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Abstract: In a previous work we improved some carlier results
of Imanuvilov. Li and Zhang. and of Zuazua, on the boundary exact
controllability of semilinear wave equations by weakening the growth
assumptions on the nonlinearity. Answering a question of Zuazua
we give a still weaker, essentially optimal condition. Furthermore,
we establish an approximate internal controllability result under the
same growth assumptions.
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1. Introduction and formulation of the main results

IFix a bounded open interval (a.b) and a positive number T Given a function
f:R — R of class C', consider the problem

Vg — Ve — f(0) =0 in (a.b) x (0,7T).
vla,t) = ha(t) and wo(b.t) = hi(t) for te(0.T) (1)
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We will obtain a boundary exact controllability result under suitable, rather
weak growth assumptions on the nonlinearity f. In order to state our result, let
us introduce the iterated logarithm functions log; defined by the formulas

loggs:=s and log;s:=log(log;_;s), j=12,...,

and define the numbers e; by the equations log; e; =1 for j =0.1....:
eo=1, e =e ex=¢€% e3=¢€,...

We prove in the next section that the formula

L(z) == [ ] logx(ex + lal) = (1 + |a]) log(e + |a]) loga (e + [2]) ... (2)
k=0

defines an everywhere finite, even function with L(0) = I. TFurthermore, L(x)
is increasing for z > 0, and L(x) — +o0 relatively slowly as @ — o0, so that

Gl
o T
/0 L(z)
Let us also introduce the primitive F' of f defined by

F(z) = / f(s)ds, z€R.
0
We have the

THEOREM 1.1 Assume that there exists a positive number 3 such that
|F(z)| < BL(z)* for all . (3)
If ' > b— a, then for any given
(ug,w1), (vo,v1) € H'(a,b) x L?*(a.b)
there exist control functions
ha, hy € H'(0,T)
such that (1) has a global solution
v € C([0,T); H'(a,b)) N C'((0,T; L*(a. b))
satisfying the final conditions

v(T)=vy and V' (T)=v; in (a,b). (1)
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REMARKS 1

e This theorem improves an earlicr one obtained in Cannarsa. Komornik,
and Loreti (1999). Instead of (3) we made there the stronger assumption
|F(z)] < ALa(z)? for all 2. (5)

for some positive integer n, where L, (s) is defined by the formula
T
Linfz) = H log; (ex + [x]) = (1 + |2]) log(e + |z])...log, (en + |2]).

k=0
(We used a slightly different but equivalent condition.) E. Zuazue asked
whether in (5) the term L, (2) could be replaced by some convergent series
o 0CnLn(x). Our theorem answers this question in particular.
o Our results in Cannarsa, Komornik and Loreti (1999) also show that the
assumption (3) of the above theorem is essentially optimal.

Next we study the internal controllability of the problem

Uy — Uz — f(u)=h in (a,b) x(0,7),
w(a,t) = u(b,t) =0 for te(0,T), (6)
w(0) =wup and '(0) =wu; in (a.b).

Set

) := L(z)/(1+z]) = H log, (er +|x]) = log(e+|x|) logs (ea + |2]) .. .(T)

E=1

for brevity. Applying Theorem 1.1 we shall prove the following approzimate
controllability result:

THEOREM 1.2 Assume (3) again and let T' > b — a. Furthermore. assume that
there ezists another positive number 3" such that

\f'()| < B'l(x)*  forall x. (8)
Let 0 < é < (b—a)/2 and let
(ug,w1), (vo,v1) € Hy(a,b) x L*(a,b)
be fized. Then, for any e > 0 there exists a control function
h € L®(0,T; L%(a,b))
with
Wz, t) =0 forany a+d <ax<b—4,
such that (6) has a global solution
u € C([0,T); Hi(a,b)) N C'([0,T]; L*(a.b))
satisfying
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Under an additional assumption concerning the support of the initial and
final data, we also have an ezact controllability result:

THEOREM 1.3 Assume (3) again and let T'>b—a. Let 0 < < (b—a)/2 and
let

(ug,w1), (vo,v1) € H'(a,b) x L*(a,b)

be fized so that all four functions vanish outside the interval (a +46.b—38). Then
there ezists a control function

h € L*(0,T; L*(a,b)) (10)
with

h(z,t) =0 whenever a+d <ax <b-—4, (11)
such that (6) has a global solution

u € C((0, T]; Hy(a, b)) N C'((0,T]; L*(a, b))
satisfying the final conditions

wT)=vg and ¥'(T)=v, in (ab). (12)

The authors are grateful to E. Zuazua for his question leading to Theorem

1.1 above.

