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Abstract: We consider a tripod as an exemplaric network of
strings. We know that such a network is exactly controllable in the
natural finite energy space, if, e.g.. the simple nodes are controlled
by Dirichlet controls in H'(0,7"). Assume that we want to calculate
the corresponding norm-minimal controls using semi-discretization
in space. We then obtain a system of coupled second-order-in-time
ordinary differential equations with three control inputs. Controlla-
bility of the latter system can easily been checked by Kalman's rank
condition on each space discretization level h. One expects, as h
tends to zero, that the exact controllability of the continuous sys-
tem is revealed. This expectation is frustrated, as has been shown by
Infante and Zuazua (1998) for a single string and by Zuazua (1999)
for a membrane. Indeed, it was shown there that uniformity of ob-
servability estimates is lost in the limit. On the other hand, spectral
filtering allows to cure this pathology. We show in this paper that
similar results hold for our string network. The generalization to
arbitrary networks of strings in the out-of-the-plane as well as in
the in-plane or 3-d-setup is then a technical matter. Therefore, this
paper essentially extends the existing results to semidiscretizations
of wave equations on arbitrary irregular computational grids.
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1. Introduction

The theory of exact controllability of 1-dimensional mechanical single-link sys-
tems like strings and beams is by now fairly complete. On the other hand, re-
lated problems for dynamic networks of strings and beams still offer a basket of
open problems. This is particularily true for Euler-Bernoulli beam systems, see
Leugering and Schmidt (1989) and very recently Dekoninck and Nicaise (1999).
As a general reference see Lagnese, Leugering and Schmidt (1994). As control
theory is intrinsically linked to applications, numerical simulations of controlled
problems and numerical realization of control laws are extremely important, In
addition, in cases where theoretical results are lacking, numerical evidence is
very important in supporting research on the continuous level. Therefore, reli-
able numerical computations are also at the heart of control theory of infinite
dimensional systems. The problem one is faced with, particularly in the case of
hyperbolic equations, is that physical phenomena, such as finite speed of propa-
gation, do not exist in finite dimensions. Therefore, control strategies for infinite
dimensional problems which make extensive use of such phenomena might have
little to do with those for finite dimensional ones. Our philosophy, therefore, is
to stay as long as possible with the PDIE-models, use control designs on that
level and then discretize.

In this context it has recently been observed by Infante and Zuazua (1998),
and Zuazua (1999), that approaching exactly controllable systems by naive semi-
discretizations and use of standard finite-dimensional control strategies can be
dangerous. In particular, they show that as the space discretization parameter
h (in 1-d, or the 'size’ of a finite element in 2-d) tends to zero, the uniformity
of the corresponding observability estimates gets lost. It is shown that the ap-
proximation properties of the eigenfrequencies of the semi-discrete system are
responsible for this lack of uniformity. More precisely, asymptotic gaps in the
spectrum, which are essential for the application of moment techniques, do no
longer hold for the semi-discrete approximations. As the spectral gap appears
in the lower bound of the controllability Grammian - the discrete counterpart
of the HUM operator — such that the lower bound tends to zero with the gap,
bounded invertibility is lost in the limit. The cure for this pathology is to filter
the frequencies of the finite dimensional problems according to the discretization
level. It appears that such a filtering technique is strongly related to Tychonov
regularizations of the controllability problem. This relation is very important
from the numerical point of view. The semi-discretization of related problems
and the corresponding Tychonov regularizations have been investigated by Vasi-
lyev, Kurzhanskii and Potapov (1993) for a single string and by Leugering (1999)
for networks. We further note that this pathology extends to other important
optimal control problems, namely time optimal control problems with pointwise
norm bounds on the control.

Since the insieht into the spectrum of general networks of strings (and
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mandatory to us. Also, as networks of strings (and beams) after semi-discretiza-
tion can be considered as computational domains of continuous structures such
as membranes (and plates) on very irregular grids, we considered the extension
of the abovementioned results to such networks as a useful contribution to the
subject, even if finally the results are very similar.

Further research in this area is devoted to domain decomposition techniques
on the semi-discrete level, see Leugering (1999) (see also Lagnese, 1999, Lagnese
and Leugering, 1999, and Leugering 1997, 1999a, b).

Let us now consider a simple star as shown below:

x=1
Xy

Figure 1. A star shaped simple network of strings

We will consider classical semi-discretization in the space of equations gov-
erning the motion of this star viewed as a system of three prestretched strings or
three 1-d elastic elements. We will investigate boundary observation estimates,
and finally we are going to define a filtering device for the frequencies of the
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This paper is organized as follows. In the second section we discuss the
continuous model and its main properties. This is followed by an analysis of
the spectrum of the Laplace operator on the graph. In section three we turn to
the semi-discrete model and after clarifying the notation we present an analysis
of the spectrum of the corresponding Laplacian on the computational graph.
The next section contains the main blow-up result, the definition of an ap-
propriate subclass of solutions, the filtered solutions, for which we then derive
the boundary observability estimate. We discuss then open points and possible
generalizations. Finally the appendix consists of the proofs of the main lemmas.

