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A bstract: We consider a tripod as an exemplaric network of 
strings. We know that such a network is exactly controllable in t he 
natural fini te energy space, if, e.g., t he simple nodes are controlled 
by Dirichlet controls in H 1 (0, T). Assume that we want to calcul ate 
the corresponding norm-minimal controls using semi-discretization 
in space. We then obtain a system of coupled second-order-in-time 
ordinary differential equations with three control inputs. Controll a­
bili ty of the latter system can easily been checked by Kalm an's rank 
condition on each space discreLization level h. One expects, as h 
tends to zero, that the exact controll abili ty of the cont inuous sys­
tem is revealed. This expectat ion is frustrated , as has been slww 11 by 
Infante and Zuazua (1 998) for a single string and by Zua.zua. (1 999) 
for a membrane. Indeed, it was shown there that uniformity of ob­
servability estimates is lost in the limit. On the other hand , spectral 
filtering allows to cure this pathology. We show in this paper that 
similar results hold for our string network. The generali zation to 
arbitrary networks of strings in the out-of-the-plane as well as in 
the in-plane or 3-d-setup is then a technica l matter. Therefore , th is 
paper essentially extends the existing results to semidiscret iza.tions 
of wave equations on arbitrary irregul ar computational grids. 

K eywords: network of strings, semidiscretization, lack of uni­
form observa.bility, filtering. 
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1. Introduction 

The theory of exact controllab ility of ]-dimensional med w.ni cal s'in,qlc- Hn.k sys­
tems like strings and beams is by now fa irly complete. On th e other hand , re­
lated problems for dynamic networks of strings and beam:; still offer il basket. of 
open problems. This is pa.rti cul arily true for Euler-Bernoulli bea m sys t.erns, see 
Leugering and Schmidt (J 989) and very recently Dekoninck a nd Nicaise (1999) . 
As a general reference see Lagnese, Leugering and Schmid t ('1994). As cont rol 
theory is intrinsically linked to applicat ions, numerical simul ati ons of controlled 
problems and numerical rea lization of control laws are extremely impor tant. Tn 
addition, in cases where theoret ical results are lacking, num eri cal evidence is 
very important in supporting research on the continuous level. T herefore, reli ­
able numerical computations are also at t he heart of con trol t heory of infini te 
dimensional systems. The problem one is faced with, par ticula rl y iii the c8se of 
hyperbolic equations, is that physical phenomena, such as Anite speed of propa­
gation, do not exist in fini te dimensions . Th erefore, control stra tegies for in finite 
dimensional problems which make extensive use of such phenomena mi ght. II ave 
li ttle to do with those for Anit:c dim ensional ones. Our phil osophy, t herefore, is 
to stay as long as possibl e with the PDE-rn odels, use control desigiiS on that 
level and then discretize. 

Tn this context it has recently been observed by Infante and Zuar,ua ( 1998) , 
and Zuazua (1999), that approa.c:hing exactly controll8ble systems by naive semi­
discretizations and use of standard fini te-dimensional cont rol s trategies can be 
dangerous. In particular , they show tha t as the space discreti zation para meter 
h (in 1-d, or the 'size' of a finite element in 2-cl ) tends to zero, the uniformi ty 
of the corresponding observabil ity estimates gets lost . lt is showu that the ap­
proximation properties of the cigenfrequencics of the semi -discrete system arc 
responsible for this lack of uniformi ty. More precisely, asymptot ic gaps in th e 
spectrum, whi ch are essential for the appli calion of moment t echniques, do no 
longer hold for the semi-discrete approx im ations. As the spectral gap appears 
in the lower bound of t he controll ability Grammian - the di screte counterpart 
of the HUM operator -· such t hat t he lower bound tends to zero with the gap, 
bounded invertibili ty is los t in t he limi t. The cure for this pathology is to filt er 
the frequencies of the fini te dimensional problems 8ccordin g to the di screti zation 
level. It appears tha t such a fi ltering technique is strongly related t.o Tycltonov 
regulari zations of the controllabili ty problem. This relat ion is very important 
from the numerical point of view. The serni -disereti za. ti ou of rela ted probl ems 
and the corresponding Tychonov regul ari zat ions have been iuvcstig<'lted by Vasi­
lyev, Kurzhanskii and Potapov (1993) for a singl e strin g and by Leugering ( 1999) 
for networks. Vl/e fur ther note tha t this pathology extends to other impor tant 
opt imal control problems, namely t'ime optim.al control problems with pointwise 
norm bounds on the control. 

Si!l(~e the insie:ht in to the spectrum of l!;eneral networks of st rings (and 
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mandatory to us. Also, as networks of strings (aud beams) after semi-discreti za­
t ion can be considered as compu tational domains of continuous structures such 
as membranes (and plates) on very irregular grids, we considered tlw extension 
of the abovementioned results to such networks as a useful contri bution Lo the 
subject , even if finally the resul ts are very simil ar . 

Further research in this area is devoted to domain decompositi on techniques 
on the semi-discrete level, see Leugering (1999) (see also Lagnese, I 099 , Lagnese 
and Leugering, .1999 , and Leugering .1 997, 1999a, b). 

Let us now consider a simple star as shown below: 

x=l 

3 

x=O 

2 
1 

x=l x=l 

Figure l. A star shaped simple network of strings 

We will consider classical semi-di screti zation in the space of equations gov­
erning the motion of this star viewed a.s a system of three prestretched strings or 
three 1-d elastic elements. We will investigate boundary observat ion est imates, 
and finally we are going to define a fil tering device for the frequencies of the 
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This paper is organized as foUows. Tn the secon d section we discuss the 
continuous model and its main proper t ies. T his is followed by an ana lysis of 
the spectrum of the Laplace operator on the graph. Jn section t hree we t urn to 
the semi-discrete model and after clarifying the notation we present an analysis 
of the spectrum of the corresponding Laplacian on t he computationa l graph . 
The next sect ion contains the main blow- up resul t, t he deJini tion of an a p­
propriate subclass of solutions, t he fi lt eTed sol11tions, for whi ch we t hen derive 
t he boundary observabili ty estimate. We discuss t hen open points and possib le 
generalizations . F inally the appendix consists of the proofs of t he main lemmas . 