2. Infinitely iterated logarithms

Let us observe that (e;) is a strictly increasing sequence of positive numbers,
rapidly tending to infinity. Note that

ep=1 and Iogj ep=e—jforalll > j>0. (13)

The purpose of this section is to establish some properties of the function
L(z), defined in the introduction, which we will be using in the sequel:
PRrROPOSITION 2.1 The formula (2) defines an even, everywhere finite function
L(x) which is increasing for 2 > 0. We have L(x) > L(0) = | for all » and

® dz
— = 400, (14)
o L(z)

Finally, for every a >0 and 0 > 0 there exists a constani ¢(«.6) > 0 such that

L(z)? < 8|z[**2* 4 (e, 8) for all z. (15)
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LEMMA 2.2 Let 0 <2 < ¢ —e~4.67. Then
log(e +a) < 2e;-4 (16)
for any integer | > 1. Moreover, for any integer k > 2.
k
log,.(e; +z) < (1 - He!",‘]i)f’.a_;. (17)
3=2

for all integers | > k.

Proof: Note that (16) formally coincides with (17) for & = 1. Hence we must
prove (17) for all integers 1 < k < [. Fix a positive integer [ arbitrarily. We
prove (17) by induction over k for k= 1,....L

The proof for k = 1 is straightforward:

log(e; + z) < logef = 2e;_1.
Now assume that (17) holds true for some 1 < k < I. Then, using also the

inequality log(1 + y) <y, we have

3
]ng_'_l(m +2z) < Iog[(l + H ci__lj)e:—k]
j=2

k k
- log(l + He,__lj) +e—k—1 S €—f-1+ Her_lj
j=2 j=2
k41
= (1 + H ef_lj-)ef—k—i-
j=2
=]
LEMMA 2.3 Ifx >0, then
log(e + 2%) < 2log(e; + ) (18)
forl=1,2,.... Moreover. for any integer k = 2,
k
log,.(e; + 2%) < (] + ef_’j) log (e + x) (19)
=32
for all integers | > k.
Proof: Similarly as above, (18) formally coincides with (19) for k= I. Hence

we must prove (19) for all integers 1 < k <. Fix a positive integer | arbitrarilv.
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The proof for k = 1 is easy:
log(e; + z%) < log(e; + )% = 2log(e; + x).

Now assume (19) for some | < k < I. Then we have

k
logy.1(er + 3:2) < log[(l + H efﬁlj) log, (e + .'r)}
j=2

log(l%—He,_J)+Iog“,(<=g+;]<|%+l (1 + 2 +H"t L

k-H

< (1 + H ez'_‘j) logy. 1 (e + ).
=2
m
LEMMA 2.4 The infinite product
oo
= [] tos(ex + [2]) = log(e + [x]) logy(e° + |z]) ... (20)

k=1

converges for every real number x. Furthermore, the function ( is even. strictly
increasing for x > 0, and it has the following additional properties:

Lz) > £(0) =1 forall =z, (21)
Uz?) < Cl(z) forall = (22)
where the constant C is defined by the convergent infinite product

]‘[ (1+ H i 2&(1 - f[ i (23)

k=1 3_.

Uz)

3:(!

—0 as z— +00 (24)
for every a > 0.
Proof: Since e;_p — -+0o0, the series
o &
-1
> I,
k=2 j=2

armvarmae hy the ratin test. and therefore the infinite products in (23) converge,
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Applying the inequalities (16) and (17) of Lemma 2.2 with [ = | and [ =k,
respectively, we conclude that 1 < {(x) < Cif 2| < e? —e.

Also, by application of (18) and (19) with [ = 1 and | = k, respectively, (22)
follows for all . Next we use this inequality to show that £(x) is finite for every
x. We already know this for |@| < €% — e =: a. Given an arbitrary x, choose a
positive integer n such that |z| < a”. This is possible because a > 1. Applying
(22) n times we obtain that

{(z) < Y(a*") < C™(a) < +00.
Finally, we prove (24). Since
Ctla) _ C tla)

2
{(z*) & N
pa — 2o 0 o

we have, writing a, := a?" for brevity,

{x (6 {2
sup (=) < sup ()
ﬂn+IS$Sa"+3 a‘:o uﬂ"‘] 0, ST<dg 41 e

for every n. Choosing a sufficiently large positive integer 1 such that af, | >
2C, it follows that

{(x Mz
sup -—(l) 2 g sup —(I)
an<z<ani1 z* ay, ST 041 x?

for every n > m. Hence (24) follows. |

Now we are ready to prove Proposition 2.1,
Proof: [Proposition 2.1] Since L(z) = (1 + |x|)¢(z), all properties but (14) and
(15) follow easily from the preceding lemma.