2. The continuous model and its spectral analysis

We denote by ui(z,t), k = 1,2,3 the out-of-the-plane displacement of string
number k. All strings are coupled at 2 = 0 and are supposed to satisfy non-
homogeneous Dirchlet conditions at the other end 2 = 1. We take all physical
constants equal to 1. Then, the system of equations governing the motion of
the tripod (star, divinig rod ) is given by:

fp—ag = 0 DLl 03T =125 (1)
ug(1,t) = w(t), 0<t<T, k=1,2,3, (2)
up(0,t) = wun(0t), 0<t<T, kym=1,23, (3)
3
Zu;(ﬂ, t) = 0, Ogt<T (4)
k=1
u(z,0) = wpo(2), we(z,0) =upn(z). O<a<l. k=123 (b)

We have denoted u., 1; by «, 4. Some remarks should be made:

REMARK 2.1 e Well posedness and reqularity of solutions to systemn (1)- (5)
have been proven by Lagnese, Leugering and Schmidt (1994) for general
networks, see also Leugering (1999c) for this particular setup. some details
will be discussed below.

3
e Condition (4) can be replaced by >~ u}.(0,t) = mii(0.t). where m denotes

k=1
a point mass at the multiple node. For such systems see Hansen and
Zuazua (1995), Ming Wei (1993) and Leugering (1998).

It is clear that we take this system as an exemplaric model in order to
keep the notation as simple as possible, while still dealing with a nontrivial
graph i.e. a non-serial situation. The generalization to arbitrary graphs in the
spirit of Lagnese, Leugering and Schinidt (1994) is possible but appears to be
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some features of the continuous one. The energy of solutions is given by

3 1
E(t) = —;-}:/D [ (@ t) 2 + | wg(z,t) *] da (6)
k=1

and it is conserved along time, i.e,
E(t)=E(0), YO<t<T. (7

We have chosen Dirichlet boundary controls at all simple nodes, partly for
convenience, partly to simplify the comparison with the results of Infante and
Zuazua (1998) and Zuazua (1999). However, for reasons of completeness we
would like to discuss the possible choices of boundary conditions and controls
for a general graph in some detail.

REMARK 2.2 (REMARKS ON CONTROLLABILITY OF NETWORKS OF STRINGS)
We consider a general simply connected graph G as a reference configuration of
a network of strings. We apply controls at simple nodes (the leaves). that is. at
nodes with edge degree equal to 1. We can have Dirchlet controls and Newmann
controls (or Robin-type controls). In order to stay in o natural finite energy
space we take Dirichlet controls from H'(0.T), whereas Neumann controls are
assumed to be in L?(0,T). In the statements below we assume that the con-
trol time is sufficiently large, such that the signals can travel from controlled
nodes accross the entire graph and back. With this convention we may state the
following known facts in a somewhat informal way:

e Let G be a tree with all simple nodes controlled (either Dirichlet. Neuman
or Robin conditions). This is the simplest of all cases. and this one is dis-
cussed in this paper as a model problem. Then one has exact controllability
of finite energy solutions.

o Let G be a rooted tree with the root being clamped. If all the leaves
are controlled one obtains exact controllability of finite energy solutions,
for Dirichlet or Neumann boundary controls or a mixzture of both. See
Lagnese, Leugering and Schmidt (1994).

o Let G be a rooted tree with the root being clamped. If all but one of
the leaves are controlled. and the remaining leaf satisfies the Neumann
boundary conditions, then again exact controllability obtains. sce Leuger-
ing (1998).

o Let G be a rooted tree with the root being clamped. If again all but one of
the leaves are controlled, and the remaining leaf satisfies a Dirichlet bound-
ary condition, and if. in addition, the path connecting these two simple
nodes consists of strings having rationally dependent optical lengths. then
even approzimate controllability fails to hold. The same applics to Neu-
mann conditions, see Lagnese, Leugering and Schmadt (1994). However,
if the lengths of the strings are in a certain class (in fact Roth’s class) of
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constants are set to 1, then it can be shown that exact controllability holds
in smoother spaces, see Leugering and Zuazuva (1999). This appears to be
true even if only the root or any other simple node is controlled.

e Let G be a graph containing circuits. Assume that the strings constituting
such a circuit have rationally dependent optical lengths. then. even if all
nodes are controlled, approzimate controllability fails to hold. However,
if those strings have their mutual length in a class described ahove. exact
controllability may hold in smoother spaces. This problem is investigated
in Leugering and Zuazua (1999b).

o [f we consider the problems above in the context of Timoshenko beams we
obtain similar results. If. however. we consider those problems for net-
works of Euler-Bernoulli beamns, only the very first resull, namely exact
controllability from all simple nodes is known to hold. See Leugering and
Schmidt (1989). That is to say, even exact controllability of a carpernter’s
square of Euler-Bernoulli beams in the plane appears to be un open prob-
lem. See also Dekoninck and Nicaise (1999) for recent results on some
scalar beam networks.

As mentioned above, we are much more modest here and consider only three
coupled strings as in (1)-(5).

In the situation of the first problem, where all simple nodes are under control,
we can easily derive observability estimates using energy multipliers. For the
sake of easier reference, and also because the semi-discrete case is developed in
complete analogy with the continuous case, we outline the arguments.

