Control and Cybernetics

vol. 28 (1999) No. 3

Controllability of semilinear wave equations with infinitely iterated logarithms

by

Piermarco Cannarsa ${ }^{1}$, Vilmos Komornik ${ }^{2}$, Paola Loreti ${ }^{3}$
${ }^{1}$ Dipartimento di Matematica, Università di Roma "Tor Vergata",
Via della Ricerca Scientifica, 00133 Roma, Italy e-mail: cannarsa@axp.mat.uniroma2.it
${ }^{2}$ Institut de Recherche Mathématique A vancée Université Louis Pasteur et CNRS
7, rue René Descartes, 67084 Strasbourg, France e-mail: komornik@math.u-strasbg.fr
${ }^{3}$ Dipartimento MeMoMat Università di Roma "La Sapienza", Via A. Scarpa 16, 00161 Roma, Italy e-mail: loreti@dmmm.uniroma1.it

Abstract

In a previous work we improved some earlier results of Imanuvilov, Li and Zhang, and of Zuazua, on the boundary exact controllability of semilinear wave equations by weakening the growth assumptions on the nonlinearity. Answering a question of Zuazua we give a still weaker, essentially optimal condition. Furthermore, we establish an approximate internal controllability result under the same growth assumptions.

Keywords: wave equation, semilinear equation, controllability.

1. Introduction and formulation of the main results

Fix a bounded open interval (a, b) and a positive number T. Given a function $f: \mathbf{R} \rightarrow \mathbf{R}$ of class C^{1}, consider the problem

$$
\left\{\begin{array}{l}
v_{t t}-v_{x x}-f(v)=0 \quad \text { in }(a, b) \times(0, T), \\
v(a, t)=h_{a}(t) \quad \text { and } \quad v(b, t)=h_{b}(t) \text { for } \quad t \in(0 . T) .
\end{array}\right.
$$

We will obtain a boundary exact controllability result under suitable, rather weak growth assumptions on the nonlinearity f. In order to state our result, let us introduce the iterated logarithm functions $\log _{j}$ defined by the formulas

$$
\log _{0} s:=s \quad \text { and } \quad \log _{j} s:=\log \left(\log _{j-1} s\right), \quad j=1,2, \ldots,
$$

and define the numbers e_{j} by the equations $\log _{j} e_{j}=1$ for $j=0,1, \ldots$:

$$
e_{0}=1, \quad e_{1}=e, \quad e_{2}=e^{e}, \quad e_{3}=e^{e^{z}}, \ldots
$$

We prove in the next section that the formula

$$
\begin{equation*}
L(x):=\prod_{k=0}^{\infty} \log _{k}\left(e_{k}+|x|\right)=(1+|x|) \log (e+|x|) \log _{2}\left(e^{e}+|x|\right) \ldots \tag{2}
\end{equation*}
$$

defines an everywhere finite, even function with $L(0)=1$. Furthermore, $L(x)$ is increasing for $x \geq 0$, and $L(x) \rightarrow+\infty$ relatively slowly as $x \rightarrow+\infty$, so that

$$
\int_{0}^{\infty} \frac{d x}{L(x)}=+\infty
$$

Let us also introduce the primitive F of f defined by

$$
F(x)=\int_{0}^{x} f(s) d s, \quad x \in \mathbf{R} .
$$

We have the
Theorem 1.1 Assume that there exists a positive number β such that

$$
\begin{equation*}
|F(x)| \leq \beta L(x)^{2} \quad \text { for all } \quad x . \tag{3}
\end{equation*}
$$

If $T>b-a$, then for any given

$$
\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right) \in H^{1}(a, b) \times L^{2}(a, b)
$$

there exist control functions

$$
h_{a}, h_{b} \in H^{1}(0, T)
$$

such that (1) has a global solution

$$
v \in C\left([0, T] ; H^{1}(a, b)\right) \cap C^{1}\left([0, T] ; L^{2}(a, b)\right)
$$

satisfying the final conditions

$$
\begin{equation*}
v(T)=v_{0} \quad \text { and } \quad v^{\prime}(T)=v_{1} \quad \text { in } \quad(a, b) . \tag{4}
\end{equation*}
$$

Remarks 1

- This theorem improves an earlier one obtained in Cannarsa, Komornik, and Loreti (1999). Instead of (3) we made there the stronget assumption

$$
\begin{equation*}
|F(x)| \leq \beta L_{n}(x)^{2} \quad \text { for all } x \tag{5}
\end{equation*}
$$

for some positive integer n, where $L_{n}(s)$ is defined by the formuln

$$
L_{n}(x):=\prod_{k=0}^{n} \log _{k}\left(e_{k}+|x|\right)=(1+|x|) \log (e+|x|) \ldots \log _{n}\left(e_{n}+|x|\right)
$$

(We used a slightly different but equivalent condition.) E. Zuazua asked whether in (5) the term $L_{n}(x)$ could be replaced by some convergent series $\sum_{n=0}^{\infty} c_{n} L_{n}(x)$. Our theorem answers this question in particular.

