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Abstract: Let A( G) be the number of colors used by algorithm 
A to color the vertices of graph G. A graph G is said to be hard-to­
color (HC) (resp. slightly HC) if for every (resp. some) implemen­
tation of the algorithm A we have A( G)> x(G), where x(G) is the 
chromatic number of G. The study of HC graphs makes it possible 
to design improved algorithms trying to avoid hard instances as far 
as possible. Hard-to-color graphs are also good benchmarks for the 
evaluation of existing and future algorithms and provide an alter­
native way of assessing their quality. In this paper we demonstrate 
the smallest HC graphs for the best known coloring heuristics in 
classical applications, as well as when adapted to the chromatic sum 
coloring and strong coloring of vertices. 
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1. Introduction 

Graph coloring has been a.n attractive field for many years, with several thou­
sands of papers dealing with the study of chromatic: properties of graphs. As 
people were becoming used to applying the tools of graphs theory to the solu­
tion of real-world technological and organizational problems, chromatic models 
appeared as a. natural way of tackling many practical situat ions. 

Unfortunately, the problem of optimal coloring the vertices of a. graph is very 
hard. It was shown that not only determining the value of the chromatic number 
x(G) for arbitrary graph G is N P-ha.rd but also finding an n'-a.pproximation 
for this problem remains N P-ha.rd for any t: < 1/7. Thus the construction 
of a polynomial-time approximate coloring algorithm with a polylogarithmic 
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of graph coloring heuristics becomes increasingly important aud this paper is 
devoted to this topic. 

On the whole, the performance of graph coloring heurist ics is studied by 
giving asymptotic results. These are usually the performance guarantee and 
the time complexity. Both functions tell us what one can expect at worst as the 
number of vertices n ___. oo, but we really don 't know what is going on at the 
other end of the scale, say when n ~ 10. For this reason Hansen and Kuplinsky 
(1991) introduced the concept of hard-to-color graphs. The aim of studying 
such graphs is threefold. First, analyzing hard-to-color graphs makes it possible 
to obtain improved algorithms which avoid hard instances as far as possible 
(see Manuszewski, 1 997) . Second, it enables to search for small benchmarks, 
which are an indispensable tool in evaluating comprehensive families of graph 
coloring algorithms ( cf. Glazek et al., 1997). Third , it provides a more sensi­
tive way of assessing their efficiency as compared to the performance guarantee 
(the larger graph the better algorithm), since the overwhelming majority of col­
oring heuris tics have asymptotically the same linear fun ct ion of performance 
guarantee. 

To tackle the problem more formally we need several definitions. Let G = 

(V, E) be a graph with lVI = n vertices and lEI = m edges. A gmph coloring 
algorithm A is an algorithm which, when applied to any graph G, produces a 
coloring of the vertices of G. The number of colors that A uses on G is denoted 
by A(G). The performance guarantee A(n) of A is the maximum value of 
A(G)/x(G) taken over all graphs G on n vertices. Ideally, we would like A to be 
efficient and A( G) to be equal (or very close) to x(G) for any graph G. We shall 
see that this is impossible even on very small graphs . Given a heuristi c algorithm 
A, a graph G is said to be slightly hard-to-color (SHC) with respect to A if 
for some instance of algorithm A the number A( G) satisfies A( G) > x( G). We 
similarly define a hard-to-color (HC) graph as one for which every application 
of the algorithm (i .e. no matter what choice is made to break ties) results in 
a nonoptimal coloring. Given a. family F of graph coloring algorithms , graph 
G is called a benchmark for F if G is HC for every algorithm iu F. Moreover, 
we define smallest graphs with this respect. More formally, in the case of HC 
graphs among all graphs G = (V, E) we are looking for a graph G' = (V', E') 
which realizes 

