremental prediction of the output. With the con­
jecture that during the subsequent period To the future setpoint w(i) will not 
change, the anticipated reference in T can be figured similarly to (18) 

w(i)lt=t+To+r = YO:ro(t) + 8w(i)li=t+To+r (68) 

where 8w(i) is the future incremental reference represented in Bo,N
11 

( T; 0, T) as 

8w(t)it=t+To+r = (w(t)- YO,r
0
(t)) · f3r(T). (69) 

The prediction of control error can now be given as 

e(i) = w(i) - iJ(i) = 
t5,N)T)[(e(t)- Y~0 (t)) · fN

11
- YN

11
,r

0
(t)]- t5,N)T)HN

11
,N,liN, (t), (70) 

where :YN-y,To(t) = [0 Yl,ro · · · YNy,To(t)JT, YN-
11
,r0 (t) E RN"+l. 

modified cost function 

Jr
0
(UN,(t)) = (T

2 

e2 (t+To+T)dT + A (T
4 

u2 (t+T)dT, 
Jr1 lr3 

and T4 :::; T2 , one gains the following optimal control input 

u*(t) = k~)(e(t)- Y~0 (t)) · rNv - YN
11
,r0 (t)], 

With the 

(71) 

(72) 

where k~" is the first row of KN" ,N" from (24). The respective closed-loop 
control law has in the La.place domain the form of (30) with the input-observer 
transfer function incorporating a. system delay factor 

GN-0 (s) ( FfJA(s)) B(s) -sTo 
M(s) = Mro(s) = C(s) + g + C(s) A(s) (1- e ), (73) 

and the proper transfer function N(s) of (32) having no delay ingredient. 
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Figure 1. Closed-loop control system 

3.2. Stiff solution: AF-DsCGPC 

For the plant delay To of a very small value the output prediction Y0~To ( s) can 

be anticipated in the simplest form of Y0~To ( s), gained by assuming fA ( s) = 0 
in (59) 

Yo~To(s) ~ Yo~To(s) = Yo~To(s)IYj0 (s)=O = Y(s) . (74) 

Hence the error-prediction formula (see (70)) acquires the form of 

e(i)li=t+To+r = t'[,Ny ( T) (e(t). r Ny - YNy (t))- t6,N) T)HNy,N,.liN, (t), (75) 

which, used in the cost function (71), results in the closed-loop control law of 
(30). 

4. Properties of the CGPC Design 

4.1. Internal stability analysis 

In order to investigate the internal stability conditions of the resulting closed­
loop control system, consider the structure shown in Fig. 1 with four input 
signals (W(s), V(s), D(s) , Q(s)) and two output signals (Y(s), U(s)) discerned. 
Thus, the following matrix transfer function can be considered 

[ 

W(s) 1 
[ 

Y(s) ] _ [ Twy(s) Tvy(s) Tdy(s) Tqy(s) ] V(s) 
U(s) - Twu(s) Tvu(s) Tdu(s) Tqu(s) D(s) · 

4.1.1. Basic AF-CGPC design 

For the non-delay plant of (1) one has 

gB(s) 
Twy(s) = Po(s)' 

gA(s) 
Twu(s) = Po(s) , 

Q(s) 

(76) 

(77) 
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( ) 
_ C(s) + G'N0 (s) T ( ) = -(gC(s) + FtJjs)) (

78
) 

Tvy s - Po(s) , vu s Po(s) , 

( ) 
_ A(s)(C(s) + G'Nc (s)) T ( ) = - A(s)(gC(s) + FtJA (s)) (

79
) 

Tdy s - P( 
8

) , du s P( 
8

) , 

T ( ) _ B(s)(C(s) + GNc(s)) T ( ) = - B(s)(gC(s) + F!VA (s)) (
8
0) 

qy s - P(s) ' qu s P(s) ' 

where P( s) denotes the characteristic polynomial 

P(s) = C(s)Po(s), (81) 

and 

Po(s) = A(s) + gB(s) + L'NA (s), deg Po(s) = NA . (82) 

COROLLARY 4.1 The closed-loop control system is internally stable if and only 
if the polynomials C(s) and P0 (s) are Hurwitz. • 

4.1.2. AF-DpCGPC control system 

According to the delay plant model of (55), one should take into account the 
following transfer functions of (76) 

gB(s )e-sTo gA(s) 
Twy(s) = Po(s) , Twu(s) = Po(s), (83) 

R(s) -(gC(s) + F!VA (s)) 
Tvy(s) = A(s)Po(s), Tvu(s) = Po(s) , (84) 