In order to obtain energy estimates we use simple multipliers m; ()
T p1 3
/ f Z(iig —w)ym;u; de dt
0 0 =1
1 3 T r1 3
, y oy AT 1 d .5
wmu, dx|, — m;——u” dvdt
[ Smaaaly = [ [5migg

i=1 0

1 T 3 R . | s S .
—-2-[ Zui"m,‘ udf- o B E/ / Zm;u; da dt
0 = 0 Y0 i

L T 1 re 211
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Hence we obtain the general identity

1
2/ Zm, (4 +u'2 odt = j Zn miu, chlu (8)
] / / - IFa ;'.’
4= m (0 + u'” ) dadt
2o o 25

which relates the ‘energy trace’ to total energy. Alluding to onr particular
boundary and transmission conditions and assuming that m, () = —1 + 22 we
obtain a direct energy inequality:

T 3
% / Z{'iz,;(o, £)2 4+ (0, )% + (L, 1)? + (1 )} dt
0 i=1
< CE(0). (9)

Inequality (9) establishes a so-called ‘hidden regularity’, as finite energy so-
lutions have L2-traces of the velocity and Neuman data, a fact which is not
directly seen from trace-thecorems. On the other hand, by transposition, we ob-
tain H x V*-regularity of u with initial data (ug,u;) € H x V*, v € L%(0,T)?,
where the spaces V' and H are defined by:

[1z%0.1)

i=1

H

Ii

V o= {u € HH (0,1 |u1 = 13(0) = ug(0),ui(1) = 0. i = I,2.3}.

=1

In equation (8) we may also take m;(x) = x, and derive an indirect energy
inequality:

3 T
E(0) <C(T) Z] | (1,1) | dt (10)
k=170

for T > 2 and for some C(T) > 0, where the wuy. k= 1,2.3 satisfy (1)-(5) for
v(t) =0, t € (0,7).

In order to illustrate the meaning of the crucial inequality (10), we define
the control-to-state operator Ly carrying the controls vy into the final data at
time 7. We formulate this in terms of L2(0, T)-controls by transposition.

3
J Ly : [[ L%0.7) — V* x H

i=1
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We observe immediately that L. is given by

3
Ly:V x H— []L*0,T) (12)

I8yt = (bl Nicsmin

Exact controllability is equivalent to the surjectivity of Ly which is, in turn,
equivalent to the condition

IL7 (00, 1)l 2 vllwo, erllvxs- (13)

For T' > 2 this gives exact controllability.
The norm minimal controls realizing the transfer from zero initial conditions
to given final conditions (wr,ur) are given via the right-inverse of Ly

v = L3(LpL3) ™ (=tip, ur). (14)
Thus, all comes down to solving the symmetric problem
LrLy(po, 1) = (i, ur) (15)

for the data (@g,1) € V x H.

The illposedness of the problem of exact-controllability for semi-discrete
approximations becomes more apparent when looking at (15). After semi-
discretization the HUM-operator appearing in (15) becomes a symmetric matrix
with condition number depending on the spatial step size h. If that condition
number (which is the ratio of the largest and the smallest eigenvalue) becomes
very large, the problem is numerically ill-conditioned. We will see later that
cutting Fourier series at a given level corresponds precisely to cutting off of the
smallest eigenvalue of the semi-discrete HUM-operator, hence this technique,
which has been proposed by E.Zuazua is equivalent to an adaptive truncated
singular value decomposition.

One might also consider the strongly related Tychonov regularization method
which corresponds to

{ LeLy(pr,7) + 7 (pr,r) = (=i, ur) -
v = Ly(pr, 1) = (¢i(l"))i=1,2,3-

In fact, this system is the optimality condition for the penalized optimal
control problem

T 3 :
{m}n{% J Zf?dwg{ﬂu(?‘)-mil%+rl1k(T)—leli’.»-}=:-h-(f)} (17)
i=1

Indeed. given the negative results in the sprit of Infante and Zuazua (1998),
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for the corresponding semi-discrete optimal control problem and then use a
Lagrangian approach. See Leugering (1999¢) for more details.

The problem we want to consider is whether or not an estimate like (10)
continues to be true for the semi-discrete model to be developed below, with
the Neumann derivative in (10) replaced with a finite difference approximation
uniformly in the discretization parameter h, and C(7") independent of h. In
order to investigate this problem we need some information about the spectrum
of the continuous as well as the semi-discrete model. The spectrum of Sturm-
Liouville operators on graphs has been investigated by von Below (1988) and
Nicaise (1993). After discretization the Laplacian on the graph turns into the
so called Laplacian-matrix associated with the computational graph. Spectra
of such Laplacian matrices, in the general case, are still under investigation;
see for instance Merris (1998) and Grone and Zimmermann (1990), and the
bibliographies therein. Our example is quite simple, and, therefore, we give the
arguments directly.

2.1. Spectral analysis for the continuous case

We consider

- = dpg, @k(1)=0, k=1,2,3, (18)
er(0) = w(0), k1=123, (19)
3
Y ek(0) = 0, (20)
k=1
with
ok = Apsin VA(1 — ) + By cos VA(I — ). (21)

The Dirichlet data at z = 1 imply By = 0, and the continuity at x = 0 implies
Agsin VA = Aysin V. (22)

Now two cases have to be distinguished:

1. Ap=A4;=A, k,1=1,2,3and sin\ #0

2. sin A = 0 which implies VA = k.
As we shall see, the first case corresponds to the global eigen-modes and the
second case to the local ones. We use the balance of forces at v = 0 which
implies

3
> AV eos VA =0. (23)

k=1

Using case 1 and 2 we obtain:
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3
2. ZA;, = (0, from which we obtain a two-parameter family
k=1
A] — Az =C

4 = =2C Ay =A3=C= \/g(_])k-i—i.
To sum up, the two cases are
1. A= (_n%)? m odd, ¢i*(z) = \/gcos %ﬁ:}:. k=1,2,3
2. An = (mn)?, m €N, o*(z) = of'(z) = ﬁ sinmma,

o (z) = —725 sinmmz.