- Our results in Cannarsa, Komornik and Loreti (1999) also show that the assumption (3) of the above theorem is essentially optimal.

Next we study the internal controllability of the problem

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}-f(u)=h \text { in }(a, b) \times(0, T), \tag{6}\\
u(a, t)=u(b, t)=0 \text { for } t \in(0, T), \\
u(0)=u_{0} \text { and } u^{\prime}(0)=u_{1} \text { in }(a, b) .
\end{array}\right.
$$

Set

$$
\begin{equation*}
\ell(x):=L(x) /(1+|x|)=\prod_{k=1}^{\infty} \log _{k}\left(e_{k}+|x|\right)=\log (e+|x|) \log _{2}\left(e_{2}+|x|\right) \ldots \tag{7}
\end{equation*}
$$

for brevity. Applying Theorem 1.1 we shall prove the following approximate controllability result:
Theorem 1.2 Assume (3) again and let $T>b-a$. Furthermore, assume that there exists another positive number β^{\prime} such that

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq \beta^{\prime} \ell(x)^{2} \quad \text { for all } \quad x \tag{8}
\end{equation*}
$$

Let $0<\delta<(b-a) / 2$ and let

$$
\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right) \in H_{0}^{1}(a, b) \times L^{2}(a, b)
$$

be fixed. Then, for any $\varepsilon>0$ there exists a control function

$$
h \in L^{\infty}\left(0, T ; L^{2}(a, b)\right)
$$

with

$$
h(x, t)=0 \quad \text { for any } \quad a+\delta<x<b-\delta,
$$

such that (6) has a global solution

$$
u \in C\left([0, T] ; H_{0}^{1}(a, b)\right) \cap C^{1}\left([0, T] ; L^{2}(a, b)\right)
$$

Under an additional assumption concerning the support of the initial and final data, we also have an exact controllability result:

Theorem 1.3 Assume (3) again and let $T>b-a$. Let $0<\delta<(b-a) / 2$ and let

$$
\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right) \in H^{1}(a, b) \times L^{2}(a, b)
$$

be fixed so that all four functions vanish outside the interval $(a+\delta, b-\delta)$. Then there exists a control function

$$
\begin{equation*}
h \in L^{\infty}\left(0, T ; L^{2}(a, b)\right) \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
h(x, t)=0 \quad \text { whenever } \quad a+\delta<x<b-\delta, \tag{11}
\end{equation*}
$$

such that (6) has a global solution

$$
u \in C\left([0, T] ; H_{0}^{1}(a, b)\right) \cap C^{1}\left([0, T] ; L^{2}(a, b)\right)
$$

satisfying the final conditions

$$
\begin{equation*}
u(T)=v_{0} \quad \text { and } \quad u^{\prime}(T)=v_{1} \quad \text { in } \quad(a, b) . \tag{12}
\end{equation*}
$$

The authors are grateful to E. Zuazua for his question leading to Theorem 1.1 above.

2. Infinitely iterated logarithms

Let us observe that $\left(e_{j}\right)$ is a strictly increasing sequence of positive numbers, rapidly tending to infinity. Note that

$$
\begin{equation*}
e_{0}=1 \quad \text { and } \quad \log _{j} e_{l}=e_{l-j} \text { for all } l \geq j \geq 0 \tag{13}
\end{equation*}
$$

The purpose of this section is to establish some properties of the function $L(x)$, defined in the introduction, which we will be using in the sequel:

Proposition 2.1 The formula (2) defines an cven, everywhere finite function $L(x)$ which is increasing for $x \geq 0$. We have $L(x) \geq L(0)=1$ for all x and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{L(x)}=+\infty \tag{14}
\end{equation*}
$$

Finally, for every $\alpha>0$ and $\delta>0$ there exists a constant $c(\alpha, \delta)>0$ such that

$$
\begin{equation*}
L(x)^{2} \leq \delta|x|^{2+2 \alpha}+c(\alpha, \delta) \quad \text { for all } x \tag{15}
\end{equation*}
$$

Lemma 2.2 Let $0 \leq x \leq e^{2}-e \approx 4.67$. Then

$$
\begin{equation*}
\log \left(e_{l}+x\right) \leq 2 e_{l-1} \tag{16}
\end{equation*}
$$

for any integer $l \geq 1$. Moreover, for any integer $k \geq 2$.

$$
\begin{equation*}
\log _{k}\left(e_{l}+x\right) \leq\left(1+\prod_{j=2}^{k} e_{l-j}^{-1}\right) e_{l-k} \tag{17}
\end{equation*}
$$

for all integers $l \geq k$.
Proof: Note that (16) formally coincides with (17) for $k=1$. Hence we must prove (17) for all integers $1 \leq k \leq l$. Fix a positive integer l arbitrarily. We prove (17) by induction over k for $k=1, \ldots, l$.