R(s) 
Tdy(s) = P(s), 

-A(s)(gC(s) + F!VA (s)) 
Tdu(s) = P(s) , (85) 

B(s )R(s )e- sTo 
Tqy ( s) = Pro ( s) , ( 

_ - B(s)(gC(s) + F!VA (s))e-sTo (
86

) 
Tqu s)- P(s) , 

where the numerator component function is defined as 

R(s) = A(s)(C(s) + GNc (s)) + B(s)(gC(s) + FtJA (s))(1- e-sTo) , (87) 

and the closed-loop characteristic polynomial is given by 

Pr0 (s) = A(s)P(s). (88) 

A crucial conjecture concluded from the above is stated in the form of the 
following corollary. 

COROLLARY 4.2 For Hurwitz polynomial P(s) , the AF-DpCGPC control sys­
tem is internally stable if and only if the plant jest BIBO-stable. • 

As it can be seen from the above the AF-DpCGPC controller working as a. 
time-delay compensator, like the classical Smith predictor (Smith, 1959, La.ugh­
lin et al., 1987, Palm or, 1996), can be used for stable plants only. 



Control of delay plants via continuous-time GPC principle 303 

4.1.3. AF-DsCGPC design 

The above mentioned restriction on the plant stability is not valid for the AF­
DsCGPC design. The transfer functions (76) can, in this case, be given by the 
following expressions 

gB(s)G(s)e-sro 
Twy(s) = Pr

0
(s) ' 

T ( ) _ gA(s)C(s) 
wu s - Pro(s) , (89) 

T ( ) _ C(s)(C(s) + G:V0 (s)) 
vy s - Pro ( s) ' 

T ( ) = -C(s)(gC(s) + FfJA (s)) (90) 
vu s Pro (s) , 

( ) 
_ A(s)(C(s) + G:Vc (s)) 

Tdy s - Pro ( s) , 
T ( ) = -A(s)(gC(s) + FfJA (s)) (9l) 

du s Pro(s) , 

( ) 
_ B(s)(C(s) + G:V

0
(s))e-sro 

Tqy s - Pro(s) , 

) 
_ -B(s)(gC(s) + FfJA (s))e-sro 

Tqu(s - Pro(s) , (92) 

where Pro ( s) denotes the generalised characteristic polynomial 

Pr0 (s) = A(s)(C(s) + G:V
0

(s)) + B(s)(gC(s) + FfJA (s))e-sro (93) 

which has the following asymptotic (To----; 0) property Pr0 (s) ----; P(s). Appar­
ently, the closed-loop control system is internally stable if and only if all roots 
of Pr0 ( s) are in the open LHP. 

4.2. Properties of the CGPC Design 

4.2.1. 

For the predictive design and for the stiff solution the transfer functions of (76) 
are asymptotically (To ----; 0) given by (77)-(80) . 

4.2.2. 

For A(O) = 0 from (50) it results that L:VA (0) = 0. Thus the following corol­
lary, which is true for all the considered GPC-based strategies (AF-CGPC, 
AF-DpCGPC and AF-DsCGPC), can be stated. 

COROLLARY 4.3 For the CGPC control of a plant with a pole in the origin {a 
zero root of A(s)), the closed loop transfer function Tu:y(s) is of unity DC gain 

gB(O) gB(O) 
Twy(O) = A(O) + gB(O) + LNA (0) JA(O)= O = gB(O) = 1. (94) 

• 
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On the other hand, with A= 0, from (50) and (51) one has L'NA (0) = -A(O) 
and what follows. 

CoROLLARY 4.4 If there is no pole in the origin (i.e. if A(O) =1- 0) the zero 
nominal steady-state error for the positional tracking (in a stable closed-loop 
system) is guaranteed by using A = 0. • 

4.2.3. 

Let us consider the following specia.l design settings 

A = 0 and Nu = Ny - p. 

