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Abstract: The continuous-time generalised predictive control
(CGPC) is considered in the context of control of continuous-time
systems having a transportation delay. It is shown that the basic
CGPC design strategy can be given in a form which facilitates a
clear discussion of relevant design consequences concerning stability
issues. The main results that follow incorporate several solutions
to the delay-plant control design problem and a verification of the
proposed algorithms in terms of the closed-loop stability.
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1. Introduction

CGPC, the continuous-time generalised predictive control strategy (Demircioglu
and Gawthrop, 1991, 1992, Demircioglu and Clarke, 1992, Kowalczuk et al.,
1996) being a continuous-time restatement of GPC design paradigm (Clarke et
al., 1987, Soeterboek, 1992, Sédnchez and Rodellar, 1996) and using a similar
long horizon quadratic cost function, has proved suitable for practical non-delay
plant systems applications using both classical and adaptive control schemes.
Therefore it seems to be equally important to accommodate the CGPC strategy
to plants incorporating a transportation delay. Of consequence is also the fact
that the traditional methods that use Padé approximation of the delay operator
(Marshall, 1979, Gawthrop, 1987) have certain fundamental drawbacks in the
CGPC control design context, which are connected with the design parameter-
isation, calculation, and realisation.

In view of the above, the main objective of this presentation is such a de-
velopment of the CGPC design that shows a new perspective for the predictive
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principle by covering the case of continuous-time plants with a transportation
delay. Specifically, the AF-CGPC-plus-SSR algorithm incorporating anticipa-
tion filtering (AF) and tuned with the use of the swiftness method (Kowalczuk
and Marcinezyk, 1996, Kowalczuk et al., 1996) is taken into consideration.

2. AF-CGPC design

Let a scalar linear continuous-time plant be described by the following aggregate
model (Demircioglu and Gawthrop, 1991, Kowalczuk and Suchomski, 1998a,b)
given as

B(s) C(s)

Y(s) = V) + 2V 1)

where U(s) and Y (s) are the input and the output signals of the plant, V(s)
represents a disturbance function, A(s), B(s) and C(s) are polynomials in the
Laplace domain. Let deg A(s) = N4, deg B(s) = Np < Ny, deg B(s) = Ng <
Ny, and p = Ny — Np, denote the relative order of the plant. By performing
an instrumental polynomial decomposition with the use of the following first
Diophantine equation

skC(s) _ Fi(s)

B8+ 26T © I

+ Bils), B=0,10000s @)

the following operator form of the k-th ’derivative’ of the plant output
Yi(s) = 8¥Y(s) = Y* (s) + Ef(s),k =0,1,..., (3)
can be obtained that has the predictable part of Yi(s)

Y;(S) _ Ek(c-‘ggg(s) U(S) g fg'c((‘:))

Y(s) (4)

and the unpredictable-error part of Y (s)
Ei(s) = Ex(s)V (s) (5)

where deg Ex(s) = Noc — N4y + k for k > Ny — Ng, with Ei(s) = 0 for k <
N — N¢ and deg Fi.(s) < Ny —1 for k= 0,1,..., while deg Fi(s) = Ng + k
for k < N4 — N¢. By making another (second) Diophantine decomposition the
transfer function Ej(s)B(s)/C(s) is represented by a strictly proper rational
part Gi(s)/C(s) and a polynomial part H(s)

Ei(s)B(s) _ Gr(s)
C(s) C(s)

(D2) : + Hi(s), k = 0, (6)

where Gg(s) = 0 and Hg(s) = 0 for £k < Ny — Nc. In a nontrivial case
k > Ny — Ng, one has:
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e if k < p (possible only for No > Npg): Hi(s) = 0, Gi(s) = B(s)Ek(s),
degGi(s) = N¢ —p+k;

o if k = p: deg Hi(s) =0, deg Gi(s) < N¢ — 1;

o if k > p: deg Hi(s) = k — p, deg Gi(s) < N¢ — 1.

PROPOSITION 2.1 In order to obtain a realisable transfer function
Fi(s)/C(s) in the design the postulate No = N4 — 1 will be observed. |

The design polynomials are characterised as follows.

LEMMA 2.1 Properties of design polynomials. For Ny > 1 one has:
|0 ifk=0, . TN -
degEk(s)—{ Bei AR, with Ex(s) =0 if k=0,

=Ns—1 ifk=0, . ;
deng(s):{ SN2_1 ngL with Fi(s) = C(s) if k = 0;

deg Hy(s) =k —p if k > p, with Hi.(s) =0 if k < p.
With Ny =1 there is

Gi(s) =0,k 20,
while for Ny > 2 one has

Ng+k-1 ifl<k<p, . _
degGk(s):{NitQ :j:k;p, p with G(s) =0 if k=0,

and
Gk(s) == B(S)E;c(s) ifl1<k<p.
||

Different forms of the second Diophantine decomposition (D2) of (6), that gov-
erns the way in which U(s) influences Y;*(s) of (4), are characterised in the
following lemma.