3. The semi-discrete model

Now we turn to the semi-discrete model. We devide each edge into N + 2
points, and define the stepsize h = 1/(IN + 1) as well as the discrete coordinates
z; = jh, j =0,1,2,..,N + 1. We then approximate the evaluation of wx(z;,t)
by yi,;. We employ the standard finite difference scheme to the local wave
equations on the strings as follows:

h2ik.; = Ykj41 — ki + Yejo1 J=1.N, k=123 (24)

with the the following conditions:
e initial conditions
Y1 (0) = wro(®;), s = wrr(,)y G =0, N+ 1, k= 1,2,3 (25)
e Dirichlet conditions at 2z = 1 correspond to

yen+1 =0 k=1,2,3 (26)
e continuity at 2 = 0 that leads to
wo=2 k=123, (27)

with an unknown z
e balance of forces at z = 0: in order to obtain a second order consistent.

model, we introduce a fictitious boundary point at j = —1 and then use
the local equations to eliminate this point. This is done as follows:
3 3
/ Yea — Yk,—1 ¢
u;.(0) =~ —_— = 28
Su0~) By (28)

In order to eliminate y;, _, we are using the wave equation at @ = 0 with
a new mass 2 =: myo

h*mioz = yk,1 — 22 — Yk,-1, (29)
hence

Yk,—1 = 24,0 = Yk, + Wm0, (30)

which leads to 5

" s Ts“ Yrd — Ykt O 2k — 22 - h2myo2 (a1




On boundary observability estimates for semi-discretizations 431

{ o 3 3
E;yk'] - }:2 - Ehmmi.

The choice of myy = % is plausible as we have an artificial interval of

length 2h and we average over the number of incident edges. This choice
leads to the condition:
3

Wi =) y1 -3z (32)
k=1

REMARK 3.1 Note that in the case of a rectangular grid. the interior
points have edge degree 4. Then the balance condition above would read

h z—z.ﬂu—flz (33)

Which is e:mctly the semi-discrete 2-d wave equation with the classical five-
point-star finite difference scheme. At this point the intrinsic similarity
with Zuazua (1999) becomes apparent.

The complete system (24),(25),(26).(27), (32), therefore, reads like
R4k ; = Yk j+1 — 20ki + Ykj—1, 3=1,.,N, k=1,2,3, 0<t < T,
3

h%s = Zym -3z, 0<t<T,

$ k=1 (34)
Y, N1 =0, k=128 0gt<T,

ho=2 k=123, 0<t2T,

\ Yk, = ukg(:rj), ki = Hk;(;b’j), j=0,..N+1, k=1,2,3

We have taken homogeneous boundary data here, as we will be dealing with
the adjoint problem throughout the paper. We introduce a weighting factor at
the origin.

Prj =1, i=1..N 35
{Pko='§, i=0. (35)
] . (36)

We introduce the local stiffnes matrix (mod ) for cach individual string
together with coupling vectors.

We then define the semidiscrete energy

:%ZZ{pmmm :

k=1

Yk j41(t) = Y 5 (1)
h

-2 1
1 =2 1
Tr =
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The overall stiffness-matrix (again mod 7z) then becomes

e v v o
vy T :
Ly =- % B (38)
Up Ty
Up Th
The nodal vectors are arranged as follows
. T
B (2 Y0 o onr wnynm s WER YE o vo o yonn g Yiias Plwwonmgw coprrns PAN) o

Denote by D = diag(3,2...2,2...2,2...2) the diagonal matrix containing
the edge degrees for the grid points. Denote further by A the vertex-to—vertex
adjacency matric. Then the semi-discrete equation (34) reads as:

h?y+(D—A)y=0, (39)
L
b

where Ly, = D — A is the so-called Laplacian-matrix of the graph. (This is
completely general and can be written down for arbitrary graphs.) We now
turn to the spectral analysis of the semidiscrete model.

3.1. Spectral analysis

We look for the eigenvalues of the Laplacian-matrix Lj in the form

Ly = —Aph?, (40)

and proceed with the following Ansatz ¢ = (1,92, 03)7 . pro =2, k= 1,23,
ki = Agsinpg(N+1—=7)h+Brcospu(N+1-4)h, j=0...N+1, k=123,
At this point we now take into account the restriction imposed by the first

configuration (i. e. the three controlled Dirichlet nodes). Otherwise we would
have to change the matrix introduced above in the appropriate locations by
applying some rank-one-updates.