IE' I= min{IEI : for every instance of A , A(G) > x(G), and lVI =no} , 

where no= min{IVI: for every instance of A,A(G) > x(G)}. A similar defi­
nition applies to SHC graphs. For simplicity, by HC(A) (resp. SHC(A)) we 
denote the set of all smallest HC (resp. SHC) graphs for algorithm A. Simi­
larly, HC(F) is the set of all smallest benchmarks for family F. For readability, 
we drop braces if any of the sets above is 1 -element. 0 bviously, it may hap­
pen that HC(A) = 0 and HC(F) = 0, as it is tbe case for a naive sequential 
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In this paper we consider three different models of vertex coloring. These are: 
classical, total and strong. In all these models the problem remains N ?-hard. 
In Section 2 we formally describe heuristic algorithms under study. Section 3 
is devoted to classical coloring. We give the smallest HC and SHC graphs for 
particular algorithms. Also, we give two benchmarks for some families of these 
algorithms. In Section 4 we adapt the considered algorithms to the chromatic 
sum problem. The need for considering this graph invariant follows from its 
numerous applications in task scheduling, resource allocations and 11 LSI layout 
design. We give here the smallest HC and SHC graphs for the total coloring 
algorithms as well as two benchmarks. The Anal Section 5 is devoted to strong 
coloring of vertices. We list all known the smallest HC/SHC graphs and the 
only benchmark for this model which is presently known. Most of the graphs 
given in this article have been obtained by exhaustive computational search. 

2. Algorithms 

The first heuristic considered is a well-known largest-fir.st (LF) algorithm. Jn 
the LF method the vertices are arranged in non-increasing order of their degree. 
This algorithm was given by Welsh and Powell (1967), in a slightly different but 
equivalent form. Its time complexity is O(m + n) and performance guarantee 
O(n). Algorithm LF optimally colors very simple classes of graphs only, e.g. 
odd cycles, odd wheels. Hansen and Kuplinsky (1991) showed that SHC(LF) 
is path P6 and HC(LF) is a so-called envelope. 

The LF sequential algorithm can be improved in a number of ways. One of 
them is revising the principle of vertex ordering. 1 n a smallest-last (SL) method 
the vertices are ordered sequentially so that vi has the minimum degree in the 
subgraph of G induced by vertices v1, ... , v; (I ::; i ::; n). The SL algorithm 
with various refinements is due to Matula et al. (1972). As previously, its 
complexity is O(m + n) and performance O(n). Algorithm SL optirnally colors 
polygon trees and k-trees. Kubale et al. (1997) showed that SHC(SL) =prism 
and HC(SL) = prismatoid. 

Another improvement over the LF algorithm is by using a dynamic order­
ing of vertices, as proposed by Brelaz (1979) in his method DSATU R. The 
saturation LF (SLF) algorithm, as we call it for short, repeatedly chooses an 
uncolored vertex v such that its neighbors represent a maximum number of color 
classes and puts v in the first color class where it Ats. Algorithm SLF runs in 
O((m + n) logn) time and has performance guarantee SLF(n) = O(n). SLF 
optimally colors bipartite graphs, cacti and polygon trees. Recently, Janczewski 
et al. (2000) found the smallest SHC / HC graphs for this algorithm. 

Yet another refinement of sequential algorithms is given by aD interchange 
procedure as follows. ·whenever a new color is going to be introduced for a vertex 
Vi ( 4 ::; i ::; n) consider all possible pairs a and f3 of already used colors. Jf in each 
component of the graph induced by vertices colored with a and f3 the vertex vi 
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of the bipartite components so that vi is now joined to only color, say a. Then vi 
can be given color {3 and no new color need be used. By an LF with interchange 
(LFI) algorithm we mean a sequential algorithm with interchange procedure 
applied to the list of vertices arranged in the LF order. The LFI algorithm can 
be run in time O(mn). By an SL with interchange (SLI) algorithm we mean 
the sequential SL algorithm with interchange procedure incorporated into it. 
Johnson (1974) showed that LFI(n) = SLI(n) = O(n). Also, the SLI algorithm 
can be implemented to run in time O(mn). Similarly, by SLFI we mean the 
SLF algorithm with interchange procedure. It has asymptotically the same 
complexity and performance as its predecessors. 

