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1. Introduction 

This paper concerns the controlled system 

d 
dt (My)(t) + Ly(t) = Bu(t), t E (0, T) 

(My)(O) = Myo 

in a Hi lbert space H. 

(I) 

HereM : D(M) c H ---> H and L: D(L)CH ---> Hare linear, closed and 
densely defined operators, and U (the controller space) is a Hilber t space with 
the norm denoted l·lu and scalar product(-, ·)u. The norm of H wi ll be denoted 
by 1·1 and the scalar product by(-, ·). The controller u is takeu in L2 (0, T: U) 
and the solu tion y E L2(0, T: H) is considered in the following weak sense 

1T(y(t), M* y/(t) - L* tp(t))dt + 1 T(Bv.(t) , tp(t))dt + (My0 , tp(O)) = 0 (2) 

for all 'P E C1([0, T] ; D(M*)) n C( [O, T] ; D(L*)) such tha t tp(T) = 0. 
d 

Here Yo E D(M) , tp' = dt'P and M* ,L* are the duals of lVI and L. 

This equation was extensively st udied in the las t years (see, e.g., Carroll , 
Showalter, 1976, Favini, Yap;i, 1999, and the references given there) but there 



398 V. B.AR I3 U a nd A. FAV l N l 

1995, Sviridyuk, Efremov, ] 995). Here we shall study severa l control problems 
having (1) as state, and the first one is the convex Bolza control problcrn 

Minimize l T(g(Cy(t)) + h(u(t )))dt subject to ( 1) (3) 

where the functions g and h satisfy the following condi t ion 
(i) g : Z ----+ R, h : U ----> R are lower sern:icont-inv.ov.s. cm1:ucJ; and C E 

L(H,Z). 
Here Z is a Hilbert space with the norm l ·lz and scalar product (-, ·)z . 

The main difficulty with problem Pis th at the state e(j na tion is singul ar and 
so the standard methods of treating convex control pro blems (see, e. g. , Barbu, 
Precupanu , 1986, Lions, 1968) are not a ppli cable in this situation. This problem 
will be studied in Sections 2 and 3 wit h main emphasis on existence and the 
maximum principle. 

In Sections 4 and 5 a linear quadrati c control problem will be stmli cd in the 
framework of strong solutions to the state system (I) . 

In Section 6 a related problem pertaining the null controllabili ty of t l1 e de
generate parabolic equations with intern al and boundary control will be studied. 

2. Assumptions and formulation of results 

We shall denote by A: D(A) c £2 (0, T ; H ) ----+ L2 (0, T; H) t he linear operator 
defined by 

Ay = f iff ( 4) 

T T 
( (y,M* r.p'-L*r.p) dt +1 (f , r.p) dt = O 

.!a o 
(5) 

for all r.p E C1 ([0, T] ; D(M*)) n C([O, T] ; D(L*)) such th a t. r.p(T ) = 0. Clearl y, A 
is closed and densely defin ed. This mea ns that y is a weak solu t ion to (1) wit l1 
the right hand side f and the initi al value :IJo = 0. 

The dual operator A • is given by 

A*p = f iff (6) 

r(p, (M'IjJ )' + L'ljJ )dt = ~· T(f , ·tj;)dt 
lo . o 

(7) 

for a ll 'ljJ E C( [O, T ]; D(L)), !Vhf; E C 1 ([0, T ]; H ), M 't/;(0) =: 0. 
This means that 

-M*~~ + L*p = fin (O,T) 
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in the sense of vectorial distribut.ions. Tt is easil y seen tha t t.hc operator (G) is 
indeed the dual of A, i. e., 

(Ay,p) = (y,A*p), \/y E D(A), p E D(A*) (8) 

where(- ,·) is the scalar product of £ 2 (0, T: H) . 
The assumptions of Section 1 will be in efrect everywhere in the sequel. Tn 

addition the following hypotheses wi ll be 11secl: 
(ii) There is J( E L(Z, H) such that the operator AK = A+ KC has closed 

range in £2 (0, T ; H) and its kernel N(AK) is find c rhmens·ionaL 
(iii) There is F E L(H, U) such that A p = A+ BF has clo!>ed m n.ge in 

£ 2 (0, T ; H) and the kernel N(AF) of i.ts adjoint i.s finit e di.rr tensi.onal. 
(Here we have denoted again by KC (respectively BF) the reali zat ion of KC 
(respectively BF) in £ 2 (0 , T ; H) .) 
(iv) g( z ) ~ wo[z[~ + cl, \jz E Z, h(u) ~ W J [ ·u. [~ + C2, 'V'II E u 

where wo, w1 > 0. 
(v) There are cq ,/31 ~ 0, and a 2,/32 E R such that 

g(z ) :S: a 1 [ z[~ + a2, 'Vz E Z, h(u) :S: fJ1 [v.flr + fh, \/u E U. 
Now we are ready to formul ate the main results of thi s scc:Lion. 

THEOREM 2.1. Assume that hypotheses (i),( ii),( iv) n:rc sat-isfied and that Yo E 

D (L) . Then problem (P) has at least one opl'irnal pa·ir (y*,u*) . ff Z = H o:nd 
C = I then for each y0 E H there eJ:·ists ll'/1. optimal pair under rt.ssv.mphons (i), 
(iv) only. 

THEOREM 2.2. Under assumptions (i), (iii ) ,(v) the pair (y* , ·n*) E £ 2 (0, T; H ) x 
x£2 (0, T ; U) is optimal in problem (P) if and only if there are TJ, J! E L2 (0. T ; H) 
such that 

A *p + ry=O 

ry(t) E C*8g(y*(t)), a. e. t E (0, T) 

u*(t) E 8h*(B*p(t)), a. e. t E (0, T). 

(9) 

( I 0) 

( II ) 

Here 8g : Z __., 22 is Lhe subdifferen tia l of g a mi oh* : U ----> '2 ° is t he 
subdift'crential of the conjugate function h* of h (see, e.g ., Bar b tt , Prccupaltll, 
] 986). 

