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Abstract: The paper presents a method for solving the prob­
lem of the simultaneous time and electric energy losses minimization 
during the frequency speed control of induction motors with the elec­
tromagnetic transients. To solve this vector optimization problem, 
the optimization index in the form of linear combination of the scalar 
indexes is assumed and the Pontryagin maximum principle is used. 
Examples of solution for two cases of optimal frequency starting of 
two induction motors are presented. 
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1. Introduction 

The AC induction motors are nowadays the most widely used actuators in indus­
trial applications, due to their advantages , in comparison with DC motors, such 
as: simplicity of design, high reliability, ruggedness, low cost, minimum main­
tenance, low power weight ratio, small size, small weight, small rotor inertia, 
maximum speed capability, efficiency etc. 

The advances in power electronic technology and the recent developments 
in microprocessor technology have made various variable-speed induction motor 
drive systems available. These systems work in real time and are designed on the 
basis of the optimal control theory, adaptive control theory, using the classical 
PI controller etc. 

The induction motor has a nonlinear and highly interacting multivariable 
control structure, whereas the separately excited DC motor has a decoupled 
control structure with independent control of flux and torque. 

In recent years a control technique termed "field-oriented control" intro­
duced by Blaschke (1972) has been used for transforming the dynamic structure 
of the AC induction motor into a separately excited compensated DC motor 
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(see Murphy, Thrnbull, 1988). Generally, the field-oriented control consists in 
nonlinear state space change of coordinates and nonlinear state feedback. On 
the basis of the field-oriented control, the theory of nonlinear feedback control 
and the methods of high-performance controller design have been developed. 

The field-oriented control has the following disadvantages: 
• the rotor speed is only asymptotically decoupled from the rotor flux (see 

Hu, Dawson, Qu, 1994) 
• the instabilities may occur in certain conditions during field-oriented con­

trol (see Salama, Holmes, 1992) 
• the asymptotic decoupling in the control of rotor speed and flux amplitude 

is obtained only in steady state, i.e., when the flux amplitude is kept 
constant (see Marino, Peresada, Valigi, 1993). 

Field-oriented control requires sophisticated signal processing and complex 
coordinate transformation in real time (see Murphy, Turnbull, 1988). 

Digital control with fast microprocessors or a multitransputer system (see 
Asher, Summer, 1990) made the low cost construction and the realization of the 
field-oriented control calculations in real time possible. 

Advances in digital and power electronics and microprocessors and substan­
tial increase in processor speed, have also made the digital implement of control 
strategies based on other principles such as, for example, optimal control the­
ory, possible. In this paper a theoretical solution of the rotor speed optimal 
frequency control which minimizes both the control time and the electrical en­
ergy losses in rotor and stator windings is presented. 

The most efficient and effective method of induction motor speed control 
is frequency control. This method consists in the variation of the frequency 
and amplitude of the voltage or current feeding the motor. Application of the 
proper control laws makes it possible to control motor speed with or without 
limitation of the stator current, while optimizing some criterion such as, for 
example, minimization of the control time, minimization of the electric energy 
losses in the stator and rotor windings etc. 

The optimization problems of induction motor speed control system men­
tioned above, have a single optimization index and belong to the class of scalar 
dynamic optimization problems because their optimization index is a scalar 
functional. 

Sometimes it is necessary to minimize or maximize two or more scalar op­
timization indexes simultaneously. For example, for induction motor speed fre­
quency control system, it may be necessary to minimize simultaneously the 
control time and the electric energy losses in the stator and rotor windings 
during the control and, additionally, it may be necessary to limit the stator 
current to a given value. The optimization problem so formulated, belongs to 
vector optimization problems because the optimization index, having two or 
more components, is a vector functional. 

The solution of the scalar or vector optimization problem depends, to a great 
extent, on the complexity of the mathematical model of the control object and 
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on the analytical method selected for the problem solution. 
In the induction motor case the complexity of the mathematical model de­

pends, among others, on whether the electromagnetic transients are neglected 
or not in defining of the model. By neglecting the electromagnetic transients, it 
is possible to obtain the closed-loop optimal control in the form of mathematical 
model of the optimal inertialess controller. 