In this case, by virtue of (54) and (82), one obtains 

Po(s) = Fo(s)B(s), 

where 

(95) 

(96) 

(97) 

This formula motivates the AF-DpCGPC design: with the first-order anticipa­
tion filter 1/(1 + rs), r > 0, one ha.s f>o(s)ls=-r- 1 = 0, which means that the 
AF-DpCGPC procedure can be regarded as a partial pole placement approach 
(Demircioglu and Gawthrop, 1991). Therefore, by the use of (95), the transfer 
functions of (76) acquire their reduced-order forms 

gB(s)e-sTo 
Twy(s) = Po(s) ' 

R(s) 
Tvy(s) = A(s)Po(s)' 

R(s) 
Tdy(s) = C(s)Po(s)' 

gA(s) 
Twu(s) = B(s)Po(s)' 

T ( ) = -(gC(s) + FJ:rA (s)) 
vu s B(s)Po(s) ' 

-A(s)(gC(s) + FJ:rA (s)) 
Tdu(s) = B(s)C(s)Po(s) ' 

B(s)R(s)e-sTo 
Tqy(s) = A(s)C(s)Po(s)' 

_ -(gC(s) + FJ:rA (s)) e- sTo 
Tqu(s)- C(s)Po(s) ' 

where 

R(s) = A(s)E}/v (s) + (gC(s) + FJ:rA (s ))(1 - e-sTo) 

from which one can draw the following conclusion. 

(98) 

(99) 

(100) 

(101) 

(102) 

CoROLLARY 4.5 With A = 0 and Nu = Ny - p the application of the AF­
DpCGPC design is restricted to stable and minimum phase plant models, whereas 
the use of the CGPC design with To = 0 is confined to minimum phase models . 

• 
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Polynomial: A(s) B(s) C(s) 
Input: W(s) - + -

Input: V(s) + + -

Input: D(s) - + + 
Input: Q(s) + - + 

Table 1. Internal stability paths: + indicates the impact of the model polyno­
mial 

4.2.4. 

In order to obtain a pair of input signals sufficient for determining the internal 
stability conditions let us consider the Table. 1. 

Note that the pair (W(s), V(s)) chosen in a 'natural' way is not sufficient for 
the internal stability analysis. Instead, the appropriate pairs are: (W(s), Q(s)), 
(V(s), D(s)), (V(s), Q(s)) and (D(s), Q(s)). 

4.3. Markov parameters of Pade approximants 

It is instructive to observe that a first order system described as 

B(s) bo 
A()

= - ,pER, 
s s-p 

(103) 

has the following Markov parameters: 

ho = 0, hi= bopi- 1, i ~ 1. (104) 

It is thus clear that for IPI > 1 the sequence {hi} Q" is composed of the Markov pa­
rameters with a monotonically increased modulus, and an alternately changing 
sign for p < -1. This result is in contradiction with the conditions (Kowalczuk 
and Suchomski, 1997) of convergence of the Markovian linear-system represen­
tations that is established by a limited series of Markov parameters. In the case 
of complex poles, this increase need not be monotonic. For instance, a second 
order system with two complex conjugate poles (p, p*) 

B ( s) bo + b1 s * 
A(s) = (s-p)(s-p*)' p,p EC,Imp#O, (105) 

has the following Markov parameters: 

I I 
i-1 . bo + b1p 

ho = 0, hi = 2 a p cos <Pi, z ~ 1, a = , a E C, 
p-p* 

<Pi = arg a + ( i - 1) · arg p, i ~ 1. (106) 
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Consequently, with [p[ > 1 a. similar divergence effect a.s in the case of simple 
poles can be observed. The (m, n)- Pa.de approximant Pm,n(s, To) to the delay 
operator e-sTo 

( ) 
lVm(s,To) 

Pm,n s, To = Dn(s, To), (107) 

where lVm(s, To) with deg lVm(s, To) =m and Dn(s, To) with deg Dn(s , To) = n, 
are the polynomials in s, is defined by (Baker, 1975) 

e-sTo _ p (s T. ) _ O(sm+n+l) 
m,n ' 0 - · (108) 

Thus Pm,n(s, T0 ) matches the power series of e-sTo a.t orders l through m+ n. 

The first three 'symmetrical' (m = n) Pade approxima.nts for the delay are 
(Baker, 1975, Baker et al. , 1981) 

1 - sTo/2 1 - sTo/2 + s2T(S /12 
Pl,l(s,To)= 1+sTo/2' P2,2(s,To)= 1+sTo/2+s2TJ/l2' 

1 - sTo/2 + s2T(S /10 - s3TJ /120 
p3'3 (s,To) = l+sT0/2+s2TJ/10+s3TJ/120' (J09) 

The above approximate Pa.de delay operators can be shown with the use of 
Markov parameters 

00 

Pn,n(s, To) = L hn,i(To)s-i (110) 
i=O 

which can be computed using, for instance, the following recursive rules 

n - 1. hl 0 - 1 hll - ~ hl' = _2hl '-1 i > 2· - . , - - . ' , . - To' ,, To ,, ' - , (111) 