Our Dirichlet conditions imply

orNe1 =0 =>Br=0 k=1,2,3. (1)
Using continuity at k=0 :

Apsinp = Ajsinp k,j=1,2,3, (42)
gives us

) Ay = A k=1,23 sing #0,
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Taking the balance of forces at j = 0 into account gives

3
Z okt —3pi0 = —A’pi (43)
k=1
i.) 3sinuNh—3sing = —M’sinp (44)
3(1 — cosph — cot usinuh) = Ah?, (45)

so we are left with a discrete ’elliptic’ problem of the form

Ok, j+1 — 20k,; + Prj—1 = AP0k, 1=1,.,N, k=1,2,3, (46)
with
ok ja1 = Ak {sinp (N + 1 — j) hcos pth £ sinphcos u(N + 1 = j)h},
singe (N +1— §) h(2cos th — 2) = =Ah?sinpu (N + 1 = j)
or
Ah? = 45in® % (47)

Hence M is an eigenvalue in case i.). We now consider case ii.) which gives

2(1 — cos ph) = 3(1 — cos ph — cot gusinh 1) (48)
and hence
th
tan % = 3cot . (49)
Observe, that we know from the continuous model that (k + lz) =(2k+1)%
is the new string of eigenvalues. But, because cot ((2k+1)%) = 0, we expect
W= k—” — €p, €, being a small number depending on h. We use a perturbation

argument first order in € and obtain

H Y- (R k7 k7
1) Ap=rpy sin (4(N11) - ’Zfl(NTH)3> ;
~PZ} = Apsinpnh (N +1—=7) = A, sin i, (I - Tﬁ)

ii) g =mm, then

2 4, mm
A, = 7w (1 = cosmmh) = 73 sin N+ 1) (50)
©rs = Ampsin ]\?f] (N+1—-4)=—-A4A, <(—I)’” sin j\ll—/%il->

D Ap=0, A=Ay =C, Ay =—2C, ord; = —2C, Ay = 43 = C.

Of course, the constants are then used to properly normalize the eigen-
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4. TUseful lemmas

We now present the essential tools to prove our main results, that is the blow-
up result and the modified boundary control estimate which concerns a class
of filtered solutions being defined in analogy with Infante and Zuazua (1998),
Zuazua (1999), as

Ch(y)=qu= Z [(1;\-_ sin ( /\k(h)t) + by cos( /\_;._(h)t)} o"

Ak(h)<yh—2
with ay, by € R}. (51)

This definition is justified by the spectral analysis of Section 3.1. and the results
in Infante and Zuazua (1998). Next, a series of useful lemmas is presented which
is important for both the blow-up and the control estimate. Note that these
lemmas are very similar to the ones obtained in Infante and Zuazna (1998).
The main difference is the treatment of the inner multiple node at 2 = 0.
Nevertheless, the treatment of the multiple node depends on the discretization
at that point, and even though similar results can easily be anticipated, actually
proving them is a different matter. In addition, we believe that these lemmas
will be useful for further numerical analysis all by themselves, Therefore, we
give the proofs in the appendix.

LEMMA 4.1 (CONTROL ESTIMATE FOR THE EIGENVECTORS)
For any eigenvector ¢ = (p1,-+-,en) of system (40) the following identity
holds:

D%

k=1 j=0

2
Pkl ~ Pk,j

~ 4 - Ah =

Proof: See the Appendix

LEMMA 4.2 (IDENTITIES FOR THE EIGENVALUES)
For any eigenvector ¢ with eigenvalue A of (40) the following identity holds:

3 3
Z = /\Z Zpu | ks 12 (53)
k=1 j=0

k=
If o™ and ¢ are eigenvectors associated to eigenvalues Ay # Ae it follows
that

Pk, j ‘Pk J+1

Nl

-

i,
1]
(=]

N

Z (0F; — Phej1) (‘an,j — k1) =0. (54)
=0

M

=
Il
o

[
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LEMMA 4.3 (CONSERVATION OF ENERGY)
For any h > 0 and y being the solution of (34) we have

Eh(t) - Eh({])! Vte ’l]\T] (55)
Proof: See the Appendix

LEMMA 4.4 (DISCRETE MULTIPLIER IDENTITY)
For any h > 0 and y being the solution of (34) we have

h [T |& ¥ ?JL'+I—.UJ.'2
L c,d G, g rp
5/0 Zyk,jyk._fﬂ +Z = dt (56)
3=0 1=0
+ X} L/T @ g
. A = - i (L,
BRI D 0 h
with
- Uk,i+1 — Uk,
Xin) = hYj (Lt it ), 7)

7=0
Proof: See the Appendix

LEMMA 4.5 (EQUIPARTITION OF ENERGY)
For any h > 0 and y being the solution of (34) the following identity holds:

—hZZ f pri | Ui |* di+ (58)

k=1 j=0

alzz/

k=1 j=0

Yoy~ kil J’”“ fr+n(r) =0,

with

3 N
=h) Z P kY- (59)
k=1 j=1

Proof: See the Appendix

We observe that Lemma 4.4 is not quite the straightforward semi-discretization
of its continuous counterpart (8), in that mixed velocity terms rather than just
squares appear. This fact makes it necessary to absorb more terms using con-
servation of energy, Lemma 4.5, in order to obtain the following important
inequality:

(1= g0 s zn| <15 [ |Ea®f (60)
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with
AR?
Zn(t) = Xu(t) = —-Ya(t) )
3 N .
i [ @kgir —Wkg—1)  ARE
B h;;‘yk"’ [J 9 8 U AR

for every solution of (34) in which A is the largest eigenvalue entering its Fourier
expansion. This is the crucial point: we observe (once again) that controllability
and discretization do not commute!