For the proof of (15) observe that L(x)/x>*® tends to zero as  — +00
because

L(z) _, )
— L

0<

5
IA

for all z > 1, and the last expression tends to zero by (24). Now (15) easily
follows by applying the Young inequality.

Turning to the proof of (14), assume, on the contrary, that the integral
converges. Then

© dx

—0 as n— +oc. (25)

By performing the change of variable 2 = ¢' we obtain the equalities

[‘x’ dv f°° dax: . [°° et dt N [°° et dt
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Observe that we have

et 5 et entl

14et = 14 e8n - 1 4-eh41

el
2 | = (YI-I-1

and

logy.(ex + €*) < logy(exe') = logy_; (ep—1 +1)

for all k > 1 and t > e,. Therefore we deduce from the above equalities the
following inequalities:

© de = df
——Z(l—e;’ )[ s
/e,.,ﬂ L(z) ), TR
It follows by induction that
® dz - ~1 "o dp
sl —
j!;.. L(z) ~ (Jl;[z(] K. J)/Ll L(x)

forn=2,3,....
Since the series Ze;' clearly converges (because e; — +00 very quickly)
and since every e; is greater than 1, we have

==}

A = H(l —e;])>0

j=2

and therefore

® dx 2l
> A
f 77 it 7 =

for all n. This contradicts (25). T

3. Proof of Theorem 1.1

[n our previous paper, the proof of the above mentioned weaker result was
based on two important properties of the functions L. One of them was the
divergence of the integral of 1/Lj; we have already shown that the same property
also holds for the function L. The other property was the estimate (26) below for
the functions Ly instead of L. Thus, after having proved the following lemma,
Theorem 1.1 can be proved by repeating the arguments given in Cannarsa,
Komornik and Loreti (1999). So, we only need to prove the

LeEMMA 3.1 Let §2 be a bounded open domain in RN, Givene >0 arbitrarily,
there is a constant c(g) such that

L)l < el Vaul| + e(e) L([luf]) (26)
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Proof: Assume for simplicity that N > 3: the cases of N = 1,2 are analogous
and simpler. We recall that by the Sobolev imbedding theorem there exists a
constant S such that

3N w2y < SIVul?

for all u € H ().
Given § > 0 arbitrarily, by Proposition 2.1 there exists a constant ¢(d) > 0
such that

L(1)2 < (5}1‘.|(2N+4)/N +C(5)

for all real z. Since

s i [
2N +4 2 N
if @ =2/(N + 2), applying the interpolational inequality we have, denoting by
|©2| the volume of Q,

2N+44)/N
IL(w)? < SlulGata)y + @)
N/(N+2)y(@N+4)/N |
< 8([lull N ¥ D) + ()]0

= 5|Iul|4/N“u”N/(N—2) +¢(9)192]
< 5S[lu) N Vul® + ¢(8)19]

Since L > 1 everywhere in case of ||u|| < I, hence we deduce the estimate
IL(u)]|* < 68| Vul* + ¢ (Jlull)?, (27)

and (26) follows by choosing § = S~ 12,
Henceforth assume that ||ul| > 1. Let us note that

L(ab) < Cl(a) + CL(D) (28)

for all real numbers a and b. Indeed, assuming for example that |a| > [b], using
(22) we have

0(ab) < £(a?) < CL(a) < Cl(a) + CL(D).

Now given u € H}(Q) such that |jul| > 1, setting v := w/llu| and applying
(28) we have

L{u)? da :/ L(u)? dx + / L(w)? do < |QL(J|ul))*+
Q Jul < ull luf>lu]

-/|.|>|| u(l + [ul)*((w)’
2C” 14 |u])2(v)? do + 202 | ul)= (]l
/|ll|>||u||( +| I) ( ) 2 /u'\-”“n + 1 L H J

L(Jlull)*+
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Since ||z)| > 1 implies that
1+ Jul < Jlull(1 + [v]),

we have
L < Jull? / L) do < JulPIL())P.
[} > |ju]

Furthermore, since |u| > [|u|| > 1 implies that
1+ fu| < 2ful,
we have
Ip < AL(|luf))®.
Substituting them into (29) we find that
IZ(u)|? < (1921 +8C?) L(ljull)* +2C?||ull?|| L(v)]I*.
Applying (27) for v and using the inequality L(z) > |z| we obtain that

IL@)* < (12 +8C?)L(Jlull)? + 2C°|[ul*(3S||Vell® + c(8)|QIL(1)?)
< 2C%58||Vu|? + {| + 8C? + 2C%¢()|QIL(1)} L(||u)?.