The system (J ), (9), ( I 0), (1 J) is the Eul er - Lagrange opt im a lity sy:;!e rn for 
problem (3). 
Example 1. Consider the optimal control problem 

Minimize j~ (g(x , y(x , t)) + h(.1:, 11.( :r , t)) )d:r; dt s1tbject to (12) 
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(x,t)EQ~Dx(O , T) (] 4) 

(dy)(x, 0) = d( x)yo(x) , x E D; y = 0 in E = CJD x (0, T) 

Here Dis a bounded and open subset of Rn with smooth boundary, dE L 1 (D), 
d 2 0 a.e. in D, a E L00 (D) and m E L00 (Q). Equat ion (13) occurs in the 
description of certain diffusion processes (see Carroll, Showalter , 1976, and th e 
references given there) as well as in the theory of the Markov stochastic processes 
(the Wentzell problem). 'Equation (13) is of t he form (1) where H = U = L2 (D), 
L = -£1, D(L) = HJ(rl) n H 2(rl), (My)( x) = d( x) y(x:) , D(M) = {y E L2 (rl); 
dyE L2 (D)} , (Bu)(x:) = 1n(x)'U(x) , n.e. x E n. Jt is readily seen that if a 2 0, 
a .e. inn then the corresponding opera tor A: D(A)cL2 (Q)----> L2 (Q) defined 
by (4), (5) has closed range in L2 (Q) . Tndeed if Ayn = f" then in (5) we take 
cp to be the solution to the boundary value problem (see Lemma 6. 1 below) 

dept + l1cp = Yn in Q 

dcp(x, 0) = 0; cp = 0 in E. 

This yields 

ly~ (x,t)dx :S; C hlfn(x,t)IIYn( a:, t)ichdt, Vn. 

Hence {yn} is bounded in L 2 (Q) and this cl early implies t hat R(A ) is closed. 
Thus if one assumes that 3,\ E R such that 

a(x) + Am(x) 2 0, a .e. x E [2 

then assumption (iii) is sati sfied with 

(Fy)(x) = ->-y(x ), a .e . . T E rl , y E L2(rl). 

The functions g: Qx R ----> R, h: Qx R ----> R arc convex and cont inuous in y 
and ·u , measurable in x, and satisfy the conditions 

woy2 +CJ :S;g(x,y) :S;a1y2 +o:2, a.e. x Erl,yER 

W]U
2 + c2 :::; h(x , u) :::; fJJ1t 2 + (32, a .e. X E n, 'll E R 

where wo,wl,al, fJl > 0. 

(I 5) 

Then, assumptions (i), (ii ), (iv) are sati s fi ed. We may apply Th eorems 2.1, 
2.2 to conclude that problem (12) has at least one solutio n. Moreover , every 
optimal pair (y*, u*) is characterized by the Eul er- Lagra.nge system 

d(x)pt(x, t) + L1p(x, t)- a( x)p( :u, t) E oy .r;(x:, y*(x, t )) in Q 
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Example 2. Consider the control system goverued by the degenera.te wave 
equation 

(d(x)yt(X , t))t- 6y(x, t) = 'lt(x, t), 

y(x, 0) = Yo(x), (dyt)( x, 0) = cl(x)y, (.T), 

y = O 

where dE L00 (D), d ~ 0, a.e. in D. 
We may rewri te (16) as 

(x , t) E Q 
xED 

in I; 

!!:_~I' ( y(t) ) + L ( y(t) ) = ( 0 ) , dt m z(t) z (t) u(t) t E (O, T) 

M ( ; ) (0) = M ( ;~ ) 

Assumption (iii) is satisfted with 

F ( ; ) = - z , V ( ; ) E H. 

Indeed by the equation 

we see that 

l i'Vv(x, t)l 2 dx + f z2 dJ;rlt::; c j .(I'Vfii'Vvl + lz.r;l)rlxrtt 
n J Q ·Q 

which clearly implies that R(A + BF) is closed in L2 (0, T; HJ(S2) xL2 (0.)). 
Hence, Theorems 2.1 and 2.2 are appli cabl e for the cost fullc:t.ional 

h (g(x , y(x, t), Yt(x, t)) + h(x, u( :~: , t ) ))d:r dt 

where g and h satisfy condit ions of th e form (14). 
Example 3. (The Sobolev equa tion ) 

d 
dt (I + 6)y - 6y = (Bu)(:r , t) HI Q 

((I+ 6 )y)(x, 0) =(I + 6)yo(x) , :~; E 0. 

(16) 

( 17) 
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Here B E L(U, L2 (fl)) where U is a real Hilbert space (t he controller space). 
We are in the general situation presented above where H = L2 (D), A = -.6, 
D(A) = HJ(D) n H 2(D) and My = (I+ .6)y, D(M) = HJ(D) n H2 (D). It is 
readily seen that in this case the corresponding operator A has closed rauge 
in L2 (0, T; L2 (D)) and N(A*) = {0} = N(A). (We refer the reader to Carroll , 
Showalter, 1976, Favini, Yagi, 1999, and Sviridyuk, 1995, for physical examples 
and a treatment of such an equation.) 

3. Proofs of Theorems 2.1 and 2.2 

Proof of Theorem 2.1. We may equivalent ly write problem (3) as 

min {1T(g(C(yo + z)) + h(u))dt; A z = Bu + Lyo, 

u E L2(0,T;H) , z E L2(0,T;H)}. 

Let {zn, un} be a minimizing sequence for (19), i.e., 

d ~ 1T(g(C(yo + Zn) ) + h(un))dt ~ d + ~ 
where dis the infimum in (19) . We have 

A KZn =Bun+ KCzn + Lyo 

where K and AK are defined as in assumption (ii). 

(1 9) 

(20) 

We may write Zn = z~ + z; where z; E N(AK) and z~ E R(A[( ). (By as
sumption (ii), L2 (0,T;H) = N(AK)EBR(Ai().) SinceA[(1 

E L(R(Ard,R(Aj()) 
it follows by assumption (iii) that 

iz,l,i ~ C3 , Vn. (21) 

Moreover, z; = z~ +z~ where z~ E R(C*) an d z;, E N(C). We have denoted by 
C the realization of C in the space N(AK )CL2 (0, T ; H). Since N(Ag) is finite 
dimensional we have 

and so 

lz; l ~ C4, Vn 

because { Cz; = Cz~} is bounded in L2 (0, T; H) by the assumption s of Theorem 
2.1. We have also 

AK(z,l. + z; ) =Bun+ KC( z,l. + z~) + Lyo. 

Let 
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1Ln ----> u* weakly in L2 (0 , T; U). 

Since AI< is closed we have 

A(z*) = Bu* + Lyo 

while by (20) we see that 

laT(g(C(yo + z*) + h(u*))dt = d 

because the convex integrand is weakly lower semieontinuous. 
Hence {y* = z* + y0 , u*} is optimal. Assume now that Z = H and C = I. 