In this paper, the problem of vector optimization of induction motor speed 
frequency control system, which minimizes both the time and the electric energy 
losses in the stator and rotor windings while limiting the stator current, using the 
mathematical model of the induction motor taking into account electromagnetic 
transients, is solved. The Pontryagin maximum principle is used to solve this 
problem. 

2. Induction motor mathematical model 

The following assumptions are made for an induction motor: 
1. Induction motor and its sinusoidal supply voltage and current are sym-

metric 
2. Resistances and inductances are invariant 
3. Saturation of magnetic material does not occur 
4. Magnetic losses can be neglected 
Besides, it is assumed that the induction motor is supplied from a. frequency 

current converter which produces the current given, for a two-phase equivalent 
motor, by the following relationships (the list of notations used is given in the 
Appendix): 

(1) 

Under these assumptions, the mathematical model of the double-phase equiv­
alent induction motor on the d- q axes, associated with the stator (fixed sta­
tor reference frame), may be described by the following equations (see Krause, 
1987): 

(2) 

On the basis of Kovac, Rac (1 963) the relationship that describes the am­
plitude of the magnetization current can be found: 
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3. Optimization index 

In this paper, for minimization of the control time and electric energy losses in 
the stator and rotor windings a. vector optimization criterion is used, which is a 
linear combination of two scalar optimization indexes: for minimizing the elec­
tric energy losses only and for minimizing the control time only. The following 
relationship describes, in a general way, this vector optimization criterion: 

Q3 = (1 - s )Qr + sQz } 
0<s <1 

(4) 

The optimization index ( 4) belongs to vector optimization index class, which 
is based on the compromise given by Salukwa.dze (1975). 

The scalar indexes Q1 and Qz are given by the following relationships: 

0 
t,. 

~ J(irRr +i7.
2
R7.)dt 

0 

(5) 

(6) 

Using well-known equations which describe the dependencies between inter­
nal variables of induction motors (see Krause, 1987), the electrical energy losses 
in the stator and rotor windings (6) may be given as follows: 

t,. 

Qz = ~R2 j [(9W2d - ei1 coswt)2 + (9W2q - eir sinwt)2] dt 
0 

Therefore, the global optimization index ( 4) may take the form of: 

tr 

Q3 /[(1- s) + ~iiRrs]dt + 
0 

t.,. 

(7) 

+~R7.s J [(g'l,b2d- eir coswt? + (9W2q- ei1 sinwt)2] dt (8) 

0 

4. Problem solution 

We will find the open-loop optimal control, i.e. we will find the amplitude and 
frequency of the sta.tor current a.s functions of time, 

ir = ir(t) } 
w = w(t) 

(9) 
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minimizing the optimization index (8). Besides, we wish to limit the stator 
current. amplitude during the control: 

(10) 

To solve this problem we apply the mathematical method of the Pontryagin 
maximum principle (see Atha.ns, Falb, 1969). 

Considering (2) and (8) the hamiltonia.n takes the following form: 

H (1 ) 3 R ·2 3R2 (( 1 . )2 - -S -52 ·121 -s-
2
- 91!J2d-e2]COSWt 

-(g'l/J2q- ei1 sinwt)2
] + V1 ( -a'l/J2d + bi1 COSWt- Wr'l/J2q) 

+V2( -a'l/J2q + bi1 sinwt + Wr'l/J2d) + 

+V3ci1('l/;2d sinwt- 'l/J2q coswt)- V3 JMo (11) 

where vl, v2, v3 are the conjugate variables which fulfil the following conjugated 
equations: 

i = sm1'l/J2d- sli1 coswt + V1a- V2wr- V3ci1 sinwt } 
7f = sm1'l/J2q- sli1 sinwt + V2a + V1wr + V3ci1 coswt 

~- v;.t. V·'· + E,8M" dt - 1 'l-'2q - 2 '!-'2d J aw,. 