12 72 
n = 2 : h2,0 = 1, h2,1 =-To' h2,2 = T(S' 

h2,i = - ; 2 (2h2,i-2 + Toh2,i-l), i ::=:: 3; 
0 

(112) 

24 288 2256 
n = 3 : h3,o = -1, h3,1 = To, h3,2 = - T(S , h3,3 = TJ , 

h3 ,i =- ~~ (10h3,i-3 + 5Toh3 ,i-2 + T(Sh3 ,i-l), i:::: 4. 
0 

(113) 

Note that with a = sT0 and [s[ = l a sufficient value of To can be (in terms 
of the above mentioned convergence conditions) defined as To,n = [an,max [ = 

max{[a[ : Dn(a, 1) = 0, a E C} , n = 1, 2, .... On the other hand, To,n can be 
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10 
T O,n 

8 

6 

4 

2 

0 
n 

1 2 3 4 5 

Figure 2. Minimum value of delay suitable for the Pade approximants of order 
n. 

interpreted as a minimum time delay (To ~ To,n) guaranteeing that the worst­
case root (sn,max = an,max/To,n) and thus all the poles of the n-th order Pade 
approximant (107) are within the unit circle (To : max{lsl : Dn(s, To) = 0, s E 
C} :::; 1), which means that in terms of previously given definitions To ~ To,n· 
The values of To,n's are shown in Fig. 2 (where To,l = 2, To,2 = 2,;3, ... ) to 
produce an 'almost' linear relationship toward n within the range of 1 :::; n :::; 5, 
satisfactory from a practical viewpoint. 

4.4. Pade approximants solution: AF-DaCGPC 

With the nth order Pade approximant Pn,n(s, To) the following model of the 
controlled plant (55) is obtained 

Y(s) = B(s)Nn(s, To) . U(s) + C(s)Dn(s, To) . V(s) 
A(s)Dn(s, To) A(s)Dn(s, To) ' 

(114) 

which has the disturbance channel unchanged. Performing the standard CGPC 
design procedure for the above model we arrive at the control law of (30) having 
the strictly proper transfer function 

GNc (s) = 
M(s) = Mr0 (s) = C(s)Dn(s, To), degGNc(s) = NA + n- 2, (115) 

and the low-order proper transfer function N(s) = FJ:;A (s)jC(s), deg FJ:;A (s) = 
N A -1, given by ( 32). In this case, instead of ( 4 7), one has the following relation 

A(s)GNc(s) + B(s)Nn(s, To)FJ:;A (s) = C(s)Lf.rA (s), (116) 
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with the instrumental polynomial L N A ( s) of ( 41) that, this time, is of high order 
deg L N A ( s) = N A+ n- 1. It is also worth noticing that here the design is based 
on Markov parameters which describe the high-order rational transfer function 
of the control channel B(s)Nn(s,T0 )/(A(s)Dn(s,T0 )) rather than the original 
lower order transfer function B( s) j A( s). The resulting transfer functions of (76) 
are the following: 

T ( ) _ gB(s)C(s)Dn(s, To)e-sTo T ( ) _ gA(s)C(s)Dn(s, To) 
wy s - Pn(s) ' wu S - Pn(s) ' 

Tvy(s) 

where 

Pn(s) = 

C(s)(C(s)Dn(s, To)+ G'N
0

(s)) 
Pn(s) 

_ -C(s)Dn(s, To)(gC(s) + FNA (s)) 
Tvu(s)- Pn(s) , 

A(s)( C(s)Dn(s, To)+ G'Nc (s)) 
Pn(s) 

( 
_ -A(s)Dn(s, To)(gC(s) + FNA (s)) 

Tdu s) - Pn(s) · , 

B(s)(C(s)Dn(s, To)+ G'N
0

(s))csTo 

Pn(s) 

-B(s)Dn(s, To)(gC(s) + FNA (s))csTo 
Tqu(s) = Pn(s) ' 

(117) 

(118) 

(119) 

(120) 

A(s)(C(s)Dn(s, To)+ G'N
0

(s)) + B(s)Dn(s , To)(gC(s) + FNA (s)) e-sTo. (121) 

Since Pro ( s) of (93) fits the above given Pn ( s) for n = 0, it is clear that the stiff 
design DsCGPC can be interpreted in terms of the DaCGPC with the zero-order 
Pade approximant Po,o(s, To). 

5. Illustrative examples 

Two numerical examples are considered. 

5.1. 

Let us start from a stable and non minimum-phase plant model 

2 - s _0.58 1 + 0.5s 
Y(s) = (1 + s)2 e · U(s) + (1 + s)2 · V(s). 
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h ( 't) N = y 

T2 
-lL---~--~~----~--~~--~--~ 

0 0.5 1 1.5 2 2.5 3 

Figure 3. Example 5.1: SSR tuning. 