The penultimate heuristic algorithm considered here is due to Johnson (1974). 
This is an implementation of a general independent sets method in which the 
vertices of G are considered in some order, assigning a node vi (l ::; 'i ::; n) 
to the color class 1 whenever it is not joined to a vertex already colored with 
1. When no more vertices of a k-colorable graph can be colored with 1, all 
the vertices of color 1 (whose number is at least llogk n J) are removed and the 
coloring process continues likewise with color 2 on the remaining subgraph, etc. 
Johnson proposed the following greedy method for choosing vertices for consec­
utive independent sets. Start ing with V1 = 0, set V1 is augmented at each step 
by a minimum degree vertex of the subgraph generated by the non-neighbors 
of the current members of V1 . Then the process is repeated for the subgraph 
G(V - V1), and so on. We shall call this method a greedy independent sets 
(GIS) algorithm. GIS can be implemented in time O(mn). In contrast to the 
previous methods, GIS is an algorithm with sublinear performance guarantee 
O(n/ logn). 

Leighton (1979) proposed a method, called recursive LF (RLF), which com­
bines the strategy of algorithm LF with the structure of algorithm GIS. Here 
the rule of selecting the vertices to consecutive independent sets is only slightly 
different from that of GIS. Namely, instead of taking vertices with few uncol­
ored neighbors, RLF takes vertices that have many neighbors among uncolored 
nodes adjacent to already colored vertices. The performance guarantee of this 
algorithm is still O(n) and the time complexity is O(n3 ). 

3. Classical coloring 

The classical vertex coloring problem has particularly large number of appli­
cations in the area of computer science and electronics engineering. List of 
practical applications is too long to be cited here, so we refer the reader to 
Kubale (1998). Below in Table 1 we give the smallest SHC / HC graphs for 
every algorithm of the previous section. In addition, each SHC graph is accom­
panied by a vertex ordering that leads to a nonoptimal solution. The reader can 
easily verify that obeying this ordering results in a coloring using strictly more 
than the chromatic number of colors. For example, coloring P5 in the given LF 
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Figure 1. The smallest benchmark for the family Fs. 

So far we have known two benchmarks for this model of coloring. They 
are both 10-vertex graphs. The first graph is the smallest beuchmark for the 
family Fs of sequential algorithms with and without interchanging, namely 
Fs = {LF, SL, SLF, LFI, SLI, SLFI}. This benchmark is shown in Fig. l. 
Note that HC(Fs) is a supergraph for each smallest HC graph of every algo­
rithm in family F s. 

The second benchmark is connected with the family of practically applied 
algorithms without interchange. Namely, these are {LF, SL, SLF, GIS, RLF}. 
This benchmark is shown in Fig. 2. 

4. Total coloring 

Given a graph G, the chromatic sum I:( G) is the smallest total of colors among 
all proper vertex colorings of G using natural numbers. The need for considering 
this graph invariant follows from its numerous applications in problems arising 
from task scheduling, resource allocation and V LSI layout design. For example, 
in scheduling of unit execution time tasks on a. set of processors, finding a. 
chromatic sum solution closely corresponds to constructing a mutual exclusion 
schedule that minimizes both the mean flow time and total complet ion time. 

The chromatic sum problem is N P-hard and remains so even if G is bipartite, 
as shown by Ba.r-Noy, Kortsa.rz (J 998). Therefore, in practice we have to use 
fast approximation algorithms. To this aim we can use any of the classical 
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Method The smallest graphs References 
SHC HC 

LF 5 I 3 4 2 6 ~ Hansen . Ku-·---·---· - ---·· ----·-- -· plinsky 
(1991) 

Isr ~ SL \ I 4 .• 
K ubale, ·------

3 • 6 P akulski, Pi-
wakowski 
(1997) 

~·-r EW LFI 5e----.6 •7 Ma.nuszewski 

4 ·· ------ 1 

(1997) 

'B a SLI 3 4 7 :\1anuszewski 

2 6 
(1 997) 

'3' SLF 5.._____6 •7 ~<1> Janczewski, 
J\.ubale, 

4 3 Mantiszewski, 
Piwakowski 
(2000) 

' ~]' 
. . •· ·-- i 

SLFI 
5•~6 1 •7 

. ~ Ma.nuszewski 
i . 