LEMMA 2.2 Forms of Y*(s) for p > 1.

(A) Zero solution: Ei(s) = Hy(s) = Gi(s) =0 ifk=0.

(B) Strictly proper rational solutions (p = 2): Hi(s) = 0 and deg Gi(s) =
Np+k—1<Nya-1ifl<k<p.

(C) Proper rational solution: deg Hi(s) = 0 and deg Gi(s) < Na —2 if k= p.

(D) Improper rational solutions: deg Hy(s) = k — p and deg Gx(s) < Na — 2 if
k>p. |
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Note that p = 0 is not taken into account, and that for p = 1 only the solutions
(A), (C) or (D) are possible.
The emulator equation of the predictable (4) thus becomes Y;*(s) = Y, (s)+
Y,F(s), k > p, in which Y, (s) denotes an 'observer’ part
- Gi(s) Fi(s)
=——2.U —.Y ¥
Y () = Gl Ul + g Y6) ™
with the control signal filtered by strictly proper Gk (s)/C(s) and the plant
output filtered by proper transfer function Fi.(s)/C(s), and Y;" (s) = Hk(s)-U(s)
stands for a ’predictor’ part, that is based on polynomials Hi(s) = hg+hr_15+
R h,,s""", k > p, composed of the plant Markov parameters h;s, i > 0,

B(s) - = g
e ®

Finally, the required estimate of the kth derivative of the plant output takes the
form

vi(t) = L7 Y (s)) = { §§E3+ MO) g E ; E:

(9)

where g () = L™ [¥; (s)], k > 0, and g} (t) = S0=8 he—i - wi(t), k > p, with
ui(t) = d*u(t)/dt*, i > 0.
2.1. Estimation of future output of the plant

Let £ be the variable of future time and 7 € [0,T7], T € Ry, stands for the
relative variable of future time: ¢ = t + 7. Moreover, let

Biey vy (t 1, 12) = {{tF/R} {2, t € [t1,12),0 < ki < k) (10)

denote the weighted polynomial basis. Assume that the future output can be
approximated in By n,(7;0,T)

Ny
¥ = TDlierr = D 7 velt), (11)
k=0

where y;(t) = d'y(t)/dt", i > 0, while N, denotes the plant output prediction
order. Seeking for a realisable form §(f) of the predictor (), one can replace
the derivatives by their estimates (9)

N, *
y(E) 2 9 Dlicrr = D o Yk(0). (12)
k=0 "

ProPosITION 2.2 The control sequence can be designed for Ny > p (sece Lemma
2, Cand D). O
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The following matrix representation of 3(f) can then be obtained
ﬁ(ﬂlf:t-{-r = tg‘.N-g (T)HNysNr;_PuNJ;—P(t) 2 t’g:N" (T)ygr”(t), (] 3)
where

t (1) = TG+ ) L T () ERTTR 0L, (14)

0 0 0
HNl Np = h’p 0 0 1HN1 Na eR(N1+1]x(NZ+1),
hot1 hp ik 0
L h’Ni h'Nl—l h‘Nl—N2 ..
NIZP’ DSN2SN1_JO$ (]5)
u;(t) = [u(t) ui(t) --- wi(t)]", w(t) € R*1,i>0, (16)
yi(t) = @) vi(®) -+ v (®)", yi(t) e R, i >0. (17)

2.2. AF-CGPC classical strategy

Let w(t) denote the reference signal sample and e(t) = w(t) —y(t) be the control
error sample at time instant ¢. Assume that the evolution of the reference signal
can be anticipated in the future time domain as

ﬁ’(ﬂlf:t-vr =y(t) + éﬁ'(mf:Hr: (18)

where 8w(£)|;_;., = e(t)-B,(7) is an incremental reference composed of a scaling
factor e(t) and a normalised reference 3.(7), which can be represented in the
basis By n, (7;0,T) as a function {8, : 7 — B.(7)} via a set of co-ordinates
TN, : Br(T) = t;{NU(T) -rn,, where the vector r; = [ro --+ r;]T, r; € R,
i > 0, is composed of the initial Markov parameters of a fictitious anticipation
filter (AF), employed in the design. The AF mechanism, introduced in order to
moderate the command signal (Demircioglu and Gawthrop, 1991, Kowalczuk et
al., 1996), can easily be implemented by using a simple first-order filter F4(s) =
1/(1 4+ rs), r > 0, that leads to the following co-ordinates of ry, : 70 = 0 and
ri = (=1)#Lr~t i =1,..., N,. Instead of the future error e(f) = w(f)—y(£) one
can take the following prediction é() = @ (£)—g(t), in which both the anticipated
reference and the predicted output are employed. Denoting an incremental
prediction of the output by 6§(f)|;—ys, = 9(£)|z=¢:, — y(t) one obtains é(f) =
§w(t) — 69(). Now, let us assume that the current and future control u(f) can
be represented in the basis By n,(7;0,7") as a function {8, : 7 — B.(7)} of
the incremental variable of future time 7, that is w(f)|;—,,, = Bu(7) = Bi(7) =
t%: ~, (T)un, (t), where the co-ordinate vector uy, (t) is now parameterised by
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the current time instant ¢ and the control prediction order N,, which satisfies
the design constraint IV, < N, — p. Hence, the error prediction é(f} takes the
form