The idea of deriving this inequality is to start from Lemma 4.4 and summing
for k = 1,2, 3, using the conservation of the energy Lemma 4.3, that is Ey(t) =
Ex(0) gives us

N

hDI;‘

3
/Jk_f?;’k.jﬂ = pilinsPdt + TER(0) + 3 Xnk(t)

13. k=1

3
=S P (62)
k=1

T 2
where Py = 3 [ (¥2)" dt.

0
A short algebraic calculation shows that

3 N T
ZZ/M,;.UJ:;H Pk3!1/kj| dt > — Z]
=07

kljﬂu k=1

9,5 — k,je1]2dt  (63)

|\..|—-

which leads to

-T-‘-l;“

TEL(0

3 N T 3
A FAS / ks — i Pt + 3 Xink(t)
0 1]

k=1 j=0 k=1

3
< Z Py (64)

Now use will be made of the fact that our solutions are filtered, that is - we
have cut the high frequencies of the Fourier spectrum.
Let A be the largest eigenvalue in the Fourier development of y. Then

Y= Z ametmlo™ (65)
I.!i-lruls.\/K
with gy, = VA, for m > 0 and p_p,, = —pip. Therefore
S ampimetria (60
|t | VA
Thus

3 N 3 N
Y N i —oinP =Y 3 Y anpme™t (o - o)
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3 N
= 2 12 m ~TH 2 .
=D Y Hanlam el — el (67)
kxlj:n““hllgﬁ
3 N
= t ¢ ¢

+D°0 ) pmpeamee T (G~ o) (ks — P -
k=17=0 |y |<VE

Imel VR

I‘m#l‘(

Using the identities (53) and (54) of Lemma 4.2 the term in (67) can be
rewritten as

3 N 3 N
ZZ | Gk, = Tkj41 [* A Z bt [ Amh.‘zzz,ok} I‘PETJ' 2

<
k=1 j=0 |1‘m|S\/K k=1 =0
3 0N
= AR N gl gl
k=1 j=0
Therefore
Ah 2 y
Z Z/ Uk, Jyk i+~ Pkj |} |Jk,3| } / ?)'k..j| dt. (65‘)
k=1 j=0 k=1 =0
So, we are left with
N 3 3
TEL(0) — — ZZ/MH"J}:JI dt + Z n § ZPM» (69)
k=13j=0% k=1 k=1

Applying the equipartition of energy as stated in Lemma 4.5 we can easily derive
that

3 4 i
- 1 B 1 -
hZZ/ pi; i ;| dt = /D En(t)dt +5Yi(t)| =TE(©0) + 5Ya(t)| . (70)
k=1 j=0 - 0 0
Combining (68) and (69) we deduce that
AR\ - Yk,N(t) N

T(lhT) En( ;/ | dt (71)

with
Ah?
Zn(t) = Xa(t) - —-Ya(t) (72)

= aSeS i@ = eget) AR ]
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for every solution of (24) in which A is the largest eigenvalue entering its Fourier
expansion.
We finish our list of lemmas by the following crucial estimate on Zj,(t):

LEMMA 4.6 (ESTIMATE ON Z,(t)) For any h > 0,t € [0,T] and y solution
of (34) in which A is the upper bound on the eigenvalues entering its Fourier
development, it follows that

Aht  3AR?
== —]—6—- =+ “]'E),-)T]*Eh(o)- (73)

| Zn(t) [< /1
Proof: The proof is an adaptation of the corresponding one in Infante and
Zuazua (1998).

5. Main results

In the first sub-section we are going to prove that without appropriate low-pass
filters applied to the semi-discrete system (34) there is no observability estimate
that is uniform in the stepsize h. In the second sub-section we proceed to show
that an h-adaptive low-pass filtering, which is equivalent to a truncated singular
value decomposition of the controllability Grammian, restores uniformity on the
class of filtered data.

5.1. The blow up result

THEOREM 5.1 (BLOW UP RESULT FOR UNFILTERED SOLUTIONS) ForanyT >
0, we have

Ex(0)
sup s
y solution of (24) ’g 5 | m:.?a(t) 12 dt

=

— 00 as h — 0. (74)

Proof: Using Fourier expansion y = ¢! VA¥ N of the solution and Lemma 4.1
an essential inequality of the form

E,L(0) 2 2 .
= — xY® (75)
El f(;r T(1 )\N(f )f )

is derived. Thus, as

<
Yk, N (t)
wea )] gy

i 2, 76
Jim Ay (h)h? — 4 (76)
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We start with the derivation of (75): We insert y = VUL N iy the

expression -—-——F—’-u—w-— which gives
Zf Vi, N(f!i dt
% % i AN[‘PE'\-V‘;F + IW:{-.VJA-I = ‘P?r,:l
Eh({)) . k=1 k=] ' . (??)
3 - g 2 ;
T wen(t) 3 |¥
Z fi) "; I dt TZA—:I “hM
k=1
T| N ) 2 o 2
Here we used conservation of energy and the fact that [ mh"‘ dt =T | ==

0
Now we use Lemma 4.1 for the denominator and Lemma 4.2 for the numerator
which leads to

ho SN N |
E;(0) 222 2 |"‘=J” ““k»i' 78)
< — 78
d, o7 2 h{d-—Ah?) N RS N [?
kZ—:I Jo lyen(t)/RI7dt T Z z{ Prj+1 ~ Prj
which is the desired inequality (75) and therefore the proof is complete. ]

5.2. The control estimate

THEOREM 5.2 (CONTROL ESTIMATE FOR FILTERED SOLUTIONS) Assume that
0 <~ < 4. Then, there exists T'(y) > 2 such that for all T > T(~) there ezists
a constant C = C(T,v) > 0 with

3 T
En(0) < O(T.) kZ [o

for every solution of (34) in the class Cp(7).