Let (yn, un) be a minimizing sequence for problem (3). Vle have as above 

and since the map u ____, y (y is a weak solu tion to (1)) has dosed graph in 
(L2 (0, T; U) xL2 (0, T; H) )w we infer by assumption (iv) tha t 

(Yn ,un) ____, (y*,u*) weakly in L2(0,T ;H) x L2(0,T;U), 

where (y*, u*) is an optimal pair of (3) . This completes the pmof. 

Proof of Theorem 2.2. 

Let (y*, u*) be optimal. Consider the approxim ating control probl em 

subject to 

d 
dt My+ Ly = Bu + v; (My)(O) = My0 

Here g" is the regularization of g, i. e., 

{ 
lz- ej~ } g"(z ) = inf 

2
E z + g(B); () E Z, E > 0 . 

• 

(22) 

(23) 

We recall (see, e.g. , Barbu , Precupauu , 198G) tha t .Cfc: is convex, Fn§c:het difl'er-
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By Theorem 2.1 and its proof it follows that (22) has a solut-ion (:ye: , 'lL e: , v":). 
We have 

1T ] 1·T (ge(C(ye: + .Az)) + h(u10 + .Au))dt + _:____ (l ·u10 + .Av. - <t* lf;+ 
0 2 0 

+lYe: + .Az- y* l2 )dt + ~E: 1Tive + .A(Az- Bu) l2dt :2: 

T T ·T 

:2:1 (ge(Cye) + h(ue))dt + ~1 (l ·ue- 1/.*l lr + lYe: - y*l 2 )dt + 2
1c.fo lvel2dt , 

V.A > 0, Vz E D(A) , 

because y10 + .Az is a weak solution to 

d 
dt My+ Ly = B-u10 + Ve: + .AAz , (My)(O) = M y0 . 

This yields 

1T((C*"Vg10 (Cy 10 ), z) + h'(<t10 , u))clt + 1 T(1L e: - <t*, u)udt+ 

+ ((Yc: - y* , z )dt + ~ ((Az, v10 )dt - ~ ( T(Bn , ve: )dt 
Jo c}o c./o (24) 

for all z E D(A) ,u E L2 (0 ,T;U). (Here h' is the dircct.iona.l deri va tive of h.) 
1 . 

We set Pc: = -vc: and take u = 0 m (3.6). vVe get 
E: 

(Az,pe:) + 1 T(C*"Vge:(Cye: ) + Ye: - y*, z )rlt = 0, Vz E D(A ). 

Hence, Pe: E D(A*) and 

-A*p" = C*V gc: (Cy c: ) + Yc: - y*. 

Then by (24) we have 

1T(h'(ue;, u) - (u, B*pc: + u* - uc)u )dt :2: 0 

for all u E L2 (0, T; U). This yields 

B*pc; + u*- Uc; E oh('uc; ), a.. e. in (0 , T ). 

On the other hand, we have 

1 T(gc: (Cyc: ) + h(uc:))dt + ~1T(IYe: - y*l2 + lue:- <t* l ?~ )cit+ 

1 rT _ rT _ ' - . , . I * " .. - rTf {,---, *' . I I *" _u 

(25) 

(26) 

(27) 

(()0\ 
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Selecting a subsequence we may assume that 

u10 ~ 1/, weakly in 1 2 (0, T; U) 

Yo ~ y weakly in 1 2 (0, T; H ) (29) 

where (y, u) satisfy the system (1). 
Then by (29) we see that (the convex in tegrand is weakly lower sernicontinuous) 

foT(g( CY) +h.( u) )dt+ 

+ lim sup(-
2

1 
f (IYc: _Y*I 2 + i1t"-u*l~r + ~ lvc l 2 )dt) c~o Jo "-

:S fo(g(Cy*) + h(u*) )dt. 

Since (y*, u*) is optimal in (3) we conclude that 

U 10 ~ u* strongly in 1 2 (0, T; U) 

Yc ~ y* strongly in 1 2 (0, T ; H ) 

v" ~ 0 strongly in 1 2 (0 , T ; H) . 

Next, by (26) and assumption (ii ) we see that 

foTiB*p" i ~ dt :S C4, Vt E (0 , T) . 

and we may rewrite (25) as 

-(AF )*p" = C*\l g"(y") + Yc - y* - F* B *p". 

Since the right hand side of (33) is bonndecl in 1 2 (0 , T; H), we have 

1 2 
Pc = Pc + Pc 

where p~ E N(Ap) and 

fo riP!i 2dt :S Cs, Vc: > 0. 

On the other hand , by (33) we may write 

p; = p~ + p~ 
where B*p~ = 0 and IP~ I P (O,T; H) :S CG . 

(The restriction of B* to N(Ap) has closed range.) \11/e have therefore 

(30) 

(31) 

(32) 

(33) 

(34) 
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and {qc = p; + p;} is bounded in L2 (0, T ; H ). Then we may pass to the limi t 
in (26), (35) to get (9) as claimed. 

The sufficiency of the system (9), (1 0), (1 1) for optimality follows in a stan
dard way (see, e.g., Barbu, Precupanu, 1986, Chap. IV) from the definition of 
8g, 8h* and the duality equality (8) . 

4. Strong solutions to degenerate differential equations 

In this section we outline some results on degenerate differential equations and 
their solutions in a special but important case. 

Here H denotes a (complex) Hilbert space with inner product(-, ·) aud norm 
II · 11. We are given two closed linear operators L, M from H into itself, with 
domain V( L) and V( M), respectively, such that 

V(L) ~ V(M), 0 E p(L) . (36) 

Given f E L2 (0 , T; H), u0 E V(L), when T > 0 is fixed, we define a solution 11. 

to the initial value problem 

d 
dt (Mu)(t) + Lu(t) = f(t), 0 < t < T, 

(Mu)(O) = Muo, 

(37) 

(38) 

as an element u of L2 (0, T; V(L)), such that Mu E H 1 (0, T; H), the equation 
(37) holds almost everywhere on (0, T) and (38) is satisfied . 

System (37), (38) has had a wide treatment in the li t erature and we quote 
Sviridyuk and Efremov ( 1995) for arguments related to ours. Here we extend 
the method developed in the monograph by Favini and Yagi (1999) for solu tions 
in C[O, T; H] to solutions in L2 (0, T; H). 