é(alf:t-i'—'r =
e(t) - g, (TN, +y(t) — tgn, (¥, () = tox, (NHN, x,un, (), (19)

that, by virtue of (17), can be simplified to

é@)imerr = B, (7) (1) - Tv, = ¥5,(1)) = thx, (VHx, v, 0, (1), (20)

where y;(t) = [0 yi -+ %(t)]", y3(t) € R}, i > 1. Having determined the
predicted control error é(£) as a function of control u(t), for t = t + 7, one can
seek an optimal shape of this control.
Consider the following quadratic cost index
75 T4
J(un,(t)) =/ eX(t+7)dr 4\ u?(t + 7)dr, (21)
Ty Ta

where A > 0 denotes a control weighting factor, and the pairs (77,7%) and
(T3,Ty), with T; < T; in each pair (7;,T;), determine the error and control sig-
nal observation horizons for the predicted error and control effort, respectively.
Minimisation of (21)

uly (t) = ar min J(uy (), 22
N,,(] guN“(z)eRNuH (un,(t)) (22)

yields the solution

uj, (t) = K., (e(t) - TN, = ¥7, (1)) (23)
where

Kn,,N, = TJ‘_\S.‘N‘,H&,N“TNM KN,,,N,, c R(N,.+1)x(N”+l), (24)

Tn,.N, = HﬂmN“TN‘,HNH,N,,_ +ATxN,, TN, € RNVut )X (Nu41), (25)

Ty = Ton (T Ty £ OG-, (26)

T, =T (T, Ta); T, € RIOHIIRAL), (27)

T2
T;:in(Tl:TZ) :/ tk,I(T)tT (7)dr, TEEN(TIsTZ) € R(E—k-{—l)x(n—m—l—l),
o

m,mn
1

0<k<l,0<m<n. (28)

As it has been shown in Kowalczuk and Suchomski (1997) for any A > 0 the
solution (23) exists.
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2.3. Implementation of control law

The first co-ordinate of u} (f) determines the optimal control input u*(t) at
the time instant ¢

u*(t) = ki, (e(t) - rv, — ¥, (1), (29)

where ki , k € RYv*1, is the first row of Kn,,~,. The resulting closed-loop
control law takes in the Laplace domain the following form

U*(s) = g(W(s) = Y(s)) — M(s) - U*(s) — N(s) - Y (s), (30)

where g = kﬁyr;\fﬂ is the controller scalar gain, while M (s) is a strictly proper
transfer function

M(s) = 2, (1)
and N(s) is a proper one
N(s) = Fg’(‘g ), (32)
The numerator polynomials Fy, (s) and G%.(s) are defined as
Fy,(s) =kN FR, n,SNa-1, deg Fy, (s) = Na—1, (33)
Gr.(s) = kq&nGﬁy‘Ncch_l, deg Gy, (s) =Ng—1=Ny -2, (34)
where s; = [s0 s* -+ 5%]T, i > 0, while elements of matrices
0 0 e 0
Fwe= | 10 T D ST R e ROV, (a5)
fvgo Inga o fNyNa-1
0 0o - 0
GRno=| 0 S T SuNel 1 @R, v, e RDXNe, (36)
gn,,0 9N,1 - 9N, Ne-1
are composed of the coefficients of the polynomials of (2) and (6)
Fi(s) = fuo+ -+ + fena-18"2"1, 1< kK< N, (37)
Gr(s) = gro+ -+ + gk ne—15"¢"1, 0< k < N, (38)

To facilitate further discussion let us define the following three polynomials

ER,(s) = ki, BN, n,5N,-1, deg By, (s) = N, — 1, (39)
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H;n (s) = kEuHN‘H!N"-SNn’ deg H;,, (s) = N’U’.) (40)
Ly, () =Kk, Ly, naSNa-1, deg Ly, (s) = Na— 1, (41)
where the matrix
0 0 0
= €o 0 see i) = (N, +1)x N
ENy;Ng — L e o 5 EN,,,N" ER L] ", (42)
eN,—1 EN,-2 "' €g

is composed of the coefficients of the quotient polynomials of (2)