2. The continuous model and its spectral analysis 

We denote by uk(x, t), k = 1, 2, 3 the out-of-the-plane displacement of string 
number k. All strings are coupled at x = 0 and are supposed to satisfy non­
homogeneous Dirchlet conditions at the other end x = 1. \Ve take all physical 
constants equal to 1. Then, t he system of equations govern ing t he mot ion of 
the tripod (star, divinig rod ) is given by: 

3 

.• II 
Uk- uk 

uk(l,t) 

Uk(O,t) 

,L u~(O , t) 
k = l 

0, 0 < X < 1, 0 < t < T , /;: = 1 ' 2, 3, 

vk(t ), 0 < t < T, k = 1,2,3, 

Um(O, t) , 0 < t < T, k,m = 1, 2, 3, 

0, 0 < t < T 

( 1) 

(2) 

(3) 

(4) 

uk(x,O) 1Lko(x), ·itk(x,0) ='1Lk1(:r) , O <:r < I , k= 1,2 , 3. (5) 

We have denoted Ux, 1lt by 1/, 1't. Some remarks shou ld be made: 

REMARK 2.1 • Well posedness and TegtdaTity of solutions to system (1) - (5) 
have been proven by Lagnese, LeugeTing and Schm·idt ( 1994) for general 
networks, see also Le1tgering (1 999c) joT this paTtic1dar setup, some details 
will be discussed belo w. 

3 
• Condition (4) can be replaced by I: u~: (O, t) = miik(O, t), whC'rc m denotes 

k = .l 
a point mass at the multiple node. FaT such systerns see Ha:ns en and 
Zuazua (1995), Ming We 'i (1993) and Lcngering (1998). 

It is clear that we take t his system as an exem plari c model in order to 
keep t he notation as simple as possible, while still deali ng wit.h a nontrivial 
graph i.e. a non-serial situation. The gencrali za.L ion to arbi trary graphs in the 
SJ)irit of Lagnese, Leugering and Schmidt (1994) is possible bu t appears to be 
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some features of the continuous one. The energy of solutions is given by 

3 1 

E(t) = ~ L r. [l z'Lk(x, t) 1
2 + I ·u~(x, t) 1

2
] d:t 

k=l lo 
and it is conserved along time, i. e. 

E(t) = E(O), \10 < t < T. 

425 

(6) 

(7) 

We have chosen Dirichlet boundary controls at all simple nodes , pa.rt ly for 
convenience, partly to simplify the comparison with Lhe results of Infante and 
Zua.zua (1998) and Zuazua (1999). However, for reasons of' completeness we 
would like to discuss tbe possible choi ces of boundary conditions and conLrols 
for a general graph in some detail. 

REMARK 2.2 (REMARKS ON CONTROLLABILITY OF NETWORKS OF STRING S) 

We consider a general simply connected graph G as a refeTence configurat·ion of 
a network of strings. We apply contTols at s·imple nodes (the leaves). that is, at 
nodes with edge degree eqzwl to 1. We can have Dirchlet contmls and N e'll.rnann 
controls (or Robin-type controls). In orrleT to stay in a natwa.l finit e energy 
space we take Dirichlet controls fmm H 1 (0, T) , wheTeas Neumann contmls aTe 
assumed to be in L2 (0 , T). In the stuternents below we assum.e that the con­
tml t·ime is sufficiently large, such that the signals can tmvcl from contTolled 
nodes accross the entire gmph and back. W-ith this convention we may state the 
following known facts ·in a somewhat ·ir1j'oTma.l way: 

• Let G be a tree with all simple nodes contmlled {eitheT D·iTichl.et.. Nev.m.an 
or Robin conditions) . This is the simplest of all cases, a.nrl th·is one is dis­
cussed in this paper as a model pToblern. Then one has e.Tact co·ntmllalril'ity 
of finite eneTgy solut·ions. 

• Let G be a moted tree with the Toot being clamped. If all. the leaves 
aTe controlled one obtains exact contTollab·ility of .finde enenm solut:ions.. 
for Dirichlet or Neumann bo"U.ndary controls or a mi:r:tu:re of both. See 
Lagnese, Le1Lgering and Schm·idt {1 994) . 

• Let G be a rooted tree wi.th the mot being clamped. fl 11./.1. but one of 
the leaves aTe control/.ed, and the rerrwining leaf sat·is.fies the Neumann. 
boundary conditions, then again c.wct contml.l.ab'ility obtains, see Lc·nger­
ing {1998). 

• Let G be a TOoted tree with the mot being clamped. If again all. Ind. one of 
the leaves are controlled, and the remaining leaf satis.fies a Dirichlet bO'Ii.nd­
ary condition, and if, in addition, the path connecting these two simple 
nodes consists of strings having rationally dependent opt·ical lengths, then 
even approximate controllability fa.i.ls to hold. The same applies to Neu­
mann conditions, see Lagnese, LeugcTing and Schm:irlt {1994) . HoweveT, 
·if the lengths of the str·ings aTe inn ceTtain class {in fact Ro/.11.'s class) of 
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constants are set to 1, then it can be shown that exact controllabil-ity holds 
in smoother spaces, see Leuger"ing and Znazu.a {1999 ). Th·is appear'S to be 
true even if only the root or any other simple node is controlled. 

• Let G be a graph containing cirwits. Assum e that the strings c:o ns tdv.t ·ing 
such a cirwit have rationally dependent optical lengths. then, even if all 
nodes are controlled, approximate controllability fads to hold. However,. 
if those strings have the·i-r mut·ual length in a class described 11.hove, e:w ct 
controllability may hold in smoothe-r spaces. This problem ·is investigated 
in Leugering and Zuazua ( 1999b) . 

• If we consider the problems above in the context of Timoshenlw beams ·we 
obtain similar results. If, howeve-r, we consider those problems for net­
works of Euler-Berno·ulli beams, only the very fi rst result , namely e:mct 
controllability from all simple nodes is known to hold. See Leuger·ing and 
Schmidt (1989} . That is to say, even e:r;act controllabili,t;y of a ca:rpcr-nter 's 
square of Euler-Bernoulli beams in the plane appears to be an open prob­
lem. See also Dekon·inck and Nica.ise (1999) fo r recent re.sults on some 
scalar beam networks. 