To this end we shall assume that A = 0 is a polar singularity of the resolvent 
(.A+ T)-1 , where T = M L -t( E L(H)) , so that 

c 
II(.A + T)- 1 IIC(H) = IIL(.AL + M) - l IIL'.(H) ::=; I.Aim' 0 < I.A I ::=;co , (39) 

where m is an integer ~ 1. Of course, (39) reads equivalently 

IIL(f.LM + L)-1 llc(H) :::; Clf.llm-l , l~t l ~ c:() 1

• 

Then it is well known that the representation H = N(Tm) EB R(T"'·) holds, so 
that if P denotes the project ion operator onto N(Tm ), then P commutes with 
T and system (37), (38) splits into the couple of problems 

d 
rlt T1Pv(t) + Pv(t) = P f(t) , 0 < t < T, 



Control of d egenerate diffe rent ia l systems 

and 

:t T2(1 - P)v(t) + (.1 - P)v(t) = (1 - P)f (t), 0 < t < T, 

T2(l - P)v(O) = T2(.l - P)vo, 

407 

( 42) 

( 43) 

where T1 denotes the restriction ofT to N(Tm) and T2 is the restriction ofT 
to R(Tm); the new unknown v(t) is clearly v(t) = Lu(t) and Lu0 = v0 . 

An important fact should be observed, namely that T2 has a bounded inverse 
(in L(R(Tm)) and thus necessarily each solution (1 - P)v(t) to (42) , (43) has a 
derivative and in fact it satisfies 

i.e. , 

T2 :t (1 - P)v(t) + (l- P)v(t) = (.1 - P )f(t), 

(1 - P)v(O) = (1 - P)vo, 

:t (1 - P)v(t) + T2-
1(l- P)v(t) = T2-

1 (1 - P)f(t), 

(1 - P)v(O) = (1 - P)vo . 

Moreover, (1 - P)v(t) is given by 

t (1 - P)v(t) = e -tT2-
1 

(1 - P)vo + Jo e- (t-s )T2-
1
T2-

1 (.1 - P)f(s)cls. 

for all f E L2 (0, T; H). 
Concerning the system (40), (41) , we observe that T1m = 0, and hence it 

is easily seen that the unique solution to ( 40) is guaranteed by the assumption 
that f E Hm-l (0, T; H) and is given by 

m-l 

Pv(t) = L_(-l)lT{PJUl(t). 
j =O 

Furthermore, Pv(t) satisfies ( 41) if and only if 

m-2 

L (-1 )JT{+l jUl(o) = T Pvo = T1 Pvo, m ;::: 2. 
j =O 

Therefore, if m = 1 (this is the case of .A = 0 a simple pole for ( z + T) -l) , then 

v(t) = Pf(t) + e-tT2-
1 
(1- P)v0 +lot e- (t- s )T2-

1
T

2
- 1 (1 - P)f(s)cls , 

and only f E L2 (0, T; H) is needed . Notice that 
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If m 2: 2, assumption f E Hm- 1(0 ,T;H) assures that Tu(t) has a 1irnit as 
t-----+ 0. However , iff E H'(;'- 1 (0,T:H), where 

H0- 1(0, T; H) = {.f E H m- J (0, T; H ); J(j)(O) = 0, j = 0, I, ... , m - 2} 

then Tv(t) converges to 12(1 - P)v0 E R(Tm+ l) = R(T'"'). Observe t hat if 
vo E R(Tm) then T2(L- P)vo = T(1 - P)vo = Tvo . 

In any case, t he solution u to (37) is unique and it. is given by 

m - 1 

u(t) = L(-1)jL- 1T{Pj (j l(t)+L- 1e- 112-
1
(1·- P )v0+ 

j =O 

+ 1t L - l e- (t -s )72-ly2- l ( l - P)f(s)ds. 

Clearly, iff E Hm(o , T; H) , then ·n is more regular , iu the sense tha t ·u E 
H 1 (0, T; V(M)), and equation (37) holds in the stronger sense 

du 
M dt + Lu(t) = j(t) , 0 < t < T ( 44) 

almost everywhere on (0 , T). Since rn 2: I , ·n is strongly continuous a t. t = 0, so 
that 

m- 1 

u(O) = L ( - 1)1 L - 1Tf P f(j)(O) + L- 1 (1 - P)vo. 
j =O 

Therefore, iff E H0 (0, T; H), then the Cauchy problem (44),( '15) , where 

u(O) = ·uo, ( Lj 5) 

1 . da ") 
has a unique solution 11 E H (0, T, H) , -l E L~(o, T ; D(fvf)) provided that 

ct 
Luo E R(Tm). 

It is readily seen that also the problem 

M!~ (t)- Lu(t) = j (t), 0 < t < T, 

a .e. in (0 , T), with 

u(T) = u E H 

admits a solution u E H 1 (0 , T; H) , diu E £ 2 (0 , T; V(M)) if 
ct 

f E H;"(O, T; H ) = {.f E Hm(o, T; H ); jUl (T) = 0, j = 0, . .. , ·,n - I} 

( 47) 
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5. The linear quadratic optimal control problem 

The analysis of Section 4 concerning equation (37) clarifies the difference be
tween the case when z = 0 is a simple pole or a higher order pol e for Lh e resolvent 
(z+T) - 1 . 

Therefore we shall describe two different , although related, optimal control 
problems. 

vVe begin with the case where m ~ 2. Here we have, as above, three real 
Hilbert spaces H, U, Z with norms II · II H , II · llu ,II · II z, respectively, and corre
sponding inner products (, ) H , (,) u, (,) z . We assume that the closed linear 
operators M, Lin H satisfy the same assumptions as in Section 4 with m ~ 2, 
T E lv:IL -l , B E £(U, H), C E £(H, Z), Nq E £ (U) is a self- adjoin t positive 
definite operator for q = 0, ... , m- 1. Finally, let U be a closed convex subset 
of H[;'- 1 (0, T; U) and let f E H~'- 1 (0, T; H ), Yo E D(L), yo(-) E L2 (0, T; H) . We 
shall consider the initial- value problem in L2 (0, T; H ) 

d 
dt(My) = -Ly + f + B tt, 0 < t < T, (48) 

My(O) = Myo (= T:ro), (49) 

where tt E U. We know from Section Ll that (48), (49) has a unique solution 
y = y(u). Define the cost functional 

J(u) = 1riC(y(u)(t) - Yo(t)) l1 dt + 
1

~ 1 r (Nqu(q)(t) , ·n(q)( t )) u dt . 
0 q= O 0 

Then the optimal control problem consists in finding n * E U such that 

J(u*) = inf J(u). 
uEU 

(50) 

We have 

THEOREM 5.1. Under the above hypotheses there exists a tmiq1te optimal contr'Ol 
u* E U for (48), (49) , (50). 