The proof for $k=1$ is straightforward:

$$
\log \left(e_{l}+x\right) \leq \log e_{l}^{2}=2 e_{l-1} .
$$

Now assume that (17) holds true for some $1 \leq k<l$. Then, using also the inequality $\log (1+y) \leq y$, we have

$$
\begin{aligned}
& \log _{k+1}\left(e_{l}+x\right) \leq \log \left[\left(1+\prod_{j=2}^{k} e_{l-j}^{-1}\right) e_{l-k}\right] \\
& =\log \left(1+\prod_{j=2}^{k} e_{l-j}^{-1}\right)+e_{l-k-1} \leq e_{l-k-1}+\prod_{j=2}^{k} e_{l-j}^{-1} \\
& =\left(1+\prod_{j=2}^{k+1} e_{l-j}^{-1}\right) e_{l-k-1}
\end{aligned}
$$

Lemma 2.3 If $x \geq 0$, then

$$
\begin{equation*}
\log \left(e_{l}+x^{2}\right) \leq 2 \log \left(e_{l}+x\right) \tag{18}
\end{equation*}
$$

for $l=1,2, \ldots$. Moreover, for any integer $k \geq 2$,

$$
\begin{equation*}
\log _{k}\left(e_{l}+x^{2}\right) \leq\left(1+\prod_{j=2}^{k} e_{l-j}^{-1}\right) \log _{k}\left(e_{l}+x\right) \tag{19}
\end{equation*}
$$

for all integers $l \geq k$.
Proof: Similarly as above, (18) formally coincides with (19) for $k=1$. Hence we must prove (19) for all integers $1 \leq k \leq l$. Fix a positive integer l arbitrarilv.

The proof for $k=1$ is easy:

$$
\log \left(e_{l}+x^{2}\right) \leq \log \left(e_{l}+x\right)^{2}=2 \log \left(e_{l}+x\right) .
$$

Now assume (19) for some $1 \leq k<l$. Then we have

$$
\begin{aligned}
& \log _{k+1}\left(e_{l}+x^{2}\right) \leq \log \left[\left(1+\prod_{j=2}^{k} e_{l-j}^{-1}\right) \log _{k}\left(e_{l}+x\right)\right] \\
& =\log \left(1+\prod_{j=2}^{k} e_{l-j}^{-1}\right)+\log _{k+1}\left(e_{l}+x\right) \leq \log _{k+1}\left(e_{l}+x\right)+\prod_{j=2}^{k} e_{l-j}^{-1} \\
& \leq\left(1+\prod_{j=2}^{k+1} e_{l-j}^{-1}\right) \log _{k+1}\left(e_{l}+x\right) .
\end{aligned}
$$

Lemma 2.4 The infinite product

$$
\begin{equation*}
\ell(x)=\prod_{k=1}^{\infty} \log _{k}\left(e_{k}+|x|\right)=\log (e+|x|) \log _{2}\left(e^{e}+|x|\right) \ldots \tag{20}
\end{equation*}
$$

converges for every real number x. Furthermore, the function ℓ is even, strictly increasing for $x \geq 0$, and it has the following additional properties:

$$
\begin{align*}
& \ell(x) \geq \ell(0)=1 \quad \text { for all } x, \tag{21}\\
& \ell\left(x^{2}\right) \leq C \ell(x) \quad \text { for all } x \tag{22}
\end{align*}
$$

where the constant C is defined by the convergent infinite product

$$
\begin{equation*}
C:=\prod_{k=1}^{\infty}\left(1+\prod_{j=2}^{k} e_{k-j}^{-1}\right)=2 \prod_{k=2}^{\infty}\left(1+\prod_{j=2}^{k} e_{k-j}^{-1}\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\ell(x)}{x^{\alpha}} \rightarrow 0 \quad \text { as } \quad x \rightarrow+\infty \tag{24}
\end{equation*}
$$

for every $\alpha>0$.
Proof: Since $e_{k-2} \rightarrow+\infty$, the series

$$
\sum_{k=2}^{\infty} \prod_{j=2}^{k} e_{k-j}^{-1}
$$

Applying the inequalities (16) and (17) of Lemma 2.2 with $l=1$ and $l=k$, respectively, we conclude that $1 \leq \ell(x) \leq C$ if $|x| \leq e^{2}-e$.