Ei(s) = { Skml + e84+ + ec;.sk‘1 T < 2 £ N (43)
and the matrix
0 o .- 0
CRans| M BT B | D, EROMIRN, )
In,,0 lEN,,. o Ny, Na-1

is composed of the coefficients of the residual polynomials

Li(s) =leo+ s+ -+l n-18V4", 1 <k < N, (45)
defined by the third Diophantine decomposition
3"8( ) Li(s)
A(s)  A(s)

From the above it follows that deg Li(s) < N — 1 for k > 0, while deg Li(s) =
Ng +k for k < p, and Li(s) = B(s) for k = 0. Moreover, it can easily be
checked that

A(s)G N (s) + B(s)Fy, (s) = C(s) Ly, (s). (47)

From (6) and (46) we obtain the following representations of Fy, (s), Gy..(s)
and L, (s)

(D3) : + Hi(s), k> 0. (46)

Fg,(s) = Ky, s5, - C(s) — ER, (s)A(s), (48)
G (8) = En,(s)B(s) — Hy, _,(s)C(s), (49)
Ly, (s) =Ky, sx, - B(s) — Hy,_,(s)A(s), (50)
where s7 = [0 s --- s*]7, 4 > 0. With A = 0 certain nontrivial properties of

Gy (s) and Ly, (s) can be proved. Namely, from (15) and (24) it follows that

K5 Hp, N,—p =14 10 O:kR HyUR 1 if Ny < Ny —p, (51)
[10--- 0] if Ny = Ny —
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where

Nutl — _ ON.+1,Ny—p—N.,

Ny, Ny=ep Hn,-N.-1,N,—p-Nu—1 | (52

As a result Hy (s) = 1if N, = Ny — p. Thus for A = 0 and N,, = N, — p one
obtains

GN.(8) = Ey, (s)B(s) — C(s), (53)

Ly, () =K, 5%, - B(s) — A(s). (54)

3. AF-CGPC design for delay plants

The following plant with a transportation delay in the control channel will be
considered

B(s)
A(s)

—s1 , C(5)
- U(s)e™*T0 4 Ts V(s), To > 0. (55)

Y(s) =

3.1. Delay-predictive solution: AF-DpCGPC
The future k-th derivative, k& > 0, can be denoted by Y}, (s) = VX (s)esTo.
From the development presented in Section 2 it results that

Yim(6) = Gt - U + B Yom(s) + Hul9) - U(o). (56)

From (55) the future output Y, (s) can be computed as

B C(s
Yo":Tc(s) £= }"(s)e“’T0 = % -U(s) + %s; -V(s)eST", (57)

or approximately by the following 'foreseeable’ emulation

Tom(s) = 53 U6 + 53V e (58)

Taking again (55) into account, one arrives at
Yom,(s) = Y(s) + Y7, (s), (59)
where the delay-correcting part
- B(s)
8 —
YT()(S) N A(S)

Consequently, the realisable form of Y, (s), representing the prediction of
future output derivatives with negligence of future disturbances, can be shown
in the following form

?kao(s) = f’k',To (s) + Y;'(s), (61)

(1 —e2T0) . U(s). (60)
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having the ’observer’ and ’predictor’ parts as follows

Gils) . Fuls) B(s)
Yen(® = |50+ 6 40)

Vit (s) = Hi(s) - U(s). (63)

With the advanced-future-time variable ¢ = t + Ty + 7, the future output tra-
jectory can be represented in By n,(7;0,T) by the following equation (see (13))

1 - e~ )| . U(s) +

‘Y (s), (62)

ﬁ(a|£=t+]‘o+f = tg:Ny (r)Hw,,N,un, (t) + tg.N,, (T)S’Rr,,,’ro(t)a (64)
where

YN, 1 (t) = [:fJ'E @) 9 @®) - Iy, m O, 9§, 1, () e RV, (65)

y‘; To t) [ Tg(s)]i i > 0. (66)
From (62) it also results that gy 1, (t) = y(t)+§afpo(t), where 7j yT ()= [ ( )]
Now let

5ﬁ(ﬂ]f=t+fg+r = §(£)|f=t+To+r - ﬁ(;,'r., (t) (67)

be the advanced-future incremental prediction of the output. With the con-
jecture that during the subsequent period Ty the future setpoint w(#) will not
change, the anticipated reference in 7 can be figured similarly to (18)

B(E) st morr = Joro () + 00D omsirotr (68)
where 6w(f) is the future incremental reference represented in By y, (7;0,T) as
ﬁﬁ(ﬂlf=¢+ra+r = (w(t) — o TB( ) Br (7). (69)