Proof. First of all , we observe that the bracket 
m-1 r 

[u,v] = 2:.1 (Nqu(q)(t),v(q)(t)) u dt 
q= O 0 

is a continuous bilinear coercive form on H[;·- 1 (0 , T; U). 
Moreover, since B induces a. cont inuous operator from H0"- 1 (0, T; U) into 

H[;' - 1(0, T; H) and f E H[;'- 1(0 , T; H) , the mapping ·u ---+ y(·u) , where accord
ing to Section 4, with the same notation , 

m -1 

y( u)(t) = L ( - 1 )j L - l T/ P(f(j) (t) + Hu(j) (t)) + L - I e- tT2-' xo+ 
j=O 

n \ I 1' I _ \ , n f \\ r 
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is continuous from H'f!'- 1 (0, r; U) into L 2 (0, r ; H). 
The functions 

1r( u, v) = (C[y( u) - y(O)], C[y(v) - y(O )J) z + [u, v], 

P(u) = (C[yo(-) - y(O)], C[y(u)- y(O)J) z, 

where Z = L2 (0, r; Z) , are well defined and it is readily seen that 

J(u) = 1r(u,u)- 2£(u) + IIC[yo(-) - y(O)]II~ · 

is continuous and coercive which concludes the proof. • 
Remark 5.1 A similar technique was used in the paper by Sviridyuk and 

Efremov (1995). 
Let us discuss the case of m = 1. Then we know that for all f E £ 2 (0, r; H) 

and any Yo E V(L), the solution y = y(11) to (48), (49) exists and it is given by 

y(t) = y(u)(t) = L- 1P[f(t ) + B1t(t)] + L _, e - tr 2-
1 
(1- P)Ly0+ 

+ 1t L-le-(t-s)T2-
1
T

2
- 1(1 - P)[f(s) + B11(s)]ds. 

Notice that T(l- P)Lyo = TLyo = Myo. 
Hence, u----) y(u) is a continuous mapping from L2 (0, r; U) into L2 (0, r ; H). 

Take C E L(H; Z), No= N = N* > 0, N E L(U ), y0 (-) E £ 2 (0, r ; H) . At last, 
let U be a closed convex subset of L2 (0, r; U). The cost fun ctional J has then 
the form 

J(u) = (lC(y(u)(t) - Yo(t))l~dt + ( (Nu (t), 'IL(t) )u dt. Jo lo 
Since J(u) = 1r(u, u) - 2£(1!) + II C(yo(·) - y(O))II~ , where n(IL, v) and f ('u) were 
previously defined, with m = 1, we get the following result: 

THEOREM 5.2. Let m = l and let Yo E V(L) . Then, under the above assump
tions the optimal control problem (5.3) for ( 48), ( 49) has a unique solution. 

Our next step consists in extending the analysis of Lions (1968) to arrive 
at the results close to Theorem 2.1 and Remark 2.3 in Lions (1 968) , pp.J J4-
ll5 . Here the situation is rather more deli cate because there is a possible 
lack of regularity in the solution y( u) and much caution must be used. By 
Lions (1968, Theorem 1.2, p.9) , we know that the optimal control 11. , whose 
existence and uniqueness is guaranteed by Theorem 5. 2, is characteri zed by 
1r(1t, v- u) ;::: P(v- u) for all v E U, and in part icular, if U = £ 2(0, r; U), by 
1r(u, cp) = P(cp) for all cp E £ 2 (0, r ; U). Now 

0 :S 1r(u, v- u) - P(v - u) = (C(y(H)- y(O)) , C(y(v - 11) - y(O) )) z + 
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(C(y(u)- Yo( ·)), C(y(v- ·n) - y(O)) ) z + (Nn, v- u) L2(0,T:l! ) = 

(C(y(u)- Yo( ·)) , C(y(v) - y(u))) z + (N·u, v- u) L2(0 ,T;U ) = 

411 

loT (C*C(y(u)(t)- Yo(t)), y(v)(t) - y(·n)(t) ) H dt + (Nn, V- '11) L2(0,T;U), 

for all v E U. 
Assume the existence of the adjoint state p(u) E L2 (0,T;'D(L*)) n H;(O ,T;H) 
satisfying 

-M* ~~ + L*p = C*C(y(1t)- y0 (-)) , 0 < t < T, 

p(u)(T) = 0. 

(51) 

(52) 

Notice that (51) yields M* ~~ E L2 (0 , T; H) , but from Section 4 we know that 

more regularity is needed for y(u) to conclude that such a solu tion p('ll.) exists. 
Multiplying bot h sides of (51) by y(v)- y(v.), and taking into account that 

loT ( -Jvf* dpd~L) ' y(v)- y(u)) H dt = 

-loT ( dpd~u) 'M(y(v)- y(1t))) H dt = 

= r I p(u), !!_(My(v)- My(u))) dt Jo \ dt 1-1 

and 

loT (L*p(u), y(v) - y(u) ) H dt =loT (p(1t), L[y(v) - y('u.)]) H dt 

yields 

loT (C*C(y(u)(t) - Yo(t)), y(v)(t)- y(1t)(t) ) H clt = 

=loT ( -M* d:~L) + L*p(u), y(v)(t) - y(u)(t)) 
11 

dt = 

=loT (p(u)(t) , ( :t M + L) (y(v) - y(v.))) fl dt = 

= r (p(ct)(t) , Bv(t) - Bu(t) ) H clt = r (B*p(u)(t) , v(t)- u(t) )u dt = 
lo lo 

= (B*p(u), V- u) L2(0,T;U). 
Therefore, an admissible control ·u satisfying the following sys tern 
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-M* d~~u) + L*p(u) = C*C(y(u)- yo(-)), 0 < t < T, 

My(u)(O) = My0 , p(u)(T) = 0, My(u) E H 1(0, T; H)) , p(u) E H 1 (0, T; H) , 

(B*p(u) + Nu, v- u) £2(0 ,T;U ) ;::: 0, for all v E U, 

is necessarily the unique optimal control for (48) , (49) , (GO). In particular, if 
U = L2 (0, T; U), the last inequality reduces to 1l = - N- 1 B*p, so that we have 
(compare with Theorem 2.2) 

THEOREM 5.3. Let m = 1, U = L2 (0, T; U) . Under the asS'tl'mpt·ions above, if 
the degenerate two- point problem 

:t (My)+ Ly + BN-] B *p = J, 0 < t < T, 

-M* ~~ + L*p = C*C(y- y0 (-)), 0 < t < T 

My(O) = My0 , p(T) = 0, 

(53) 

(54) 

(55) 

has a solution (y, p), y E L2 (0, T; V(L) ), My E H1 (0, T; H ), p E L2 (0, T; V(L *) )n 
H 1 (0, T; H), then u = - N- 1 B*p is the unique optimal control fo r the pmblem 
(48) , (49), (50). 