As mentioned above, we are much more modes t here an d consider only three 
coupled strings as in (1)-(5) . 

In the situation of the first problem, where all simple nodes are under control, 
we can easily derive observability estim ates using energy multipli ers. For the 
sake of easier reference, and also because the semi-discrete case is developed in 
complete analogy with the continuous case, we outline the arguments. 

In order to obtain energy estimates we use simple multipliers 'ln i(:t:) 

T 1 3 

o r r L(iii - u;' )mi1< dx dt 
Jo Jo i = J 

11 3 j'T j' 1 3 ] d 
"""'1.L m u' d:riT - """'m. :___ - ·it2 dx dt 
~ ' ' ' o ~ ' 2dx 

0 i =l 0 0 i = l 
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Hence we obtain the general identity 

T 3 

1 r '"""" (·2 ,2) ll d 2 j n 6 mi 1li + 1li 0 t = 
0 i = l 

(8) 

1 

/

·T;·l 3 I ' 12 +2 L m;. (·it.2 + u ) da: dt 
. 0 0 i = l 

which relates the 'energy trace' to total energy. Alluding to onr particular 
boundary and transmission condit ions and assuming that m i (:t:) = - I + 2:r we 
obtain a direct energy inequality: 

(9) 

Inequality (9) establishes a so-called 'h idden regularity' , as fi ni te energy so­
lutions have L2-traces of the velocity and Neuman data, a fact vv hi ch is no t 
directly seen from trace-theorems. On the other hand, by transposition , we ob­
tain H x V*-regularity of u with initial data ('n0 , u 1 ) E H x V*, v E L2 (0, T) 3 , 

where the spaces V and H are defined by: 

3 

H := J1L2 (0, 1) 
i = l 

v 

Jn equation (8) we may also take rni(x) 
inequali ty: 

3 ·7' 

E(O) ~ C(T) L j j?t.~( l ,t) 1
2 rlt 

k= l 0 

:r , and derive an indirec t. energy 

( I 0) 

forT> 2 and for some C(T) > 0, where the ·u.,., k = 1, 2, 3 sa tisfy ( I )-(5) for 
vk(t) = 0, t E (0, T). 

Jn order to illustrate the me<ming of the crucial inequali ty (10), we defi ne 
the control-to-state operator Dr carrying the controls v~; into the final data at 
timeT. We formulate this in terms of L2 (0, T )-controls by transposition. 

J Lr :!] L2 (0 , T) ~ v· x H ( I I ) 
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We observe immediately that L'T is given by 

(12) 

Exact controllability is equivalent to t he surjectivity of Dr which is, in turn, 
equivalent to the condition 

(] 3) 

ForT> 2 this gives exact controllabili ty. 
The norm minimal controls realizing the transfer from zero ini tial conditions 

to given final conditions (ur,1'tr ) are given via the right-inverse of Lr 

(1 4) 

Thus, all comes down to solving the symmetric problem 

(15) 

for the data ('Po, 'PI) E V x H. 
The illposedness of the problem of exact-controll abi lity for semi-discrete 

approximations becomes more apparent when looking at (15). After semi­
discretization the HUM-operator appea ring in (15) becomes a symmetric matrix 
with condition number depending on the spatial step size h. Tf that condition 
number (which is the ratio of the largest and the smallest eigenvalue) becomes 
very large, the problem is numerically ill -conditioned. We wi ll see later that 
cutting Fourier series at a given level corresponds precisely to cutting ofl' of the 
smallest eigenvalue of the semi-discrete HUM-operator , hence thi s technique, 
which has been proposed by E.Zuazua is equivalent to an adaptive tmncated 
singular value decomposition. 

One might also consider the strongly related Tychonov regularizat·ion method 
which corresponds to 

{ 
LrLr~PT,Pr_) + ~(p~ , pr) = (-1·tr,ur) 

V = Lr('PTo'PT) = ('Pi(l, ·))i= l,2,3· 

(16) 

In fact, this system is t he optima li ty condition for the penali zed optimal 
control problem 

{ min { -2
1 r t !? dt + _2k {111t(T)- zoll ~ + 111t(T) - Z] l l ~·} = : JA:(.f) } (17) 

f lo i=l 

Tndeed . ~riven the negative results in the sprit ofinfante and Zuazua (1998), 
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for the corresponding semi-discrete opt imal control problern and then usc a 
Lagrangian approach. See Leugering (1 999c) for more detail s. 

The problem we want to consider is whether or not an estimate like (10) 
continues to be true for the semi-di screte model to be developed below, with 
the Neumann derivative in (10) replaced with a finite difference approx.imation 
uniformly in the discretization parameter h, and C(T) independent of h. ln 
order to investigate this problem we need some information about the spectrum 
of the continuous as well as the semi-discrete model. The spectrum of Sturm­
Liouville operators on graphs has been investigated by von Below ( 1988) and 
Nicaise (1993). After discretization the Laplacian on the graph turns into the 
so called Laplacian-matri x associated with the computatioual graph. Spectra 
of such Laplacian matrices, in the general case, are still uuder inves t.i gation; 
see for instance Merris (1998) and Grone and Zimmermann ( 1990), and the 
bibliographies therein. Our example is quite simple, and, therefore, we give the 
arguments directly. 

2.1. Spectral analysis for the continuous case 

We consider 

AlfJko tpk( l) = 0, k = 1, 2, 3, 

tpz(O), k, l = 1, 2, 3, 

0, 

with 

ifJk = Ak sin J:\(1- :t:) + Bk cos J:\(1 - :r ). 

(18) 

(1 9) 

(20) 

(2 1) 

The Dirichlet data at x = 1 imply Bk = 0, and the continui ty at x = 0 implies 

Ak sin/>. = At sin J:\. 

Now two cases have to be distinguished: 
l. Ak = Az =A, k,l = 1,2,3 and sin-\ f. 0 
2. sin)... = 0 which implies />. = krr. 