(12) 

The optimal control is to maximize the hamiltonian (11) and therefore to 
satisfy the following equations: 

/)}[ 

oi1 = o; 
/)}[ =0 
/Jw 

Solving the equations (13) for the hamiltonian described by (10) yields: 

n('l/J2d coswt + 'l/J2q sinwt) + :_(V1 coswt + V2 sinwt) + 
s 

+
51 

V3('l/J2d sinwt- 'l/J2q coswt) 
s 

(13) 

(14) 

(15) 

The amplitude i1optsOf the stator current described by (14) guarantees that 
the hamiltonian has the maximum value, but without the condition given by 
(10). When the limitation (10) is taken into consideration, the sta.tor current 
amplitude should satisfy the following equations: 

ilopt = ilopts 
. ·o 2]opt = 21 

for 
for 

ilopts :'S i]' } 
ilopts > if (16) 
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The optimal control described by (14),(15) and (16) depends on the conju­
gate variables vl, v2, v3 and the state variables 'I/J2d, 'l/J2q, and thus if one wants to 
arrive at the form (9), one needs to solve the state equations (2) and conjugate 
equations (12) together. 

To solve the canonical equations (2) and (12) we need to know the initial 
conditions of the state and conjugate variables and the type of the load. In this 
case the initial values of state variables are known. For example, if the motor 
starts, all initial values of state variables are null. Also, the final value of the 
motor speed wr is known. This value is the desired value for speed control and 
the rated value for the starting. 

The initial values of the conjugate variables V1 , V2, V3 are not known. From 
the transversability conditions (see Athans, Falb, 1969) it is possible to prove 
that the final values of the conjugate variables vl, v2 are null. 

To solve the canonical equations, it is necessary to solve the two-point bound­
ary value problem, which consists in finding initial values of the conjugate vari­
ables V1, V2, V3, knowing the initial values of the State variables 'l/J2d,'l/J2q,Wr, 
the final values of the conjugate variables vl, v2 and the final value of the state 
variable Wr. 

5. Voltage control 

When the frequency converter used for the induction motor supply is a voltage 
converter, it is necessary to find the frequency and amplitude variations with 
time of the induction motor supply voltage, to minimize given optimization 
index. 

Knowing the optimal control in the form of the stator current amplitude 
and frequency variations with time, we can calculate the corresponding stator 
voltage frequency and amplitude variations with time. These relationships are 
(see Krause, 1987, and Schreiner, Gildebrand, 1973): 

• Phase voltage amplitude: 

h . t kfu t k' d(coswt) l.t. . !. } UJd = 21 cosw + dt cosw + 21 dt - 3'1'2d- ewr'f/2q 

h . . t kfu . t k ' d(sinwt) l ,/, .!. 
UJq = 21 smw + dt smw + 21 t - 3 ''1'2q- ewr'f/2d (17) 

U = u2 + v2 ld 'lq 
• Angular frequency of the phase current: 

d(sinwt) . d(coswt) 
w=coswt dt -smwt dt (18) 

6. Simulation examples 

To illustrate the solution method of the time and electric energy losses minimiza­
tion during speed control of induction motors two numerical examples based 
on the digital simulation are presented. In these examples the idle starting 
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(Mo = 0) of an induction motor is presented and the stator current limita­
tion value iJ., which guarantees the motor operating in the linear part of the 
magnetization curve, is selected. 

In order to determine in the approximate way the permissible maximum 
value of the stator current amplitude for which the saturation of the magnetic 
material of the motor does not happen during the optimal starting, the approach 
of the magnetization curve by a. linear piecewise approximation is accepted in 
which the saturation does not happen until the amplitude of the magnetiza­
tion current arrives at the value determined by the following relationship (see 
Sandler, Sa.rbatov, 1966): 

(1 9) 

This value corresponds to the ideal synchronous revolving movement of the 
induction motor (when in the circuit of the rotor no current flows) . 