Now, the system (53) "-' (55) does not seem to be too satisfactory because 
(54) requires more regularity for p (and hence for y) than one expects. Clearly, 
one should like to substitute (54) with the less restrictive differenti al equation 

- :t (M*p) + L*p = C*C(y - y0 (-)) , (56) 

and (55) with the boundary conditions 

My(O) = Myo, M*p(T) = 0. (57) 

In fact we shall exploit the special features due to the presence of a simple pole 
0 for (>.+T)-1, (>.+S)- 1 , where T = ML- 1 , S = M*L*- 1 , to show that if 
the pair (y,p) satisfies the system (53) , (56) , (57), then u = - N-1 B *p is the 
optimal control. 

Let P denote the projection onto N(M L - l) and let Q be the projection 
onto N(M* L*- 1 ). Then (56), (57) reads equivalently 

d-
-dt S(l- Q)q(t) + (1 - Q)q(t) 

Qq(t) 

(1 - Q)C*C(y(t) - Yo(t)) , 

QC*C(y(t ) - Yo(t)) , 

(58) 

(59) 
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on (O,T) where Sis the restriction of S to R(S) and q(t) = L*p(t ). Since S bas 
a bounded inverse '§-l E £(R(S)) , equation (58) takes the form 

d -
- dt (1 - Q)q(t) + s-1 (1 - Q)q(t) = 

= s-1(1- Q)C*C(y(t) - Yo(t)) , 0 < t < T 

so that (58), (59), (60) guarantee that in fact 

S :t (1 - Q)q(t) + q(t) = C*C(y(t) - y0(t)) 

holds. Therefore, 

0 ::::; 1r( U, V - U) - f( V - 1L) = 

=for (C*C[y(u)(t) - Yo(t) ], y(v )(t)- y(n)(t) ) H dt+ 

+ (Nu, v- u) U(O,r ;U) = 

=for ( -S :t (1 - Q)q(u)(t), y(v)(t) - y(u)(t)) H dt+ 

+for (p(u)(t) , L*[y(v)(t)- y(1t)(t)]) H clt+ 

+ (Nu, v- u) U(O ,r ;U ) . 

Moreover, 

for ( -S :t (1 - Q)q(1t)(t) , y(v)(t) - y(u)(t)) H dt = 

= - r I ~(1 - Q)q(u)(t), L - 1 M[y(v)(t) - y(u)(t)J) dt, h \& H 

(1- Q)q(u)(T) = 0, and there exists the lim(l - Q)q(u)(t) . This yields 
t-o 

for ( - S :t (1 - Q)q(u)(t), y(v)(t) - y(u)(t)) H dt = 

=for ( L*- 1(1- Q)q(u)(t), :t M[y(v)(t)- y(u)(t)]) H dt = 

(60) 

=for ( L*-1 (1 - Q)q(u)(t), :tML- 1(1 - P)[Ly(v)(t)- Ly(v.)(t)J) H dt = 

= r I L* - 1 (1 - Q)q(u)(t), M L -l .:£(1 - P)[Ly(v)(t) - Ly(1t)(t) J) dt = 
lo \ dt H 

D \ T [., ( •. \1+\ .. .f ... \ I 4-\ l \ -1+ 
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= loT ( M* L* - 1q(1L)(t), L - I :t (J - P)L [y(v)(t)- y('u)(t) ]) H dt = 

=loT (p( u)(t), :t M L - 1 L [y(v )(t) - y(1L)(t) ]) H dt = 

= loT (p(u)(t), :tM[y(v)(t) - y(u)(t)J) H dt . 

It follows that 

0 ~ 1r(u, v- u) - l!(v - u) = 

=loT (p( u)(t), ( :t M + L(y(v )(t) - y( 11)(t))) H dt + (Nn , v - n) £ 2(0 ,T; U ) = 

=loT (p(u)(t), B(v(t) - u(t)) ) H dt + (Nv,, v - n) £2 (0 ,r;U ) = 

= (B *p(u) + Nu, v - u) £2(0 ,T;U ) 

for all admissible v E U. 
We can now sta te t he following improvement of Theorem 5.3. 

THEOREM 5 .4. Let A = 0 be a simple pole fo r (A + T ) -I , (A + S)- 1 , wher-e 
T = ML- 1 , S = M *L*- 1 . If the pair- (y ,p) sat·isfi es (53), (56), (57), where 
y0 E V(L) , My E H1 (0 ,T;H), M*p E H 1 (0,T; H ), then u = -N- 1B*p is the 
unique optimal control for (48)rv(50) with U = L2(0, T; U). 

The solvability of (53) , (56) , (57) will be considered elsewhere. 
Example 5.1 We can illustrate the last resul t wi th a simple but enlightening 
example. We are required to minimi ze 

J(u, v ) = loT{ x(t) 2 + y( t)2 + u(t) 2 + v(t) 2 }dt 

over u , v E L2 (0, T), under t he constraints 

0 = -x(t)- v(t) + f(t), 0 < t < T, 

y'(t) = - y(t) + u(t) , 0 < t < T, 

y(O) = 0. 

Here f E L2(0,T) is given. We take H = L2(0,T) x L2(0,T ) = L2 (0 ,T;R2
), 

M = [ ~ ~ ] , L = N = [ ~ ~ ] = C, B = [ ~ ~J ] . 

Clearly, J(u, v) = lor{[(f(t) - v(t) )2 + v(t )2
] + [y(t)2 + u(t) 2 ]}dt ;::: 2 lor[v( t)2

-

]r 
f(t) v(t) + f(t) 2 / 2]dt ;::: i/n f(t) 2dt takes its minimum in (0, f / 2) = (·u, 1! ) and 
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On the other hand, the system (53) , (56), (57) can be written as 

:t [ ~ ~ ] [ ~ ] = - [ ~ ] - [ ~] ~] ] [ ~ ] + [ jg) ] , 0 < t < T, 

-:t [ ~ ~ ] [ ~ ] = - [ ~ ] + [ ~ ] , 0 < t < T , 

y(O) = q(T) = 0, 

i.e ., 

0 = -x- p + f(t) , 0 < t < T, 

I y = - y- q, 

0 = -p+x, 

-q' = -q+y, 

0 < t < T, 

0 < t < T , 

0 < t < T. 