(22) 

As we shall see, the first case corresponds to the global eigen-rnodes and the 
second case to the local ones. vVe use the balance of forces at x = 0 which 
implies 

3 

L Ak /).cos /). = 0. (23) 
k= l 

Using case} and 2 we obtain: 
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3 

2. L Ak = 0, from which we obtain a two-parameter family 
k= l 

A1 A2 = C 

A1 -2C A2 = A3 = C = /I(- 1)k+ 1
• 

To sum up, the two cases are 

1. Am= (n;7r) 2 
m odd , <p;;' (x ) = /fcos!Jf 7ix, k = 1, 2,:) 

2. Am= (m7i) 2
, mEN, <p](:r) = <p2' (J:) = )J sin 7117iX, 

<p!)(x ) = - }s- sin m7ix. 

3. The semi-discrete model 

Now we turn to the semi-discrete model. We dcvide each edge into N + 2 
points, and define the step size h = 1 / ( N + 1) as well as th e discrete coordinates 
Xj = jh, j = 0,1 , 2, .. , N + 1. We then approxima te the evaluatim1 ofuk(Xj , t) 
by Yk ,j. We employ the standard fi n ite difference scheme to the local wave 
equations on the strings a.s follows: 

h2.. 2 Yk,j = Yk ,j+l - Ykj + Yk,j - 1 

with the the following conditions: 
• initial conditions 

j = 1..N, k = l, 2, 3 (24) 

Yk ,j(O) = v.ko(x j ), Yk,j = UkJ (x j), j = 0, ... , N + I , k = I , 2, 3 (25) 
• Dirichlet conditions a t x = J correspond to 

YkN+l =O k =l , 2, 3 (2G) 
• continuity at x = 0 that leads to 

Yk,O = z, k = 1, 2, :3, (27) 
with an unknown z 

• balance of forces a t x = 0: in order to obtain a second order consistent 
model, we introduce a fi ct itious boundary point a t j = - 1 and then use 
the local equations to eliminate this point. This is done as foll ows: 

3 3 L u~(O) ~ L Yk,l- Yk,- 1 = O. 
2h 

k = l k= l 

(28) 

In order to eliminate Yk,- l, we a re using the wave equat ion at. :r = 0 with 
a new mass ~ = : m ko 

h2 .. 2 mkoz = Yk ,l - Z - Yk,- 1, (29) 
hence 

2 
'

2 '' 
Yk ,-1 = Yk,O - Yk, ·1 + t. ·m kQZ, (30) 

which leads to 
3 3 2 2 /? .. n _ """'Yk,J - Yk- J _ \ Yk, l - z - l - m~.:oz (31) 
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l 
3 

3 3 
- """'Yk 1 - -z - -lunkoi. h L......- ' h 2 ° 

k = l 0 

The choice of mko = ~ is plausi ble as we have an artific ial in terval of 
length 2h and we average over the number of incident edges. Thi s choice 
leads to the condition: 

3 

h2i = LYk,l - 3z (32) 
k= l 

REMARK 3.1 Nate that in the case of a rectangula:r (j'r-id, the -inteT-ior 
points have edge degree 4. Then the balance condition above would read 

4 

h2i = LYk,l- 4z (33) 
k = l 

Which is exactly the semi-discr-ete 2-d wave equation with the clas~rica l five-
point-star finit e difference scheme. At this point the intT"ins'ic s·imilarity 
with Z1wzua ( 1999) becomes apparent. 

The complete system (24),(25),(26),(27) , (32), therefore, rends like 

h2 jjk,j = Yk,j+l - 2ykj + Yk,j-t, j = 1, .. , N, k = 1, 2, 3, 0 < t. < T, 
3 

h2i=LYk,l-3z, O<t < T, 
k=l (:34) 

Yk,N+l = 0, k = '1 , 2,3, 0 < t < T , 
Yk,O = z, k = 1) 2, 3, 0 < t < T , 
Yk,j = uko(xj), Yk ,j = ukl(xj), j = 0, ... , N +I, k = 1, 2,:3 

We have taken homogeneous boundary data here, as we wi ll be dealing with 
the adjoint problem throughout the paper. We introduce a weighting factor at 
the origin. 

{ 
Pkj = l, j = 1, .. , N 
P _l ]0-0 kO- 3• - . 

(35) 

We then define the semidiscrete energy 

(36) 

We introduce the local stiffnes matrix (mod h\) for each individual string 
together with coupling vectors. 

1 
-2 _J (37) 
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The overall stiffness-matrix (again mod h\) then becomes 

(:38) 

The nodal vectors are arranged as fo llows 

T 
Y = (z,yn, · · ·, · · ·, · · · , !Jl N,Y2J , · · · , · · · , · · · : !./2n , Y31, · · · , · · · , · · · ,Y3N) · 

Denote by D = diag(3, 2 .. . 2, 2 ... 2, 2 . .. 2) the diagonal matrix containing 
the edge degrees for the grid points. Denote furth er by A the vertex--to- vertex 
adjacency matric. Then the semi-discrete equation (34) reads as: 

h2 y + (D -A) y = 0, 
'-v--" 

Lh 

(39) 

where Lh = D - A is the so-called Lapl acian---matrix of the grap h. (This is 
completely general and can be written down for arbitrary graph s. ) Vle now 
turn to the spectral analysis of the semicli screte model. 

3.1. Spectral analysis 

We look for the eigenvalues of the Laplacian-matrix Lh in the forrn 

(40) 

and proceed with the following Ansa t. :.~ <p = (<p 1 , <p2, <p3)Y, 'Pk,o = z, /;; = I, 2, 3, 
'Pkj = Ak sinp,(N +1 - j)h + Bk coS{t(N + 1- j )h, j = 0 . .. N + 1, /,: = 1, 2, :3 . 

At this point we now take into accoun t t. he r stri ction imposed by the first 
configuration (i. e. the three controlled Diri chlet. nodes) . Otherwise we would 
have to change the matrix introduced above in the appropr iate locat ions by 
applying some rank-one-updates. 