309 

By using Nu= 0, >. = 0 and r = 0.75 with T1 = 0.763, T2 = 2.125 and Ny = 10 
of the SSR rules (see Fig. 3) the DpCGPC control law of (30) characterised by 
g = 2.1445, FNA (s) = - 1.5963- 0.5241s and GN-c(s) = 2.1927 results in the 
closed-loop behaviour shown in Fig. 4. 

5.2. 

The second example deals with double-integrators with various time delays 

( ) 
1 8 y, 1 + S 

Y s == 2 · U(s)e- 0 + - 2- · V(s) , T0 = 0.2, 0.5, 1, 2 
s s 

and the SSR tuning CGPC settings T1 = 0, T2 = 1.4142, Ny = 2, Nu = 0, 
>. = 0, r = 1, lead to the stiff DsCGPC controller of (30) with g = 0.7678, 
M(s) = 1.7678/(1 + s), N(s) = 1.7678s/(1 + s), and the step responses given 
in Fig. 5. 

Following the SSR-tuning rule with the 1st-order Pade approximant used for 
different delays, we obtain the different primary CGPC design parameters: 

To = 0.2 : Ny = 45, T1 = 0.256, T2 = 1.614; 

To = 0.5 : Ny = 22, T1 = 0.639, T2 = 1.914; 

To = 1.0 : Ny = 15, T1 = 1.278, T2 = 2.417; 

To = 2.0 : Ny = 11, T1 = 2.556, T2 = 3.458. 
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1.5 .----,.-----,.------,.----~..--------, 

h (t) 

0.5 

t 
-0.5 '----~--~--~--~---' 

0 1 2 3 4 5 

Figure 4. Example 5.1: closed-loop step response. 

h (t) .---·-.. 
To= ,./1.0 ·-........ 

,....... 0.5 

1~----~~~~~==~~-4 

t 

0 2 4 6 8 10 

Figure 5. Example 5.2: closed-loop step response. 
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h (t) 2.0 
~- · ··· .. 

t 

0 2 4 6 8 10 

Figure 6. Example 5.2: the Da.CGPC control of delay plants, based on the 
1st-order Pa.de a.pproxima.nts. 

Consequently, with Nu = 0, >. = 0 and r = 1 the Da.CGPC controller obtains 
different form: 

To = 0.2 : g = 1.1748, Mr0 (s) = (2.4882 + 0.1768s)/(1 + l.1s + O.ls2
), 

N(s) = l.7678s/(1 + s); 

To = 0.5: g = 1.2994, Mr0 (s) = (3.6906 + 0.4420s)/(1 + l.25s + 0.25s2
), 

N(s) = 2.5981s/(1 + s); 

To = 1.0 : g = 1.4240, Mr0 (s) = (6.0117 + 0.9006s )/(1 + 1.5s + 0.5s2
), 

N(s) = 3.4074s/(1 + s); 

To= 2.0 : g = 1.5115, Mr0 (s) = (11.9964 + 1.9834s)/(1 + 2s + ls2
), 

N(s) = 5.0065s/(1 + s). 

The resulting closed-loop behaviours are depicted in Fig. 6. The corresponding 
Markov representations (Kowa.lczuk and Suchomski, 1997) of the plant model 
are given in Fig. 7. 

Good performance of both the predictive and stiff controllers for small To 
is evident. On the other hand, a. similar effect achieved with the Pa.de a.pproxi­
ma.nt approach, can be justified by the fact that even for small delays there is, 
within the limited time interval, a. 'suitable' Markov representation that can be 
determined in the SSR-tuning operation. 
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Figure 7. Example 5.2: SSR. selection of the CGPC tuning parameters for model 
with 1st-order Pade approximation. 
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6. Conclusions 

Applicability of the continuous-time generalised predictive control has been ex­
tended to the dynamical plants that includes a pure transportation delay. Three 
treatments of the delay-related problem referred to as the delay-predictive so­
lution, the stiff solution, and the delay-Pade-approximant solution have been 
proposed. Certain theoretical properties have been discussed, including the 
issues of stability and realisability of the CGPC systems. Consequently, limi­
tations of the traditional methods based on Pade approximation of the delay 
operator has been explained that exhibit via the necessity of choosing large ob­
servation horizons. Finally, a sample of numerical results illustrating efficacy of 
the methodology applied to different plant models, has been provided. 
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