(61) 

(62) 

(63) 

(64) 

The two point boundary value problem (62) , (64) has the unique t ri vial solution 
y(t) = q(t) = 0. This yields x (t) = p(t) = f(t)/2 and 

(u,v) = - B*(p,q) = [ ~ ~l] [ ~] = (O,f/2) 

is the optimal control, as desired. 

Example 5.2 Let D c Rn , u 2: 2, be a bounded domain of Rn with a smooth 
boundary an. In the cylinder Dx (O,T) consider the initial boundary value 
problem 

a at (.Ao - 6)y = aD..y - f3 D.. 2y - f + 'll , 

(.Ao- D..)y(x,O) = (.Ao- D..)yo(x), X E n, 

y(x , t) = D..y(x , t) = 0, (x, t) E anx (0, T) , 

where .A0 is the first negative eigenvalue of the Laplacian 6, with Dirichlet 
boundary conditions, a, f3 > 0, f E L2 (D x (0 , T)) is given, y0 E HJ (D) n H 2 (D) 
is the given initial condition, and 1t E L2 (Dx (0, T)) is the control. Simil ar 
equations model the. evolution of a free surface of a filt ered fluid. The spectral 
properties of the involved operators are described in Sviridyuk and Efremov 
(1995), where a precise representation of the pencil (.AM +L)- 1 is also given. Of 
course, here L , Mare the operators in L2 (D) = H associated with -aD.+ {36 2 

and .A0 - 6, respectively. Then , D(L) = {'u E H2 (D) : n E Hl\(n) , 6.11, E 
H{j(D) n H 2 (D)}, V(M) = HJ(D) n H 2 (D). 

By Sviridyuk and Efremov (1995) , p.1888, one sees that .A = 0 is a simple pole 
for L(.AL + M)- 1. Therefore, Theorems 5.2 and 5.4 work for th e cost fun ctional 

J(u) = (ly(t)l7.2ro,dt + (l1t(t )i7 2fmdt. 
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6. Null controllability of the degenerate heat equation 

Consider the controlled system (see ( 1 3)) 

(dy)t(x, t)- D.y(x, t) = m(x)'LL(x , t), 

(dy)(x, 0) = d(x)yo(x), 

(x,t) E Q = f2 x(O,T) 

xED 

y = 0 in ~' (65) 

where d E C 2(0), d(x) 2' 0, 'Vx E f2 and m is the chara.cLeristic fu nction of an 
open subset w c n. As usuall y, f2 is an open and bounded subset of nn with a 
smooth boundary em. 

The existence result below is well known (see, e.g., Barbu , Favin.i, Romanelli, 
1996). However, we recall it for convenience. 

LEMMA 6.1. Let Yo E H6(f2). Then equat-ion (6. 1) has 11 ·u.n'iqu.e weak solution 
y E L 2(0, T ; H6(D)) which satisfies 

(dy)t E L2 (0, T; H - 1 (f2)), dy E C([O, T]; L2 (f2)). 

Jj'U E W 1•2 ([0,T];L2 (f2)) then 

(dy)t E L2 (Q) , y E L2(0, T; HJ(D) n H 2 (r2 )) 

and vd y E C([O, T]; L2 (r2)). 

Proof. One approximates (65) by 

((d +E:)Y)t-Doy = nw, m Q 
(d + E:)y(x, 0) = (d + E:)yo(x), x E f2; y = 0 in ~ 

which has a. unique solution Yo E H 2• 1 ( Q). 
vVe have the apriori estimates 

hl\ly"(x, tWdx dt + k(cl(x) + E:)y:(x,t)d.r ::::; 

::::; C (l (d(x) + E:) )y6 (x) dx + fo m·n2dx clt) . 

Then, one obtains the desired result letting E: tend to zero in (67) . 

(66) 

(67) 

(68) 

If 'U E W 1•2 ([0 , T]; L 2 (r2) ) then, multiplyin g (67) by Yt and !:::, y, we obtaiu 
the estimate 

hiD-Yc:l 2dx dt + l d(:r) I'V:uc:(x, t)l 2dx ::::; 

::::; C (ll\lyol
2
dx + ll ull~n2( [0,Tl;P(Q))) 
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THEOREM 6.1. For each y0 E H(\(12) thenc: iii n E L2 (Q) .such 1;/ud 

(dyu)(x, T) = 0, a. e. X En 
where yu ·is the solu.t·ion to ( 65). 
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(60) 

This theorem ressembles some recent results on tbe nu ll i11temal r·ontrolla
bility of the heat equation (see Pursikov , Jrnanuvilov , 19%, Lebeau, Hobbiano, 
1995). In particular, we derive by Theorern G.! the boundary conirollabil ity of 
equation (65). 

THEOREM 6.2. Let y0 E Hi\(D) . Then there is v E L2(L;) s·uch that the solution 

Yv to equation 

(dy)t(x, t)- 6.y(x, t) = 0 ·in Q 
(dy)(x, 0) = d(:~:)yo(x) ·in n 

y =v in I; (70) 

satisfies (dyV)(x , T) = 0 a. e. :r En. 
Proof of Theorem 6.2. Let 0 be a n open set such that ncfi and set w = 0\0, 
Q = Ox(O,T). We shall apply Theorem G.l on Q where Yo and dare suitably 

extended to 0. Accordingly, there are yand :U E L2 (Q) such that (clY)(x, T) = 0 
a.e. x En. Then the restriction y of !J to Q satisfi es (G .5) with v = !'o(Y). (Here 

'"Yo is the trace of y E £ 2 (0, T; Hd (12)) to Dncn.) This completes the proof of 
Theorem 6.2. • 

In order to prove Theorem G. ·1 we need a Carl ern an's type estimate for the 
solutions to homogeneous equation 

(d(x)y)t- 6.y = 0 iu Q 
y = 0 on I;. 

Let w0 c cw and let 'lj; E C2 (0) be such that 

·tj;(x) > 0, 'r:/x En, 'l/;lan = 0, j'V·Ij;(:r)l > 0, 'r:/:r E Do= n \ Wo. 