' 

(1997) .. . - . 
GIS >-< 1 3 4 2 Manuszewski . . . . 

(1997) 

'=:I' ~ RLF 6 ------- 7 •2 Manuszewski 

5 3 
(1997) 

~ 
~ 
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Figure 2. The smallest benchmark for the family of algorithms without inter­
change. 

total coloring of the vertices of G and its sum gives an upper bound on 2":( G). 
Such algorithms have the same performance guarantee and time compl exity, cf. 
Kubale, Manuszewski (1 996). Thus the only difl'erence are the smallest HC and 
slightly HC graphs. A catalogue of such graphs is given in Table 2. Note that 
these graphs are smaller than those of Table 1, which confirms the fact that the 
total coloring problem is harder than the classical one. 

From Table 2 it follows that path P3 is the smallest benchm ark for fam­
ily {LF, LFI, SLF, SLFI, RLF}. But we are interested mainly with sequential 
algorithms. As previously, let F s denote the family of sequential algorithms 
{LF, SL, SLF, LFI, SLI, SLFI} and let symbol F 1 stand for the fa mily of col­
oring algorithms based on independent set rule {GIS , RLF}. F ig. 3 shows the 
smallest benchmark for family Fs and Fig. 4 depi cts graph HC(F 1) . 

5. Strong coloring 

Given a graph G, the strong chromatic number xs(G) is the minimum number 
of colors needed to color the vertices of G in such a way that no two verti ces 
at distance at most 2 have the same colors. The need for considering this 
particular model of coloring follows from its possible applications in cellul ar 
telecommunication technology ( cf. K ubale, 1 998) . 

The strong coloring problem is N P -hard . Therefore, in practice we have to 
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Method The smallest graphs References 
SHC HC 

LF, LFI, SLF, SLFI, RLF 2 I 3 • • • Glazek, 
-------·-· Kubale, 

Ma.nuszewski 
(1997) 

SL, SLI, SLFI 2 I 3 X Glazek, 
Kuba.le , 
Ma.nuszewski 
(1997) 

GIS l 3 4 2 ~ Glazek, ·----------· 1\:uba.le, 
Manuszewski 
(1997) 

Table 2. A catalogue of the smallest SHC/HC graphs for the total model of 
coloring. 

H'in'llr<> 'l 'ViT.,icrht lift.,,. - t.hP <:m::~llP<:t. lwnrhm::~rk for fami lv Fe . 
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Figure 4. The smallest benchmark for the fam ily of independent sets algori thms. 

Figure 5. HC( {SL, SLF}) = Cs. 

algorithms of Section 2, since xs(G) = x(G2 ), where G2 is the sqtLare of G, i. e. 
a graph whose adjacency matrix is A+ A2 . Thus any proper coloring of graph 
G2 is a strong coloring of G a.s wel l. A catalogue of the small est HC/SHC 
graphs for these algorithms when applied to the strong coloring of verti ces is 
given in Table 3. 

So far , we have only known a benchmark for a small fam ily of two algorithms, 
namely: SL and SLF. The smallest benchmark for this family is the cycle shown 
in Fig. 5. 
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Method The smallest graphs References 
SHC HC 

I • 
2 8. • G LF 7 ~ e3 !vlanuszewski 

• • 4 (1997) 
6 • 

~ 

I• 
2 

0 8 ,• • 
SL,SLF 

7~ e3 Kubale, 
I 

·-..____ __. 4 Pakulski , Pi-
6 .- wakowski 5 

(1997) 

LFI 'Cll e Manuszewski 8 9 

6 4 (1997) 
5 

• 7• 9 • 8 
I 

SLI 4•, 3 .•6 Unknown Manuszewski 
2--.\-[ .5 (1997) 

GIS I 3 4 5 2 --&- Manuszewski 
(1 997) 

RLF /:;)' g Manuszewski 
8 3 (1997) 

7 

Table 3. A catalogue of the smallest SI-1 C j H C graphs for the strong model of 
coloring. 
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