For the idle starting, optimal from the point of view of the simultaneous 
minimization of the electric energy losses in the stator and rotor windings and 
the starting time, it is possible to demostrate (see Kawecki, 1980) that, for 
the permissible value of the stator current amplitude fulfilling the following 
condition: 

i~ ::::; io max (20) 

the amplitude of the magnetization current fulfils the following condition: 

(21) 

To solve the two-point boundary value problem, the parametric optimization 
algorithm derived by Ka.wecki, Niewierowicz (1991 ), based on the Gauss-Seidel 
method, is used. In Fig. l the flow-diagram of this algorithm is presented. 

The optimization index (8) is also used as parametric optimization criterion 
during the exploration of the initial values of the conjugate variables. The use 
of (8) as parametric optimization criterion is possible, because if the control is 
optimal, it must minimize (or maximize) the optimization index. Then we need 
to search only for the initial conditions of the conjugate variables for which, 
applying the optimal control, we obtain the minimum (or maximum) value of 
the optimization index. 

To compare the vector optimal control with the scalar optimal controls, the 
latter ones were also found by using the method presented above: to minimize 
the time only (s = 0, we obtain the maximum of the hamiltonia.n for i1 = iJ., 
because, in this case, the ha.miltonia.n is a. linear function of i1 (see Kawecki, 
Niewierowicz, 1992) and to minimize the energy losses in the stator and rotor 
windings only (s = 1) (see Kawecki , Niewierowicz, 1996). 
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Figure 1. Parametric optimization algorithm 
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motor speed[rd/s] 
200: .. . . .. , .... . .. , .. ... . . , ... .... , . . . . . . . , 

150; . .. .. . ... . .. ._ .. . 

100: .... .. .. ._ ........... ..... . 

. . so: .. .. ...... .... . ···· ·· ·· ·· · ·· ·· ·· ···· ··· · · ·· ·· · ·· ·-

0 
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time[s] 

6 7 8 

Figure 2. Motor sped (2250 h.p. motor) 

9 

In the first example, we find the optimal control which minimizes the index 
(8) for s = 0.1 and if = 177.7[A] during the idle start of a 2250 h.p. induction 
motor, whose parameters are as follows : 

~omax 

l877.94[V], m = 3, p = 2, Wn = 377[rd/ s] 

0.029[D], R2 = 0.022 [D], X1 = X;\ = 0.226[D] 

13.04[D], J = 63.87[kgm2] 

141.56[A], iu = J 77.76[A] 

The following initial values of the conjugate variables were obtained: 

V1 (0) = 52.2831, V2(0) = 66.21841, V3 (0) = 5.832544 

The relevant variation curves are presented in Figs. 2 - 7. 
Fig.8 presents the curves of the relative variables. 
We obtain the following values of the variables during the motor starting: 

tr = 9.06[s],ilm = 177.7[A],Q2a = 16160.137[1] 

During the starting (Fig.?) the amplitude of the magnetization current at­
tains the maximum value iom = 133.8[A] and the limit stays below the value 
i 0 max = 141.56[A] for which the magnetic material of the motor begins to enter 
the saturation. 

Using the scalar optimal controls for idle starting of the same motor we 
obtain: 
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5: . ...... .. .... ·:· .................. . .. ... .. .... .. . .... .. ....... . . . .. -

0 ..... 
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time[s] 

Figure 3. Electric energy losses (2250 h.p. motor) 
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Figure 4. Phase voltage amplitude (2250 h.p. motor) 
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angular frequency of the stator current(rd/s) 
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roo: ···· ······· 
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Figure 5. Stator current angular frequency (2250 h.p . motor) 

phase current amplitude[A] 
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Figure 6. Phase current amplitude (2250 h.p. motor) 
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magnetizing current amplitude[A] 
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120; 

10Q; 

2 3 

· ·· ·· ··: ·· · ·· · · : ·· · · · ··;···· · · ·: ····· · ·> . . . . . . . . . . 

. . . 

4 5 

time[s] 

.. .... . .... ... ... ... .... .. .. ... 