(71) 

(72) 

The existence of such a functio n ·lj; h<1 S been proved i 11 Fu rsi kov, I manu vi lov 
(1996). We set 

e>-1/, (x) e ·' ·~· ( :,;) _ c2-' llu·llqn> 

cp(x,t) = t(T-t)' o(x,t) = t(T - t) 

where A > 0. The proof of Lemma 6.2 below is essentia ll y the same as ihat of 
Lemma 1.2 in Furs ikov, Tm a nuvilov ('1996) ami so it wil l be omi t.tccl. 

LEMMA 6.2. There ex·ists s0, Ao > 0 s1tch lhut for s 2 s0 and A 2 /\o we have 

j. (e28o:(cp- 1 (dy)z + cp3 y2 + <pj'V:1;j 2 )d:ult :::; cj' y 2 e2so- c/rh dt (7:3) 
Q ~ 
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COROLLARY 6.1. There is C independent of y s·u.ch that 

(74) 

for each solution y to 70. 

Proof. By (70) we see that the function t _, 1 d(1·) y2 (:z:, t)cl:r is decreasing. 
n 

Hence 

l d(x)y2(x, T)dx:::; l d(x )y2(1:, t)rl:r::::; 

:::; Ct l e 2so:(x,t)y2 (:r, t)rlx, Vt E (0, T). 

Integrating on (a, a+c:) where 0 < a < a+c: < T and using Carleman 's estimate 
(73) we obtain (74) as claimed. • 
Proof of Theorem 6.1. Consider the optimal control problel)J 

Minimize k 1L
2dx dt + ±l d(x)y 2 (:r, T)d:r subject to (65). (75) 

It is readily seen that (75) has a unique sol ution (yA, nA)· Moreover , it satisfies 
the equations 

U>.(x, t) = m(x)p>.(x, t )a.e.(x , t) E Q 
(dp>.)t + 6.p>. = 0 in Q 

(dp>.)(x, T) = - ±dy>.(x, T) in Sl 

and therefore 

kmp~(x, t)dxdt = 

= l d(x)(p>.(x, T)y>.(x, T ) - p,\(x, O)yA(:r, O))dx. 

(76) 

(77) 

(78) 

This is obvious if d > 0 inTI because as meutionecl earlier , in this c<Jse P>.,YA E 
H 2•1(Q). In t he general case we replace (75) by 

Minimize 1 u2dxdt + ±l d"y 2 (x, T)clx subject to (G7). 
Q 0 

(79) 
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Let (ye, 1te) be t he corresponding solut ion to (79) 8nd le t 1/ be t he solu tiou 
to t he dual system 

de(rl) t +~PC = 0 in Q 
1 

de(x)p"(x , T) = - ):, cl<(:r)ye(J: , T) in Q 

p€ = 0 Ill I: . 

We have 

mpe = ·u e , a. e. in Q. 

By (80) we see that 

( (u<)2dxdt + ±j. do- (:r:)(:t/f(.1, T)1Lr: :S 
.JQ n 

/' lj' :S 11
2 dx dt + ):, rle (x) (:i/)2 (:1:, T)d:r 

· Q n 

(80) 

for any ·u E L 2 (Q) where f/ is t he solntio11 to (Ci7). T his i lli pli cs tJwt, 011 a 
subsequence, 

n c: -> ·n,\ weakly in L2 (Q) 

Yo- -> Y>-weaklyin L2 (0 ,T;H6(12)) 

jd;ye -> Vdy\ strongly in C ([O, T]: L2 (D.) ). 

(See Lemma G.l.) 
Similarly for the solu t ions p" to (80) . Since (76) is obvi ously s; Jt isfi cd for y" 

and p< we get it for Y\ a nd P>- by le tti ng E Lend to zero. 
Now by (75), (76) we have 

j. ·mp~dx dt + ±j" d(:r )y~ (:r, T)rl:r = { r!(:r)p\ (:r , O):y0 (:r)cl. t: . 
Q n ./n 

By es timate (73) we see that 

1 u~dxdt + ±l cl( :t:)y~(x , T)cl.?:::::; C, VA > 0. 
Q n 

T hus on a subsequence, again denoted A, 

·u,\ -> ·n* weakly in L 2 (Q) 

Vdy\(-,T) -> 0 stroJ 1gly in L2 (12 )) . 

Letting A ien cl to zero in t he equat iOJJ s 

(8 1) 



420 

and recalling the estimate (68) we infer that 

Y>- -------. y* weakly in L2 (0, T; H6 (12)) 

V. l3AIUW a11d :\. FAVINI 

where y* is the solution to (65) for tl = u*. By (81) it is also clear that 
(dy)(x, T) = 0, a .. e. X En. This completes the proof. • 

References 

BARBU, V., PRECUPANU , T. ( 1986) Convc:city and Optim.ization in Banach 
Spaces. D. Reidel, Dordrecht. 

BARBU, V., FAVINI , A., ROMANELLI , S. (1996) Degenerate evolution equa
tions and regularity of their associated semigroups. Funk. Ekvacioj, 39, 
421-448. 

CARROLL, R..W., SHOWALTER, R..E. (1976) S·ingular and Degenerate Cauchy 
Problems. Academic P ress, New York. 

FAVINI, A., YAGI, A . (19 99) Degenerate D'ijjeTential in Banach S7Jaces. M. 
Dekker, New York. 

FURSIKOV, A.V., IMANUVILOV, O.Yu . (1996) Controlla/ri.lity of Kvolub.on 
Equations. Lecture Notes Seri es 34, R.Evf , Seoul Un iversity Korea. 

LEBEAU, G., R.OBBIANO, L. (1995) Contr61e exact de ]'eq uati on de Ia chaleur . 
Comm. P.D.E. 20, 335- 356. 

LIONS, J 0 L. ( 1 968) ContTole optimal des systemes !J01L'UCTnes ]J!LT ties equations 
a11x derivees partielles. Dunod, P aris,. 

LIONS, J. L. ( 1989) Controllabilit e exacte, pC'rtu.r-l;ations et stabilisaloi.on de sys
temes distribues. Masson, Paris. 

SVIRIDYUK, G.A. (1995) Linear equations of Sobolev type and strongly conti
nuous semigroups of solving operators with kernels. Russian Auul. Dokl. 
Math., 50, 137- 142. 

SVIRIDYUK , G.A. , EFREMOV, A .A. (Hl95) OptiJnal control of Sobolcv type 
linear equations with relatively p- sectorial operators. Diff. Umvnenia, 
31, 1912- 1916 (English translation , DUf. Eqns. 31 , (HJ95), 1882- 1890. 