The prediction of control error can now be given as
&) = w(d) — 9(f) =
o, (T(e®) = 92,@®) - TN, — 7, 2 (D] = to,n, (T)Hn, N, un. (),  (70)

where 5 7.(t) = [0 §ip, -+ v, ", I5, 1 (&) € RY L. With the
modified cost function

Tz T4
In(u,0) = [ @+ Tot i 43 [ e+ e, ()
T Ta
and Ty < Tz, one gains the following optimal control input
u*(t) =k, [(e(t) — 9%, (1) - r, — I, .7 ()]s (72)

where k}:,y is the first row of Ky, n, from (24). The respective closed-loop
control law has in the Laplace domain the form of (30) with the input-observer
transfer function incorporating a system delay factor

M) = My () = el s (g4 Za) BO G _oomy (g

and the proper transfer function N(s) of (32) having no delay ingredient.
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o6s) V) pesy
W(s) U(s) %+ %+ Y(s)
g Plant
M(s) N(s)
. |
Ot

Figure 1. Closed-loop control system

3.2. Stiff solution: AF-DsCGPC

For the plant delay Tp of a very small value the output prediction Y7, (s) can

be anticipated in the simplest form of f’D‘,To(s), gained by assuming f’q‘fo(s} =0
in (59)

Yoro () 2 Ygir, (s) = ?cho(S)!?;o(sjzo =Y (s). (74)
Hence the error-prediction formula (see (70)) acquires the form of

é)li—tsmosr = ton, ()(e(t) N, —¥R, () =t v, (T)HN, v, un, (1), (75)

which, used in the cost function (71), results in the closed-loop control law of
(30).

4. Properties of the CGPC Design

4.1. Internal stability analysis

In order to investigate the internal stability conditions of the resulting closed-
loop control system, consider the structure shown in Fig. 1 with four input
signals (W (s), V(s), D(s),Q(s)) and two output signals (Y'(s),U(s)) discerned.
Thus, the following matrix transfer function can be considered

W{(s)
[ Y(s) ] _ { Tuy(s) Toy(s) Tay(s) Toy(s) V(s) (76)
U(s) Twu(s) Touls) Tauls) Touls) | | D(s) |-
Q(s)
4.1.1. Basic AF-CGPC design
For the non-delay plant of (1) one has
Twy(s) — QB(S) T‘wu(s) . gA(S) (7?)

Py(s)’ ~ Py(s)’
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_ C(s) + Gy, (s) _ —(9C(s) + Fy,(s))
Tvy{s) = _—f)(}—('J—, Tyu(s) = Po(s) ) (78)
A(s)(C(s) + G, (5)) _ —A(s)(9C(s) + F, (5)
!f'{ ) P(S) ) Tdu(s) a P(S) 3 (79)
B(s)(C(s) + G, (s)) _ —B(s)(9C(s) + F§, (s))
T‘?U (3) R P(S) = ! Tqu(s) - P(S) - H (80)
where P(s) denotes the characteristic polynomial
P(s) = C(s)Po(s), (81)
and
Po(s) = A(s) + gB(s) + Ly, (s), deg Po(s) = Na. (82)
COROLLARY 4.1 The closed-loop control system is internally stable if and only
if the polynomials C(s) and Py(s) are Hurwitz. =

4.1.2. AF-DpCGPC control system
According to the delay plant model of (55), one should take into account the

following transfer functions of (76)

gB(s)e~sTo gA(s)

T} =Ry Tl = Re) (83)
Ty (s) = %, To(s) = —9C (f:;;(rsfa () 5
Ta(®) = B, Tauls) = R LT, -
T8} = 'B(S)g(j);_m’ Tou(s) = —B(s)(gC(sio J(r;;“ﬁ,‘(s))e—ﬂ"a‘ -

where the numerator component function is defined as

R(s) = A(s)(C(s) + G (s)) + B(s)(9C(s) + Fy, (s))(1 —e™*T),  (87)
and the closed-loop characteristic polynomial is given by

Pr, (s) = A(s) P(s). (88)

A crucial conjecture concluded from the above is stated in the form of the
following corollary.

COROLLARY 4.2 For Hurwitz polynomial P(s), the AF-DpCGPC' control sys-
tem is internally stable if and only if the plant jest BIBO-stable. |

As it can be seen from the above the AF-DpCGPC controller working as a
time-delay compensator, like the classical Smith predictor (Smith, 1959, Laugh-
lin et al., 1987, Palmor, 1996), can be used for stable plants only.
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4.1.3. AF-DsCGPC design

The above mentioned restriction on the plant stability is not valid for the AF-
DsCGPC design. The transfer functions (76) can, in this case, be given by the
following expressions

B gB(s)C(s)eTo e gA(s)C(s)

Twy(s) = Pro(s) v Twuls) = Pr,(s) (89)
Tyy(s) = G(S)(C%{ J(FS)GE"(S)). Tyuls) = —C(S){gcpf)(; FN. () (90)
Tt = ANCG TR g, _ —ANCO+ FRLED

B(s)(C(s) + Gr(s))e T
o - B Gl

—B(s s = (s)jem*ko
T ;:(S”‘( it (92)

where Pr,(s) denotes the generalised characteristic polynomial

Pr,(s) = A(s)(C(s) + G..(s)) + B(s)(9C(s) + Fy, (s))e~*T° (93)

which has the following asymptotic (Tp — 0) property Pr,(s) — P(s). Appar-
ently, the closed-loop control system is internally stable if and only if all roots
of Pr,(s) are in the open LHP.