For § = €2 /(2CS) the lemma follows. ]

4, Proof of Theorem 1.2

Without loss of generality we assume that vy and vy vanish outside the interval
(a+6',b—4§') for some 0 < &' < 4.
Applying Theorem 1.1 we obtain control functions h, and hy, and a solution

v € C([0,T); Hi(a, b)) N C ([0, T}; L*(a, b))

of (1) satisfying (4). Notice that, in particular, v is bounded.
Let us consider, for every 0 < ¢ < &', a cutoff function v, € C?%(a,b)
satisfying

Yo(z)=1 if ato<z<b-o,
Xe(@)=0 if a<z<a+2'corb—-2"'o<a<b.

We may choose it so that

IXo(z)| <co™? and |\Y(z)| < co™? (30)
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A simple computation shows that for every 0 < o < §’ the function v, 1= ygv
solves

Uy — Uz — f(U) = he In (a,b) X (0,T),
v(a,t) =v(bt)=0 for te (0,T), (31)
v(0) = xouo and v'(0) = xouy in (a,b)

with

he = Xo f(v) = f(Xo¥) = 2XGVz — XGv-
Hence,

ho € L®(0,T; L*(a, b))
and

h(z,t) =0 forany a+d<z<b-—4.

Moreover,

v(T)=v and v, (T)=wv in (a,b) (32)
and

V5 lloo < l[¥lco (33)

Now, by the same method used in the proof of Cannarsa, Komornik and
Loreti (1999) [Theorem 1.1}, we conclude that the problem

Uty — Ugg — f('ll.) = h‘o‘ in (a’¢ b) x (0971)7
u(a,t) =u(b,t) =0 for te(0,7),
w(0) =wug and ¥/ (0) =u; in (a,b)

has a unique solution
u, € C([0,T); Hy(a,b))NCH[0,T]; L*(a,b)).
The proof will be complete if we show that

lua(T) = vo (D) H1(apy <& and [ug(T) = vg(T)|

L2(ab) < E

if o is chosen to be sufficiently small. For this purpose, let us set
w? = Uy — Vg

Then, w? satisfies

! wy (2, 1) — wez(x,t) = p(t, @z, w(z, t))w(z,t) in (a,b) x (0,7),
w(a,t) =w(b,t) =0 for te(0,7), (34)
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where ¢ is given by

1
o(t, z,w) :/ f(vo (2, t) + Aw)dA,
0
so that
otz 0w’ (z, 1) )w’ (2, 1) = f(ug(x.1)) = f(ve(2,1)).
Using assumption (8) and estimate (33), we have that
lo(t, z,w’)| < Bo(w’)?. (35)

Applying Cannarsa, Komornik and Loreti (1999) [Lemma 3.1] to problem (34)
we deduce that the energy of w? is bounded. So, w” is also bounded, and we
obtain

o(t,z,w’) < C

for some constant C > 0 independent of o. The standard energy estimates may
then be used to the prove continuous dependence on initial conditions of the
solution to (34), that is

Bt th/ |wf |2+|‘”01 dv < _/ lw?|? +|w |'zda:§C’Eﬁ(t)
where C’ denotes another positive constant independent of . Therefore,
Eﬂ'(t) < Ea(o)eCt

and the proof will be complete if we show that E;(0) — 0 as ¢ — 0. To prove
the last claim we note that

b
X% uol? dx:.

[

1 I I
Ea@) =5 [ 10 =xdu +1(1 = xo)u? da+ 5

Since the limit, as o — 0, of the first two terms in the above right-hand side is
0, we only need to consider the right-most term

b ata b ]
[uw&w=/ ool dr+ [ [\uof?da.
a a Jh—o

It is sufficient to establish the inequalities

a+o a+o
Yiupl?dz < C lup|? dz: (36)
o 0

and

b b
f [ 12 3. e f P o P [k Lrd
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IFor this we use Poincaré’s inequality as follows. Since

x 2 T a+a
/ ug(t) dt| <(r—a) [ lup(t))? dt < cr/ [up|® da

for all a < z < a+ o, (36) follows by using (30):

a-+to . o ) a+ta
" up|? dz < cPo? ug|* dx < & uh|? da.
Xo (]
a a

@

| 2

|uo(x)

The proof of (37) is similar. E

5. Proof of Theorem 1.3

We argue as in the previous proof and consider a cutoff function y € C?(a,b)
satisfying

X(@)=1 if a+é<a<b-4d
x(z)=0 if a<z<a+2"'dorb-2""6<x<b

Then, applying Theorem 1.1 we obtain control functions h, and fy, and a solu-
tion v of (1) for which (4) holds true. A simple computation shows that u := yv
solves (6) with

h= Xf(u) - f(XU) - 2.\':57»!;: = XzzV

and that conditions (10), (11) and (12) are also satisfied.
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