M| dt, (79)

Proof: The estimate (71) and Lemma 4.6 allow us to derive

Aht  3AR2 1 [T
T(1 — Ah2/4) — 24/1 — — En(0) < = ]
( /4 S/ 6 ToN ’()‘220

Now, taking into account that these solutions are filtered, which implies A =
v/h? in the class of solutions Cj,(7) of system (24) we deduce that

Y~ (t) 4
. ‘rif. (80)

31y, 2
B0 < ! w [ lwn@®|,
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Given that

/ h? 3y
T>2 L~ e

G
(1-3)

we have the desired result. [ |
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6. Appendix: Proofs of the Lemmas

Proof of Lemma 4.1: We start with the equation —Z= ‘—);‘ 1 Phiod

Apk,j, multiply it by £e128k0=bj and sum over j = 1,..,N. Observe that
this factor is precisely a second order approximation to the continuous energy
multiplier times the spatial derivative zu’. After some calculus, the left hand is
given by

N ;
Pk, j+1 = 2Pk,5 — Pk,i—1 Pk,i+1 = Pk,j-1 . e
_Z hg 9 J (b )

N

N N
- Z ‘Pko Z kg~ fzh »ﬁk N Z Pk, Phk,j+1
j=1 1=0

The right hand side turns out to be equal to

h2z(pk3+]2-(rﬁj ':_"\ Z'r’ﬁjll‘r’ﬂ} (82)

JU
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equation

23 : ZN: Lk, (Pk j+1
J +J
k=1 =0

3
=-2)" Z Pk, Pk j+1

k=1 j=0

3
1
~ 3 D PR (83)
k=1

On the other hand, after multiplication by @ ; and summation over k =
1,2,3 we have

1
h?

N 3 N
Z (Pk,j+1 = 20k, + Pk,j-1) Pk, = /\Z Z Pk s (84)

=1 j=1 k=1 j=1

Mm

o

which is equivalent to

3 N 3
1
512D D (okih; — Prihg+1) = 208 + 00 ) ok (85)
k=1 j=0 k=1
3 N
2
=2)_D G
k=1 j=1

where g is identified with the common value of pro. Now the eigenvalue
problem at node 0 gives

3
1 2 o) o]
5z z Pkl —P0)P0 = Agp. (86)
k=1
If we add (86) and (85) we obtain, again after some calculus,
N 3 A
HE s
> /\Z PR =t T (87)

1 j7=0
Notice that we have normalized the eigen-clements by

3 N
RN prgeb ;=1

k=1 j=0

Pk,g ~ Pkj+1 ‘Pk J+1

Mw

=
Il
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o Pkj ~ Pk | o
: J+1 9 o
Z Z h h3 Z PN (38)
k=1 j=0 k=1
3 N 3 N
- "ZZ(PWM ‘a"k‘.i‘a"kJH AZZ!’k;w K
k=1 3=0 k=13=0
3 N
| 2 A
A 522’9’&3 ‘PLJHH—% _H
k=1:3=0 = d
Now we make use of (87) and obtain
Yo |En | = A[(4 - h?) + he]
> Ad-2n?). (89)
Then,
PN |?
4n AhZ) 4 Z ' (90)
thus
- o ‘P* ’ 2 ‘rck\"
1J WJ+1 < ¥ . 9]
hzz =@ & \ (91)
=1 3=0
|

Proof of Lemma 4.2: The first part has already been demonstrated above.
Let Am, A¢ be two different eigenvalues and @7, ipﬁk be the corresponding
eigenvectors. Then we have

N
4 ] T ¥
AeZ‘PEj‘Pi,J‘ = 2 (‘Pk i+1 +»9:.J 1 — 2@ ) . (92)
i=1
] T
Ak Z(pi.j@:’fj = TR (‘Pk gt ‘f‘& =1 Z‘PL _r) Pk, n : (93)
j=1
Now,
N
Z (‘Pi,j+l +‘P£.j—l = Q‘Pf-.,_;) '»"«‘;TJ = Lr:'f-‘{)‘r"";:fi = ‘é‘i.]@?fn (94)
i=1
N

Y (ool o= Bpl Yk o
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and, therefore,