4,2. Properties of the CGPC Design

4.2.1.

For the predictive design and for the stiff solution the transfer functions of (76)
are asymptotically (T — 0) given by (77)-(80).

4.2.2.

For A(0) = 0 from (50) it results that Ly, (0) = 0. Thus the following corol-
lary, which is true for all the considered GPC-based strategies (AF-CGPC,
AF-DpCGPC and AF-DsCGPC), can be stated.

COROLLARY 4.3 For the CGPC control of a plant with a pole in the origin (a
zero root of A(s)), the closed loop transfer function Ty, (s) is of unity DC gain

gB(0) | _9B(0) _,
(0) +¢B(0) + Ly, (0) “@=°~ gB(0) ~

Tuy(0) = 7 (94)
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On the other hand, with A = 0, from (50) and (51) one has L%, (0) = —A(0)
and what follows.

COROLLARY 4.4 If there is no pole in the origin (i.e. if A(0) # 0) the zero
nominal steady-state error for the positional tracking (in a stable closed-loop
system) is guaranteed by using A = 0. £
4.2.3.

Let us consider the following special design settings

A=0and N, = N, —p. (95)
In this case, by virtue of (54) and (82), one obtains

Po(s) = Po(s)B(s), (96)
where

Po(s) = g+ ky,sN, = Ky, (rn, +5%,), deg Po(s) = p. (97)

This formula motivates the AF-DpCGPC design: with the first-order anticipa-
tion filter 1/(1 + rs), » > 0, one has Py(8)|s=—r-1 = 0, which means that the
AF-DpCGPC procedure can be regarded as a partial pole placement approach
(Demircioglu and Gawthrop, 1991). Therefore, by the use of (95), the transfer
functions of (76) acquire their reduced-order forms

s e—sTo s
Tuy(8) = LZH0E, Tonls) = Girs) (99
R(s)  —(gC(s) + F5,(5)

Tvy(S) = m» Tvu(s) == B(S)pg(:) s (99)
__R(s) _ —A(s)(gC(s) + Fy,(s))

Tay(s) = TP’ Tau(s) = B(S)C(S)Po(:) (100)
_ B(s)R(s)e*T0 _ —(gC(s) + Fy, (s))e”*™

(o) = Jeombt) = Sk U

where
R(s) = A(s)ER, (s) + (9C(s) + FR, (5))(1 — eT°) (102)

from which one can draw the following conclusion.

COROLLARY 4.5 With A = 0 and N, = N, — p the application of the AF-
DpCGPC design is restricted to stable and minimum phase plant models, whereas

the use of the CGPC design with Ty = 0 is confined to minimum phase models.
||
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Polynomial: | A(s) | B(s) | C(s)
Input: W (s) : + -
Input: V(s) + + -
Input: D(s) - + +
Input: Q(s) + - +

Table 1. Internal stability paths: + indicates the impact of the model polyno-
mial

4.2.4.

In order to obtain a pair of input signals sufficient for determining the internal
stability conditions let us consider the Table. 1.

Note that the pair (W (s), V(s)) chosen in a 'natural’ way is not sufficient for
the internal stability analysis. Instead, the appropriate pairs are: (W (s),Q(s)),

(V(s), D(s)), (V(s),Q(s)) and (D(s), Q(s))-
4.3. Markov parameters of Padé approximants
It is instructive to observe that a first order system described as

B(s) _ bo
A(s) s—p’

pER, (103)

has the following Markov parameters:
ho =0, h; = bop*™!, i > 1. (104)

It is thus clear that for |p| > 1 the sequence {h;}§° is composed of the Markov pa-
rameters with a monotonically increased modulus, and an alternately changing
sign for p < —1. This result is in contradiction with the conditions (Kowalczuk
and Suchomski, 1997) of convergence of the Markovian linear-system represen-
tations that is established by a limited series of Markov parameters. In the case
of complex poles, this increase need not be monotonic. For instance, a second
order system with two complex conjugate poles (p, p*)