Our Dirichlet conditions imply 

'Pk,N+ J = 0 ==? B k = 0 k = 1, 2, :3. ( 41) 

Using continuity a t k = 0 : 

Ak sin p, = A1 sin 1.1 k , j = 1, 2, 3, (42) 

gives us 

A k = 1, 2, 3, sinp, f: 0, 
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Taking the balance of forces at j = 0 into account gives 

3 

L i{JkJ - 3cp;o 
k= l 

i .) 3sin~-LNh - 3sin J.L 

3(1 -cos 1-1h- cot JL sin p.h) 

->..h2cp;o 

-Ah2 sillJL 

)...h2, 

so we are left with a discrete 'elliptic ' probl em of the form 

i{Jk,J+l - 2cpk,j + i{Jk,j-1 = >..h2 cp~c,j, j = I , .. , N, k = I . 2, :), 

with 

43:3 

(43) 

i{Jk ,j± l = Ak {sin JL( N + 1 - j ) h cos Jth ±sin 1-1h cos p.(N + I - j)h} , 

sin{< (N + 1- j) h(2cOSJth - 2) = -Ah2 sin p (N + I - j) 

or 

)...h2 - 4 . 2 JLh 
- . Sill 2 ' ( LJ7) 

Hence)... is an eigenvalue in case i. ). \1\Te uow consider case ii. ) wh ich gives 

2(1 -COS!-lh) =3(1-COSJLh - coLp.si nh p.) 

and hence 

{Lh 
tan 2 = 3 cot JL . (t\9) 

Observe, that we know from the co11tinnous model that (Jr. + ~)" = (2/,: + ·1 H 
is the new string of eigenvalues. But, because cot ( (2/;: + 1)}) = 0, we expect 
1-1 = k

2
rr - Eh, Eh being a small number depending 011 h. \Ve usc a perturbation 

argument first order in c and obtain 

i) >.. k ~ 1~2 sin 2 ( 4 (~'.;._ 1 ) - 24 (~~ 1 )2), 
cpkj =Am sin JLmh (N + 1 - j) = Am. sillJI.m (I - tV+ 1 ) 

ii) 1-1 = mTt, then 

Am 

3 

2 tl 1H7i 
-12 (1 - cosm~th) = -

1
.7 sin ( ) , (50) 

1 t~ 2 N + I 

A . 1n7i ( " ' ') " ( ( . ) '" '· .· 1117i.J ) mSll1-;,.-r - h + l - .J = - ,< .,11 - J Sill~ 
Jv + 1 . 1v + I 

L A~c = 0, A1 = A2 = C, A3 = - 2C, orA1 = - 2C, A2 = A.:l = C. 
k = l 

Of course, the constants are then usccl to properly norma I izc> the cigen-
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4. Useful lemmas 

We now present the essential tools to prove our main results, that is the blow­
up result and the modified boundary control estimate which concerns a class 
of filtered solutions being defined in analogy with Infante and Zuazua (J998) , 
Zuazua (1999), as 

Ch(/') :={u= L [aksin(JAk(h)t ) +bkcos (JA,(h)t)] <pk 
>-k(h )5;yh- 2 

(51) 

This definition is justified by the spectral analysis of Section 3.1 . and the results 
in Infante and Zuazua (1 998). Next, a series of useful lemmas is presented which 
is important for both the blow-up and t he control estimate. Note that these 
lemmas are very similar to the ones obtained in Infante and Zuazua (1998). 
The main difference is the treatment of the inner mul tipl e uode at x = 0. 
Nevertheless, the treatment of t he multiple node depends on the discretizat ion 
at that point, and even though similar results can easily be anticipated, actually 
proving them is a different matter. In addition, we believe that these lemmas 
will be useful for further numerical analysis all by themselves. Therefore, we 
give the proofs in the appendix. 

LEMMA 4.1 (CONTROL ESTIMAT E FOR THE EIGENVECTORS) 

For any eigenvector <p = ( <fJJ, .. ·, <p N) of system (4 0) the following identity 
holds: 

h ~~I <fJk,J+l- <fJk,j 1

2
:::; ' 2 ~ I 'Pk ,N 12 

~~ h 4- Ah2 ~ h 
k = l j = O k = :J 

(52) 

Proof: See the Appendix 

LEMMA 4.2 (IDENTITIES FOR THE EIGENVALUES) 

For any eigenvector 'P with eigenvalue A of (40) the follo wing identity holds: 

~~ I'Pk,j- 'Pk,j+ll2 = A~~ 'I · 12 
~~ h ~~Pk; 'Pk,J · 
k=l j=O k= l j=O 

(53) 

If 'Pm and 'Pe are eigenvectors associated to eigenvalues Am :/= At 'it follows 
that 

3 N 

L L ( <tJk.j - <tJk.j+l ) ( 'PL - <ptj+] ) = o. ( 5tJ) 
k=l j=O 
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LEMMA 4.3 (CONSERVATION OF ENERGY) 

For any h > 0 andy being the so lut·ion of {34) we have 

Proof: See the Appendix 

LEMMA 4.4 (DISCRETE MULTIPLIER IDENTITY) 

For any h > 0 and y being the solution of {34) we have 

with 

!::. {T [~ ,' . . + '\'.N I Yk ,j+l - Yf.o, j 12] dt 
2 Jn ~ Yk,JYk,J+l ~ h . 

0 j =O J=O 

+ Xkh(t) l ~ = ~ 1T 'Yk,~(t) 12 dt , 

N 

X (t) _ h '\""' . (Yk,j+l - Yk,j-1) . . kh - ~J 2 Yk,.J · 
j =O 

Proof: See the Appendix 

LEMMA 4.5 (EQUIPARTITION OF ENERGY) 
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(55) 

(56) 

(57) 

For any h > 0 andy being the solution of {34) the following ·ident-ity holds: 

with 

3 N r 
-h L L Jr Pkj I Yk ,j 1

2 
dt+ 

k = l j = O O 

3 N 

Yh(t) = h L L Pkji/kjYkj· 
k= lj= l 

Proof: See the Appendix 

(58) 

(59) 

We observe that Lemma 4.4 is not quite the straightforward sem i-discretization 
of its continuous counterpart (8), in that mixed velocity term s rather than just 
squares appear. This fact makes it necessary to absorb more terms using con­
servation of energy, Lemma 4.5, in order to obtain the fo ll owing important 
inequality: 

( 
Ah2 \ IT I 3 r'j' I (t) 12 

T 1 - - .- J Eh(O) + Z~t(t) S ~ ), Yk ,~ . dt (60) 
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with 

Ah2 

Xh(t) - -
8
-Yh(t) 

h ~~ . [·(Yk ,J+l -y,.,,1_,) Ah
2 

] 
·LLYk,j J 2 - S.llk,J , 
k=l j=l 

(61) 

for every solution of (34) in which A is the largest eigenvalue entering its Fourier 
expansion. This is the crucial point: we observe (once again) that controll abi li ty 
and discretizat ion do not commute! 