6 7 8 9 

Figure 7. Magnetization current amplitude (2250 h:p. motor) 
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Figure 8. Relative variables (2250 h.p. motor) 
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• For the time optimal control: 

tr = 8.7[s], i1m = l77.7[A], Qza = 16979.48[1] 
• For the optimal control to minimize the electric energy losses in the stator 

and rotor windings: 

tr = 230[s], i1m = 42.37[A], Qza = 13581.3[1] 
Comparing the results obtained for the three cases mentioned above, we 

may conclude that, for the optimal control which minimizes both the time and 
electric energy losses during starting we obtain: 

• The starting time is 4.1% longer than the control time obtained for the 
time optimal starting and 2439% shorter than the control time obtained 
for the control minimizing the electric energy losses only. 

• The electric energy losses are ] 9% greater than the electric energy losses 
obtained with the control which minimizes this energy losses only and 
5 .l% less than the electric energy losses obtained with the time optimal 
control. 

• During the starting period (Fig.6) the stator current amplitude reaches its 
limit value. For the time optimal control case this amplitude is equal to the 
limit value of if during the whole time of starting. During starting, which 
minimizes the electric energy losses only, the stator current amplitude is 
less than the limit value if during the whole control time interval. 

The results obtained for other values of the coefficient s are: 
Fors= 0.2: 

tr = 18.8[s], i1m = 157.68[A], Qza = 14220.02[1] 

Fors= 0.5: 

tr = 87.7[s], i1m = 77.04[A], Qza = 13771.2[1] 

In the second example, we find the optimal control which minimizes the index 
(8) for s = 0.5 and if = 7.3[A] during the idle starting of a 3 h.p. induction 
motor, whose parameters are as follows: 

Zomax 

179.6[V], m= 3, p = 2, Wn = 377[rd/s] 

0.435[0], R'z = 0.816[0], X1 = X2 = 0.754[0] 

26.13[0], 1 = 0.089[kgm2
] 

6.68[A], iu = 7.38[A] 

The following initial values of the conjugate variables were obtained: 

V1(0) = -4.894553, Vz(O) = 3.829396, V3(0) = 0.3006305 

The relevant variation curves are presented in Figs. 9 - 14. 
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motor speed[rd/s) 
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Figure 9. Motor speed (3 h.p. motor) 
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Figure 10. Electric energy losses (3 h.p. motor) 
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phase voltage amplltudeM 
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Figure ll. Phase voltage amplitude (3 h.p. motor) 

angular frequency of the stator current(rd/s] 
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Figure 12. Stator current angular frequency (3 h.p. motor) 
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stator current amplitude[A] 
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4; ... . . .. . · ······ ··· ······ ... .. ... .. . . .. 
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Figure 13. Stator current amplitude (3 h.p. motor) 

magnetizing current amplitude[A] 
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Figure 14. Magnetization current amplitude (3 h.p. motor) 
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Figure 15. Relative variables (3 h.p. motor) 

Fig.15 presents the curves of the relative variables. 

347 

We obtain the following values of the variables during the motor starting: 

tr = 4.4l[s], i1m = 7.3[A], Q2a = 197.83[1] 

During the starting (Fig.14) the amplitude of the magnetization current 
attains the maximum value iom = 6.08[A] and the limit stays below the value 
io max = 6.68[A] for which the magnetic material of the motor begins to enter 
the saturation. 

The results obtained for the scalar optimal control are: 
• For the time optimal control: 

tr = 3.47[s], i1m = 7.3[A], Q2a = 242.2[1] 

• For the optimal control to minimize the electric energy losses in the stator 
and rotor windings: 

tr = 193[s], i1m = 1.5[A], Q2a = 180.42[1] 

Comparing the results obtained for the three cases mentioned above, we may 
conclude that, for the optimal control which minimizes both the time and the 
electric energy losses during starting we obtain: 

• The starting time is 27.1% longer than the control time obtained for the 
time optimal starting and 4276% shorter than the control time obtained 
for the control, which minimizes the electric energy losses only. 

• The electric energy losses are 9.65% greater than the electric energy losses 
obtained with the control which minimizes the energy losses only and 
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22.4% less than the electric energy losses obtained with the time optimal 
control. 