3

(Ae = Am ZZP;W:; JlPkJ

k=1 "0
1

from which we conclude

3 N
Y3 okseliet ;=0

1 3
£ m L am -.—f
2 %Zwk,l — %o ZH—,;
k=1

3 (A = M)l = 0,

3

k=1

(96)
k=1 j=0
This lead us to
3 N
DD (ko + 0k 41— 2085) o = (97)
k=1 j=1
3 N
Z Z (’pk,_ﬁ-l + (Pk - 1) P T 200 \,00
k=1 j=1
On the other hand
3 N
Am Z Z pjk‘P;Tk‘P;k = (98)
k=1j=0
1
~5 |~ +Z‘Pk 19k0 + ZZ (@spr +ol ) ebs | =o0.
k=1 j=1
Therefore,
3 N
ZZ Phs41Pk = ZZ‘Pk PR T P86 (99)
k=1;=1 k=1 j=1
and hence
3 N
Z Z (s = o) (#k,5 — Phoga) (100)
k=1 j=0

N

=175=0

Il
X

£

3 N
V Y‘ w:.n.w{ i+ 3@%‘02‘ so anﬁnm = 01

3
£ m £ m . m £
ZZ Ph.iPk.j T Phjt1Pk.j+1 — Phij+1Pk,j — OF Pk is1)
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from which we deduce

3 N
ZZ(‘PEj *‘PEJ‘H) (‘Pi,j _‘10£,j+l) =0. (101)

k=1j=0
=]
Proof of Lemma 4.3:

Proor SKETCH: The main idea is to take a time derivative of the energy,
insert the equation and perform summation by parts.

Recall
) DL y yeg |
_n e 2 kit+1 — Yk,j
En(t) = 5 Zngk Il + | === ¢+ (102)
k=1 j=1
and take a derivative with respect to ¢
3 N " .
. 5o in Yk, j+1 — Yk,j Yk, j+1 — Yk,j
Ex(t)=h) Y {ijyk,j?fkg' + == h A n L } . (103)

k=1 j=0
Upon summation by parts, regrouping terms, and using the differential equation
we obtain

3
hZ{fg(Jk!T}LI_TMU}LO) (104)
k=1

N

1 3
Z 2 (Yk,j+1 — 2Ukj + Yk,5+1) Ukj
=0

N
1 i . s
Tz [ TYkaYk +2 Yeslks + e Vk0

j=1
N N
= D Ykio1lki = Y Yk i10k
i=1 i=1
=0.
||
Proof of Lemma 4.4: We multiply equation (34) by ¥t:2¥hizlj sum

over j =1 to N and integrate between 0 and 7' which leads to
Zf Ykl yk; ljdt-—_ (105)

1 Yk.j+1 — Yk, j—1 .
ﬁy‘ [ (e i1 — 2us 5 + Une i—l}M?dt
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Now we expand both sides separately: The left hand side is integrated by
parts with respect to time

Zyykj-i-l‘?‘;}k-g li

i=1
1 N T g
=_Z/ yk,jyk,j+]df+zy Mﬁi‘ _
2j=] 0 = 5 20

The right hand side gives

N T N T
1 ) 1 .
B9} Z-/t; (BE,J'H = y?r.,j-—l)}dt T2 Z/ﬂ Yk,j (Ukj+1 = Yk,j—1) gdt.  (107)
i=1 F=1

Summation by parts results in

1 x 2 2 y
5?1‘5/0 ~Yk,0 + yk,N( ) dt — IT? Z / 1;5 Sdt (108)
o 1. 2
+}1‘2' . Yk, 1Yk, 0dt + 5] JX_; A y;.._‘_,-y,-..dq..dt‘
and hence
L J* . ;
o2 /0 Y0 = Y1 + 20k10k,0 + Yi v (N + 1)dt (109)

j 2 g .
_2h2 Z/ lyk.j = yk‘j-{-]| dt.
i=1"0

To sum up we have

“E:/ JkJ'L"L,J+ldt+ E / L “’“ L) d (110)
1 T
yk.j Yk,j— IJ y
§ =— [ |== dt 111
tY Yy Ty 2|, z/ h (1)
=0 0
o}

Proof of Lemma 4.5: We multiply the semi-discrete equation (34) by v ;,
equation (32) by z, sum over j = 1 to N, and integrate between 0 and 7.

N .1
Y‘f e adt = T‘[ .,.(111-,41—211;”+uk, Dyeadt (112)
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3
Z/ﬂ zzdt——Z/ (g —z)zdt =0 (113)
k=1

Now the left hand side of the first equation gives, using integration by parts in
time:

Z/ yij'kjd't ZJkJJAj Z/ y.i,_;df (114)

while summation by parts gives for the right hand side

3
1
Z/G h—z(’!fk.w = 2Yjk + Yk, j-1) Y, it (115)
=1

9. |
= (~Uk 0¥k — ¥k0) = D Y1 — veal )z

=0

Combining now equation (114) and (115) leads to

U&_il]_ .

_th ykjdr+h,2/ dt+Zu;J q;w|
T.‘ z 3
_;,,/D (%) dt+h/0 i’i;‘]dt:{]. (116)

The next step is to use equation (113) and to integrate it also in time which
gives:

T
T 3 ,T
f Ezdt:izﬁh/z'?df:}]—?Z[ (Yk,1 — 2) zdt. (117)
0 Ly}
e =

Now multiplying the last equation by h adding it to equation (116) and
summing up the resulting equation for k = 1,2, 3 gives

—hZZ/ kadt— /z dt (118)

k=1 j=1

w3 [

k=1 j=1

Jk3+1 _ykg

from which the result follows. |