The idea. of deriving this inequality is to start from Lernma 4.4 and summing 
fork= 1, 2, 3, using the conservation of the energy Lemma 4.3, that is Eh(t) = 

Eh(O) gives us 

T 2 
where Phk = ~ J ( YkhN) dt . 

0 
A short algebraic calculation shows that 

(62) 

3 N T 3 N T 

L L J Yk ,jYk ,j+l- Pkj \Ykj \
2
dt 2:- L L J ~\:Uk,j- :Uk,.i+ l\

2
dt (63) 

k=l ] = 0 0 k= J ] = 0 0 

which leads to 

3 N T 3 !T 3 

TEh(O)-~~~~\Yk,j- Yk ,j + J\ 2 dt + t;xhk (t ) 
0 

::;f.; Phk· (64) 

Now use will be made of the fact th at our soluti ons are filtered, that is - we 
have cut the high frequencies of the Fourier spectrum. 

Let A be the largest eigenvalue in the Fourier development of y. Then 

y = L ameiJJ,,t'Pm 

]J.Lm]~ v'J\ 

with f.Lm = ,;>:;;.form > 0 and f.L-m = -~lm· Therefore 

y = i 2: amf.Lmei)J,, t'Pm· 

]J.Lm]~ v'J\ 

Thus 

(65) 

(66) 
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3 N 

"'"' "' 2 I 12 I m ~m 1'2 = ~ ~ ~ llm am 'Pk ,j - 'Pk,j -1- l 

k=l j = O IJ.L,., 1::::; v'i\ 

3 N 

+ "'"' "' - i( Jt,.,-Jt-1 )1 ( m m. ) ( f , ~C ) 
~ ~ ~ JLmf-leamaee t,?k,j- 'Pk,j+ l cpk,j- 'r"k,.i + l · 

k= l j=O ll'k )::;v'A 
1 ~>-eiS v'A 
IJ·m .¢ 11 C 
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(67) 

Using the identities (53) a.nd (54) of Lemma 4.:2 the term in (67) ca n be 
rewritten a.s 

3 N 3 N 

L L I Yk,j - Yk,j+l 1
2 < A L I a m 1

2 
Amh

2 L L PkJ lcp};:j 1

2 

k= t j=O IJ.L.,Isv'A k = t .i= O 

3 N 

llh2 L L Pkj l i.J ~o,jl 2 . 
k = I j = O 

(68) 

So, we a.re left wit h 

Applying the equipa.rt ition of energy as stated in Lemma 4.5 we can easil y derive 
that 

Combining (68) and (69) we deduce that 

with 

T (1 -A:2

) Eh(O) + Zh(t)[::; ~ t, 17' I Yk , ~(t) 1

2 

dt 

i\h2 
Xh(t)- -

8
- Y,,(t) 

h 
~ ..[!__ . I (Yk ,j+ t - :tJk,j - J) i\h2 
} } 7h " I '/ - - 'II • 

(71) 

(72) 
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for every solution of (24) in which A is the largest eigenvalue entering its Fourier 
expansion. 

We finish our list of lemmas by the foll owing crucial estimate on Z 11 (t ): 

LEMMA 4.6 (ESTIMATE ON Zh(t)) For any h > 0, t E [0, T] andy solution 
of (34) in which A is the upper bo'und on the eigenvalues entering its Four'ier 
development, it follows that 

(73) 

Proof: The proof is an adaptation of the corresponding one in Infante and 
Zuazua (1 998) . 

5. Main results 

In the first sub-section we are going to prove that without appropri ate low-pass 
filters applied to the semi-discrete system (34) there is no observabili ty es tim ate 
that is uniform in the stepsize h. In the second sub-section we proceed to show 
that an h-adaptive low-pass fi ltering, which is equivalent to a trun cated singular 
value decomposition of the controllability Grammian, restores uniformi ty on the 
class of filtered data .. 

5.1. The blow up result 

THEOREM 5.1 (BLOW UP RESULT FOR UNFILTERED SOLUT IO NS ) For anyT > 
0, we have 

sup (74) 
y solution of (24) 

Proof: Using Fourier expansion y = ei J>. N( h)tcp N of the solution and Lemma 4.1 
an essential inequality of the form 

(75) 

is derived. Thus, as 

(76) 
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We start with the derivation of (75): We insert y 

expression EJ.(O) which gives t JoT I Yk ~(t) 12 dt 

' '=1 

I 

N 12 T '\"':3 <P,,N 
u k= l h 

(77) 

T I N 12 I N 12 Here we used conservation of energy and the fact that l <P,h N dt = T <P <h N 

Now we use Lemma 4.1 for the denominator and Lemma 4.2 for the numerator 
which leads to 

3 3 2 

E (0) ~ 2 2: 2: ~'P~~J+ l -cptjl 
h < k = J k=l (78) 

3 T 2 - h(4 ->. h2) 3 3 I N N 12 I: fo IYk ,N(t)/hl dt T 2 I: I: 'Pk,J+l- 'Pk ,j 
k=J k= J k=l 

which is the desired inequality (75) and therefore the proof is complete. • 

5.2. The control estimate 

THEOREM 5.2 (CONTROL ESTIMATE FOR FILTERED SOLUTIONS) Ass1tme that 
0 < 1 < 4. Then, there exists T(-y) ~ 2 such that for all T > T (r) there exists 
a constant C = C(T, 1 ) > 0 with 

(79) 

for every solution of (34) in the class Ch(!'). 