• During the starting period (Fig.13) the sta.tor current amplitude reaches 
periodically its limit value. For the time optimal control case this ampli­
tude is equal to the limit value of i~ during the whole time of starting. 
During starting, which minimizes the electric energy losses only, the stator 
current amplitude is less than the limit value i~ during the whole control 
time interval. 

• Comparing the results obtained in this example with the ones obtained in 
the first example, we may conclude that the shape of the optimal control 
curves depend significantly on the relation between the electromagnetic 
time constants and the mechanical time constants. The respective curves 
are periodic when the inductances and resistances are relatively large in 
comparison with the rotor inertia.! torque. 

7. Conclusions 

Based on the obtained results we may conclude that: 
• It is possible to find the analytical description of the optimal frequency 

control which minimizes both the electric energy losses and the t ime, dur­
ing speed control of induction motors (relationships (14), (15) and (16)), 
using the induction motor mathematical model, which takes into account 
electromagnetic transient. 

• The derived form of control may be termed implicit, and this is because 
it is describing the control as function of state and conjugate variables in 
a relatively complex wa.y. 

• To obtain the explicit description of the control (the amplitude and fre­
quency variations of the motor supply voltage or current as a ·function of 
time) it is necessary to solve the two-point boundary value problem at a 
given motor load. 

• In the present stage of the microprocessor speed development, the results 
obtained in this paper may be applied to the induction motor starting in 
the open-loop control system, generating previously the voltage or current 
amplitude and frequency control curves by a computer. 

• It is possible, practically to consider that the resistances and inductances 
of the stator and rotor windings are constant during the induction motor 
starting, then the assumption 2 adopted when formulating the mathemat­
ical model of the induction motor is practically satisfied. 

• The stator current limitation (10) is introduced not only for the frequency 
convertor protection, but also for the rotor acceleration limitation during 
the rotor speed control. The excessive rotor accelerations can destroy the 
rotor ball bearings. This may be the case when the control approaches the 
time-optimal control (small values of the s coefficient in the optimization 
index ( 8)). Through adequate selection of the stator current limitation 
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value (10) it can also be guaranteed that the induction motor will work 
during the speed control without the magnetic material saturation. 

• The simulation results based on the optimal control described in this pa­
per may be used for evaluation of other practical control systems. For 
that purpose it is sufficient to compare the results of two control system 
simulations: the optimal and the evaluated. 
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Appendix: List of symbols 

R2Wn a = --"---'--
Xo+X2 

b = XoR2 
Xo+X2 

bt - small number determining the calculation exactitude of the parametric 
algorithm optimization 

3 2 X 0 1 
c = 2,P Xo +X2 J 

d1 - parametric optimization index value in the present iterative step of the 
parametric optimization algorithm 
d - parametric optimization index value in the preceding iterative step of the 
parametric optimization algorithm 
d1p, dp - d1 and d values, respectively, for the initiation of the parametric 
optimization algorithm calculation 
dl - parameter increment value in the present iterative step of the parametric 
optimization algorithm 
dlo - parameter increment value beginning a cycle of the parameter change in 
the parametric optimization algorithm 
dlc - parameter increment value beginning the parametric optimization algo­
rithm execution 
et - small number determining the calculation exactitude of the parametric 
optimization algorithm 

Xo e = __ ::...__ 
Xo+X2 

g = Xo +X2 

h = R1 (Xo + X2) 2 + R2X;, 
(Xo + X2) 2 
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H - hamiltonian 
i1 - phase stator current amplitude 
i1d, i1q - stator current components on the d-q axes 
i2 -phase rotor current amplitude related to the stator circuit 
ilopts -value of the amplitude idor which the hamiltonian attains the maximum 
value without limitation of the stator current 
iu - admissible value of the stator current amplitude if for which the ampli­
tude of the magnetization current i 0 does not exceed to value io max during the 
optimal control of the motor speed 
io - magnetization current amplitude 
iom - maximum value of the amplitude i0 during the motor speed control 
iomax -maximum value of the magnetization current amplitude for which the 
motor still operates in the linear part of its magnetization curve 
iopt -value of the amplitude idor which the hamiltonian obtains the maximum 
value taking into consideration the limitation i'l 
i'l - maximum admissible value of the amplitude i 1 
i 1m - maximum value of the amplitude i 1 during the motor speed control 
J - inertial torque of the rotor 

k = (Xo + X2)(Xo +XI) - x;; 
(Xo + X2)wn 

l = 3R2Xawn 
(Xo + X2)2 

m - number of the phases of the motor 

mi - small number determining the calculation exactitude of the parametric 
optimization algorithm 
Mo - load torque 