B(s) _ bo + bis
A(s)  (s—p)(s—p*)’

has the following Markov parameters:

p,p" €C,Imp#0, (105)

h.o =0, h,‘ = 2|C!!pi_l COS@@, 1> l, o= b;—__l_%w a €C,

w

¢; =arga+ (i—1)-argp, i > 1. (106)
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Consequently, with |p| > 1 a similar divergence effect as in the case of simple
poles can be observed. The (m,n) — Padé approximant Py, ,,(s,Tp) to the delay
operator e~*To

Nm(su TO)

Ppn(s,To) = m;

(107)
where N, (s, Tp) with deg N,,,(s,7p) = m and D, (s, Tp) with deg D,,(s,Tp) = n,
are the polynomials in s, is defined by (Baker, 1975)

€ Pl ) = O, (108)

Thus Py, ,(s,Tp) matches the power series of e~3To at orders 1 through m + n.
The first three ’symmetrical’ (m = n) Padé approximants for the delay are
(Baker, 1975, Baker et al., 1981)

_1-5Ty/2 _1—sTy/2 + s*T§ /12
PL]_(S,T(}) = 1 +STO/2’ PZ,Z(S-,TO) — 1+ STO/2 +52T§/]23
1—sTy/2+ s2T2/10 — s3T3 /120
Ps s(s, To) = o/ o/ o/ (109)

T 1+ sTo/2 + s2T2 /10 + $2T3/120°

The above approximate Padé delay operators can be shown with the use of
Markov parameters

Pan(s,T0) = > hni(To)s™ (110)

=0

which can be computed using, for instance, the following recursive rules

4 2 .
n=1:h1o=-—1, hi Z-ﬁ, hl,iz_ﬁhl.i—h ; L (111)
12 72
= i =1 h = ——, h = =,
n=2:hgpo » N2,1 T, 22 72
6 ,
hai = =75 (2ha,i-2 + Tohzi-1), ¢ 2 3; (112)
0
288 2256
n=3:hgo=—1, hg1 = Ty hs,2 = ~TE hgs = T
hg‘i = —%(10:‘13‘@_3 + 5T0h3‘17_2 + Tghg,,:._.l), i>4. (113)
0

Note that with ¢ = sTp and |s| = 1 a sufficient value of Ty can be (in terms
of the above mentioned convergence conditions) defined as Ty n = |on,max| =
max{|c| : Dn(0,1) = 0,0 € C}, n = 1,2,.... On the other hand, Ty, can be
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10 : . . ~
| T,

1 2 3 4 5
Figure 2. Minimum value of delay suitable for the Padé approximants of order
.

interpreted as a minimum time delay (Tp > Tp ) guaranteeing that the worst-
case root (Sn,max = On,max/Z0,») and thus all the poles of the n-th order Padé
approximant (107) are within the unit circle (Tp : max{|s| : Dn(s,7p) =0, s €
C} <€ 1), which means that in terms of previously given definitions Ty > Tp p.
The values of Ty ,’s are shown in Fig. 2 (where Ty = 2, Top = 2\/5, S 7o)
produce an ’almost’ linear relationship toward n within the range of 1 <n <5,
satisfactory from a practical viewpoint.

4.4, Padé approximants solution: AF-DaCGPC

With the nth order Padé approximant P, ,(s,Tp) the following model of the
controlled plant (55) is obtained

B(s)N,(s,Tp) :
A(s)Dy(s,Tp)

C(s)Dn(s,To) ‘

YiEl= A(s)Dn (s, To)

U(s) + V(s), (114)
which has the disturbance channel unchanged. Performing the standard CGPC
design procedure for the above model we arrive at the control law of (30) having

the strictly proper transfer function

G (s)

M(s) = Mz, (s) = C(s)Dn(s, To)

, deg G (s) = Na+n—2, (115)

and the low-order proper transfer function N(s) = F'y, (s)/C(s), deg F'iy, (s) =
Na—1, given by (32). In this case, instead of (47), one has the following relation

A(s)GN,(8) + B(s)Nn(s, To)Fy, (s) = C(s) Ly, (s), (116)
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with the instrumental polynomial Ly, (s) of (41) that, this time, is of high order
deg Ly, (s) = Na+n—1. It is also worth noticing that here the design is based
on Markov parameters which describe the high-order rational transfer function
of the control channel B(s)N,(s,To)/(A(s)Dn(s,Tp)) rather than the original
lower order transfer function B(s)/A(s). The resulting transfer functions of (76)

are the following:
_ 9B(s)C(s)Dn(s, To)e~*™

gA(s)C(s)Dn(s,To)

Tuy(s) = Pa(s) s Tuu(s) = P , (1)
Ty (5) C(S’(C(‘“’)D’lif’(f}m +GRe()
Tyus) = 2000, T0) (ﬁc;() + i, (5) e
Ty (s) A(s)(C(s)Dn;:goy+a;c(s))‘
Tuuls) = =22 ng?g (s) + Fiy, (5)). (119)
Tay(s) B(s)(c(s)Dn(";}3—‘,:}().9)+ Gr.(s))e T )
i el TO)(}Q:(:((SS)) PR
where
Pﬂ (5) =

A(5)(C()Dn(s,To) + Gy (s)) + B(s)Dn(s, To)(9C(s) + Fy, (s))e™*™.  (121)

Since Pr,(s) of (93) fits the above given P,(s) for n = 0, it is clear that the stiff
design DsCGPC can be interpreted in terms of the DaCGPC with the zero-order
Padé approximant Py (s, Tp).