Proof: The estimate (71) and Lemma 4.6 aJ!ow us to derive 

[1'(1 - Ah2 /4)- 2 Ah
4 

3Ah
2
. ] ,(o) '~j·TIYk,N (t)l 2 z 1 - - + -- Eh < - L... --- d. 

:I 6 16)1] - 2 0 h 
he= ] 

(80) 

Now, taking into account that these solutions are filtered, wbich impli es A = 
1/ h2 in the class of solutions Cit( 1) of system (24) we deduce that 

l ~ (i'jYk,N(t)j
2

_1, 
F;, , (O) < ---------------
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Given that 

we have the desired result. • 
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6. Appendix: Proofs of the Lemmas 

Proof of Lemma 4.1: We start with t he equation 'P ~· .i + ! - 2'P!..i + 'P ~-i-l -
h2 -

/\ cp k ,j, multiply it by 'PA.i +';'P'i-'j and sum over j = l , .. ,N. Observe that 
t his factor is precisely a second order approxim ation to the continuous energy 
multiplier times the spatial derivative X1l

1
• After some calculus, the left h;:md is 

given by 

N 
"""'lpk,j+ l - 2cpk ,j - lpk,j- 1 lpk,j+l- 'Pk,j -1 . 

- ~ h2 2 .'l 
j = l 

(8 1) 

N [ N ] N l -L cp~o + 2 L_ 'PL - 2h cpt N - L SDA:,jlpk.J -1- 1 

j=l j = l ]= 0 

The right hand side turns out to be equal to 

1 N - . 1 N 
A """' lpk,J + I lpk , 7 - A """' h2 ~ 2 . ]lpk,j =- 2 ~ <,Ok,j+l lpk,j · 

j=l j = O 

(82) 
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equation 

[~~ I I.Pk,j - I.Pk,j+l 12 - .2__ ~ ~ ] 
~ ~ h h3 ~ IPJ .. ,N 
k=l j=O k= l 

3 N 

=-.xI: I: I.Pk ,j i.Pk ,j+ l 

k = lj=O 

(83) 

On the other ha.nd, after multipli cation by I.Pk ,j and summation over /;; = 
1, 2, 3 we have 

l 3 N 3 N 

- h2 I: I: (I.Pk,j+l- 2tpk ,j + I.Pk,j-d I.Pk,j =.xI: z= I.P~,j, 
k = l j = l k = l j = i 

(84) 

which is equivalent to 

:, { 2 t t, (Pkj 'Pl,; ~ 'Pk,j'Pk ,j H) ~ 2<p~ + 'PO t 'Pk, ' } (85) 

3 N 

=>-z=l:: tpL, 
k = lj=l. 

where tpo is identified with the common value of tpk,O· Now the eigenvalue 
problem at node 0 gives 

(86) 

If we add (86) a.nd (85) we obtain, again after some calculus, 

3 N I 2 3 N 
""'""""'"" I.Pk,j - I.Pk,j+ J I = A""'""""'"" . . 2 . =· ~ ~~ h ~~Pk,JI.Pk , 1 · h. 
k= l j=O k = l. j = O 

(87) 

Notice that we have normalized the eigen-elements by 

3 N 

h L L Pk,ji.P~,j = 1. 
k = lj= O 
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[ 

3 N I 12 1 :J l ~ ~. 'Pk,j - 'Pk,j+J - ~ ~ 2 
~~ h h 3 ~ 'Pk,N 
k=l J = O k= 1 

3 N 3 N 

= )... L L (Pkj 'PL - 'Pk,j'Pk,j+ 1) - )... L L PkJ'Pi ,j 

k=lj=O k= lj= O 

A [ ~ ~ ~ 1,,,;- "''+' 12 - ~~ l )... 

h 

Now we make use of (87) and obtain 

)... [(4- )...h2
) + h<p6] 

> )... (4- )...h2). 

Then, 
3 

2 ~ I 'PkN 12 
)... :::; (4 - )...h2 ) ~ h ' 

k= l 

thus 

3 N I 12 3 2 h ~ ~ 'Pk ,j - 'Pk ,j+l < 2 ~ I 'PkN I 
~ ~ h - (4- >..h2 ) ~ h 
k=lj=O k=l 

44:3 

(88) 

(89) 

(90) 

(91) 

• 
Proof of Lemma 4.2: The first par t has already been demonstrated above. 
Let Am, >..e be two different eigenvalues and <p_jk, 'PJk be the corresponding 

eigenvectors. Then we have 

(92) 

l( e +e 2 e)m 
- h2 'Pk,i+l 'Pk,j- 1 - 'Pk,j 'Pk,j • (93) 

Now, 

(94) 

N 

+"""" ( rn + rn . - 2 m · ) , e . [ _J 'Pk ,.1+ l 'Pk ,J- 1 'Pk . , 'Pk . ,, 
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and, therefore, 

(At - Am) t, t, Pjk~r:j~L ~ - ~2 [ ~: E ~r:J - 'P;' E 'Pl,] 
l (' , ) m e + h2 A£ - Am r..po r..po = 0, 

from which we conclude 

3 N 

L L Pkjr..pk,jr..pL = 0. 
k=l j = O 

This lead us to 

k=l j=l 

3 N 

L L (r..pLH + r..pL-1) r..pk,j + 2r..pg' r..p6. 
k=l j=l 

On the other hand 

3 N 

(95) 

(96) 

(97) 

Am L L Pikr..pj\r..p~,k = (98) 
k=lj=O 

- ~2 ( -<pi)<pg + E 'Pk:1 'P f.o + t, t. ('Pk':i +J + '1'~:, _ ,) 'PL) ~ 0. 