N - the currently changed parameter number in the parametric optimization 
algorithm 
Nl - number of the parameters for optimization in the parametric optimization 
algorithm 
N2 - number of the first parameter meant for change at the start of the calcu­
lations in the parametric optimization algorithm 
p - number of pairs of poles 
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Appendix: List of symbols 

R2,wn a = .,.-,--=--
Xo+Xz 

b = XoR2, 
Xo+Xz 

bt - small number determining the calculation exactitude of the parametric 
algorithm optimization 

3 2 Xo 1 
c = 2P Xo +X2 J 

dl - parametric optimization index value in the present iterative step of the 
parametric optimization algorithm 
d - parametric optimization index value in the preceding iterative step of the 
parametric optimization algorithm 
dlp, dp - dl and d values, respectively, for the initiation of the pa.rametric 
optimization algorithm calculation 
dl - parameter increment value in the present iterative step of the parametric 
optimization algorithm 
dlo - parameter increment value beginning a cycle of the parameter change in 
the parametric optimization algorithm 
dlc - parameter increment value beginning the parametric optimization algo­
rithm execution 
et - small number determining the calculation exactitude of the · parametric 
optimization algorithm 

Xo 
e =---

Xo+X2 

9 = Xo +X2 

h = R1 (Xo + X2) 2 + R2,X'; 
(Xo + X2)2 
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'l/J2d, 1/J2q -rotor magnetic flux linkage components on the d- q axes 
w - angular frequency of the stator current 
Wn - nominal angular frequency of the stator current 
Wr - angular speed of the rotor 
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P-an integer number (for example P = 2), dividend used in the parametric 
optimization algorithm in order to decrease the parameter increment during a. 
cycle of the parameter changes 
ql -integer number greater than pNl, divisor used in the parametric optimiza­
tion algorithm for the decrease of the parameter increment, finishing a. cycle of 
the parameter changes 
q(N)- initial value of theN-number parameter in the mathematical model used 
in the parametric optimization algorithm 
qp(N) - initial value of the N-number parameter beginning the iterative cycle 
of the parameter changes in the parametric optimization algorithm 
qpo(N) -optimal value of the N-number parameter 
qpp(N) - initial value of the N-number parameter beginning the parametric 
optimization algorithm execution 
Q1 = tr - optimization index for the control time minimization only 
Q2 - electric energy losses in the stator and rotor windings 
Q 2a - Q2 value when the control is finished 
Q3 - vector optimization index 

R 1 , R2 - resistances of the sta.tor winding and of the rotor winding related to 
stator circuit, respectively 
s - constant coefficient in the vector optimization index 

1 p2 Xo(Xo + X2) 
81 = 27 R1 (Xo + X2)2 + R2x; 

S- parametric optimization algorithm flag 
t- time 
tr - speed control time 
u- phase voltage amplitude 
u 1d, u 1q - stator voltage components on the d- q axes 
Um - nominal supply voltage amplitude 
vl' v2' v3 - conjugate variables 
x- parametric optimization algorithm flag 
X 1 , X2 - dissipation reactances of one phase of the sta.tor winding and one pha.se 
of the rotor winding, related to the stator circuit, in a. two-phase equivalent 
motor, calculated for the nominal frequency of the sta.tor current, respectively 
Xo -magnetizing reactance of two-phase equivalent motor calculated for nom­
inal frequency of the sta.tor current 
a = ..!:!.... - relative angular frequency of the sta.tor current 

Wn 

1 = __y,_ - relative amplitude of the phase voltage 
Um 

f3 = w-pwr - relative slip 
Wn 

v = E!::!I. - relative angular frequency of the rotor 
Wn 