5. Illustrative examples

Two numerical examples are considered.

5.1.

Let us start from a stable and non minimum-phase plant model

Y(s) =

2 - —0.5s |
araEe Ut

1+ 0.5s
(1+s)2

5

V(s).
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h(t)‘

0 0.5 1 1.5 2 2.5 3

Figure 3. Example 5.1: SSR. tuning.

By using N, =0, A =0 and r = 0.75 with T} = 0.763, T, = 2.125 and N, =10
of the SSR rules (see Fig. 3) the DpCGPC control law of (30) characterised by
g = 2.1445, Fy, (s) = —1.5963 — 0.5241s and G7_(s) = 2.1927 results in the
closed-loop behaviour shown in Fig. 4.

5.2.

The second example deals with double-integrators with various time delays

Y(s) = siz -U(s)e™3To 4 1; -V (s), To =0.2,0.5,1,2
and the SSR tuning CGPC settings Ty = 0, T, = 1.4142, N, = 2, N, = 0,
A = 0,7 =1, lead to the stiff DsCGPC controller of (30) with g = 0.7678,
M(s) = 1.7678/(1 + s), N(s) = 1.7678s/(1 + s), and the step responses given
in Fig. 5.

Following the SSR-tuning rule with the 1st-order Padé approximant used for
different delays, we obtain the different primary CGPC design parameters:

To=0.2:N, =45T = 0.256,T5 = 1.614;
To=05:N, =22,T; =0.639,T, = 1.914;
To=1.0: Ny, =15,T1 = 1.278, T3 = 2.417,;

To=2.0: N, =11,Ty = 2.556,Tp = 3.458.
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15
h(8)
1
0.5 |
T
0.5 - - - ,F
0 1 2 3 4 5

Figure 4. Example 5.1: closed-loop step response.

0 2 4 6 8 10

Figure 5. Example 5.2: closed-loop step response.
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| A (D) 20
0 = _
=
0 i 5 r £ ;:; ;r
| 03
0
t

0 2 4 6 8 10

Figure 6. Example 5.2: the DaCGPC control of delay plants, based on the
1st-order Padé approximants.

Consequently, with N, = 0, A = 0 and r = 1 the DaCGPC controller obtains
different form:

To=0.2: g = 1.1748, M, (s) = (2.4882 +0.17685) /(1 + 1.1 + 0.152),
N(s) = 1.7678s/(1 + s);

Tp = 0.5 : g = 1.2904, Mr, (s) = (3.6906 + 0.44205) /(1 + 1.255 + 0.2552),
N(s) = 2.5981s/(1 + s);

To = 1.0 : g = 1.4240, Mz, (s) = (6.0117 + 0.90065) /(1 + 1.55 + 0.552),
N(s) = 3.4074s/(1 + s);

To = 2.0 : g = 1.5115, Mr, (s) = (11.9964 + 1.98345) /(1 + 25 + 1s2),
N(s) = 5.0065s/(1 + s).

The resulting closed-loop behaviours are depicted in Fig. 6. The corresponding
Markov representations (Kowalczuk and Suchomski, 1997) of the plant model
are given in Fig. 7.

Good performance of both the predictive and stiff controllers for small Ty
is evident. On the other hand, a similar effect achieved with the Padé approxi-
mant approach, can be justified by the fact that even for small delays there is,
within the limited time interval, a ’suitable’ Markov representation that can be
determined in the SSR-tuning operation.
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Figure 7. Example 5.2: SSR. selection of the CGPC tuning parameters for model
with 1st-order Padé approximation.
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6. Conclusions

Applicability of the continuous-time generalised predictive control has been ex-
tended to the dynamical plants that includes a pure transportation delay. Three
treatments of the delay-related problem referred to as the delay-predictive so-
lution, the stiff solution, and the delay-Padé-approximant solution have been
proposed. Certain theoretical properties have been discussed, including the
issues of stability and realisability of the CGPC systems. Consequently, limi-
tations of the traditional methods based on Padé approximation of the delay
operator has been explained that exhibit via the necessity of choosing large ob-
servation horizons. Finally, a sample of numerical results illustrating efficacy of
the methodology applied to different plant models, has been provided.
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