Therefore, 

3 N 3 N 

""' ""' m e ""' ""' e m + m e ~ ~ r..pk,j+l r..pk,j = - ~ ~ r..pk,j+lr..pk,j r..po r..po, 
k=lj=l k=l j = l 

and hence 

3 N 

I: I: (r..pk:j- r..pk:J+l) (r..pL- r..pt j+ l) 
k=lj= O 

3 N 

=I: I: (r..pk,jr..pL + r..pk,j+lr..ptj+l - r..pk,j+l r..pL- r..pk,jr..pL+l) 
k= l j=O 

3 N 

= 2)) wi?'" w£" + 3w~ <O~ - cp~ cp~ = 0, 

(99) 

(1 00) 
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from which we deduce 
3 N 

2::2:: (<p;;:j- <pk.j+l) (<pL- <pL+l) = o. 
k=lj=O 

Proof of Lemma 4.3: 

445 

(101) 

• 
PROOF SKETCH: The main idea is to take a time derivative of the energy, 

insert the equation and perform summation by parts. 
Recall 

E,(t) ~ ~ { t, ~ Pjk l!iikl2 + 1 Yk .j+lh- Yk.j n . (I 02) 

and take a derivative with respect to t 

E (t) - h"" . . . .. . + Yk ,j+l - Yk,j Yk ,j+l - Yk ,j 3 N { . . } 
h - 0 0 PkJYk,JYk,J h h · 

k=lj=O 

(1 03) 

Upon summation by parts, regrouping terms, and using the differential equation 
we obtain 

h t, { ~2 (Yk, JYk, l - Yk , tY~o,o) 
N ] 

+ L h2 (Yk,j+ 1 - 2ykj + Yk,j+l) Ykj 
j=O 

+ ~2 [ -yk,t!ik,J + 2 ~ Yk,Jik; + Jik,JYk ,O 

- ~ Yk ,, - tflk; - ~ Yk ,Hlfi<; l } 
= 0. 

(1 04) 

• 
Proof of Lemma 4.4: We multiply equation (34) by Yk ,i+l;Y>•.i-l j, sum 

over j = 1 toN and integrate between 0 and T whi ch leads to 

N T "1 y . Yk,j +l - Yk,j-1 'dt = 0 k,] 2 J 
j=l 0 

(105) 

N T 
1 "' f Yk +1 - Yk ·-1 

-;-;; J . ('J.Ik.-i+ l - 2~1k . 1 + ~/k . 1 -1) ,} - ,J ·idt 
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Now we expand both sides sepa.rately: The left hand side is integrated by 
parts with respect to time 

N .IT N j ·T . . . L iJ Yk,j+l- Yk,j - 1 J - L i; J/lc,ji-1 - Yk,j-1 J dt 

j = l 2 2 0 j = l 0 2 2 

1 N lT . N . 1 . - 'I . .IT = _"" ·y . . _ . dt +"" y Yk ,.J +1 Yk,.J-1 .J 
2 L.. k,1 Yk,1+J L.. 2 2 · 

j=l 0 j = ] 0 

The right hand side gives 

1 N { T J N 

1
.7' 

2h2 L ln (Y~,j+l - vL-1) jdt- h2 L Yk,j (Yk. j+ J - Yk,j-1) jdt. 
j=l 0 j = 1 0 

Summation by parts results in 

1 ( 1 N-1 ( 

2h2 Jn -v~.o + Y~,N (N - 1) cit - h2 L fn Y~ . .icit 
0 j = l . 0 

1 ( 1 N - 1 t 
+ h2 Jn Yk,lYk ,odt + h2 L fr Yk ,jYk,J+ 1 dt, 

0 j = l . 0 

and hence 

] {T 2 2 2 . 

2h2 Jo - Yk,O- Yk,l + 2yk,1Yk,o + Yk,N (N + I )cit 

1 N ( 2 
- 2h2 L Jn iYk,j - Yk ,j-1- l i dt . 

j=l 0 

To sum up we have 

1 ~ { T . . ] ~ { T I Yk j - Yk j+ l I 2 f='o Jo Yk,jYk,j+ldt + 2 f='o .fo , h2 , dt 

N T T +"" iJ Yk,J - Yk,]- 1 J I = ~ J IYk, N I dt 
L.. k,J 2 2 2h h 
]=0 0 0 

(1 06) 

(1 07) 

(1 08) 

(1 09) 

(IJ 0) 

(11 1) 

• 
Proof of Lemma 4.5 : We multiply the semi-discrete equation (34) by Yk ,j, 

equation (32) by z, sum over j = 1 toN , and integrate between 0 and 1'. 

N T.. N r 1 ' r 11~ , 11~ ,dt =) r ~ r-tik , .... ]- 2Jik1 +Jtk. i - lhlk.idt (11 2) 
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3 T ] 3 T 

L 1 i zdt- h2 L 1 (Yk ,l - z) zdt = 0 
k = l. 0 k= l 0 

( 11 3) 

Now the left hand side of the first equation gives, using integration by parts in 
time: 

N { T N T N {"' 

L Jn ih ,j Yk ,jdt = L ih ,j Yk ,j lo - L Jr iJ! ,j dt , 
k = l O ; = l ; = I 0 

while summation by parts gives for the right hand side 

N ( 1 L Jo h2 (Yk,j +l - 2yjk + Yk,j - 1) Yk, jdt 
j=l 0 

N ?. 1 
= ( - vk,o(Yk ,l - Yk,o)- L jy,,,j+ l - Yk ,jn-12 . 

/, 
j = O 

Combining now equation (114) and (115) leads to 

( J 14) 

( 11 5) 

N ·T N 1' 2 N 

-h"' r y~ . dt + h"' r I'Yk,j+l- Yk ,j I dt +"' v . . '/) - ·IT L..Jr /..,; L.. Jn h L.. I.,J · k ,; o 
j = l 0 j = O O j = l 

( (z)2 j'T zy, 
-h Jo h dt + h 

0 
h/ dt = 0. (116) 

The next step is to use equation (113) and to integrate it also in time which 
gives: 

T T 3 ·T 1 i zdt = z zj~ -J z2 dt = 1:2 L 1 (Yk,l - z ) zdt. 
0 0 k= l (} 

(1J 7) 

Now multiplying the last equation by h adding it to equation (11 6) and 
summing up the resulting equation for k = 1, 2, 3 gives 

3 N T T 

-hI:: I:: 1 iJ~ , j dt- h j z2 
dt (1 18) 

k= l j = l 0 0 

3 N T 1 7 . _ _ ,2 3 N . T 

+ht;~1 Yk ,;+\ Yk ,J dt+ t;~Yk,jYk ,jlo + h zzj~ = 0 

from which the result fo llows. • 