Also, by application of (18) and (19) with $l=1$ and $l=k$, respectively, (22) follows for all x. Next we use this inequality to show that $\ell(x)$ is finite for every x. We already know this for $|x| \leq e^{2}-e=: a$. Given an arbitrary x, choose a positive integer n such that $|x| \leq a^{2^{n}}$. This is possible because $a>1$. Applying (22) n times we obtain that

$$
\ell(x) \leq \ell\left(a^{2^{n}}\right) \leq C^{n} \ell(a)<+\infty .
$$

Finally, we prove (24). Since

$$
\frac{\ell\left(x^{2}\right)}{x^{2 \alpha}} \leq \frac{C \ell(x)}{x^{2 \alpha}}=\frac{C}{x^{\alpha}} \frac{\ell(x)}{x^{\alpha}}
$$

we have, writing $a_{n}:=a^{2^{n}}$ for brevity,

$$
\sup _{a_{n+1} \leq x \leq a_{n+2}} \frac{\ell(x)}{x^{\alpha}} \leq \frac{C}{a_{n+1}^{\alpha}} \sup _{a_{n} \leq x \leq a_{n+1}} \frac{\ell(x)}{x^{\alpha}}
$$

for every n. Choosing a sufficiently large positive integer m such that $a_{m+1}^{\alpha} \geq$ $2 C$, it follows that

$$
\sup _{a_{n} \leq x \leq a_{n+1}} \frac{\ell(x)}{x^{\alpha}} \leq 2^{m-n} \sup _{a_{m} \leq x \leq a_{m+1}} \frac{\ell(x)}{x^{\alpha}}
$$

for every $n \geq m$. Hence (24) follows.
Now we are ready to prove Proposition 2.1.
Proof: [Proposition 2.1] Since $L(x)=(1+|x|) \ell(x)$, all properties but (14) and (15) follow easily from the preceding lemma.

For the proof of (15) observe that $L(x) / x^{2+\alpha}$ tends to zero as $x \rightarrow+\infty$ because

$$
0 \leq \frac{L(x)}{x^{1+\alpha}} \leq 2 \frac{\ell(x)}{x^{\alpha}}
$$

for all $x \geq 1$, and the last expression tends to zero by (24). Now (15) easily follows by applying the Young inequality.

Turning to the proof of (14), assume, on the contrary, that the integral converges. Then

$$
\begin{equation*}
\int_{e_{n}}^{\infty} \frac{d x}{L(x)} \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty . \tag{25}
\end{equation*}
$$

By performing the change of variable $x=e^{t}$ we obtain the equalities

$$
\int^{\infty} \underline{d x}=\int^{\infty} \underline{d x}=\int^{\infty} \underline{e^{t} d t}=\int^{\infty} \underline{e^{t}} \quad d t
$$

Observe that we have

$$
\frac{e^{t}}{1+e^{t}} \geq \frac{e^{e_{n}}}{1+e^{e_{n}}}=\frac{e_{n+1}}{1+e_{n+1}} \geq 1-e_{n+1}^{-1}
$$

and

$$
\log _{k}\left(e_{k}+e^{t}\right) \leq \log _{k}\left(e_{k} e^{t}\right)=\log _{k-1}\left(e_{k-1}+t\right)
$$

for all $k \geq 1$ and $t \geq e_{n}$. Therefore we deduce from the above equalities the following inequalities:

$$
\int_{e_{n+1}}^{\infty} \frac{d x}{L(x)} \geq\left(1-e_{n+1}^{-1}\right) \int_{e_{n}}^{\infty} \frac{d t}{L(t)}
$$

It follows by induction that

$$
\int_{e_{n}}^{\infty} \frac{d x}{L(x)} \geq\left(\prod_{j=2}^{n}\left(1-e_{j}^{-1}\right)\right) \int_{e_{1}}^{\infty} \frac{d x}{L(x)}
$$

for $n=2,3, \ldots$.
Since the series $\sum e_{j}^{-1}$ clearly converges (because $e_{j} \rightarrow+\infty$ very quickly) and since every e_{j} is greater than 1 , we have

$$
A:=\prod_{j=2}^{\infty}\left(1-e_{j}^{-1}\right)>0
$$

and therefore

$$
\int_{e_{n}}^{\infty} \frac{d x}{L(x)} \geq A \int_{e}^{\infty} \frac{d x}{L(x)}>0
$$

for all n. This contradicts (25).

3. Proof of Theorem 1.1

In our previous paper, the proof of the above mentioned weaker result was based on two important properties of the functions L_{k}. One of them was the divergence of the integral of $1 / L_{k}$; we have already shown that the same property also holds for the function L. The other property was the estimate (26) below for the functions L_{k} instead of L. Thus, after having proved the following lemma, Theorem 1.1 can be proved by repeating the arguments given in Cannarsa, Komornik and Loreti (1999). So, we ouly need to prove the

Lemma 3.1 Let Ω be a bounded open domain in R^{N}. Given $\varepsilon>0$ arbitrarily, there is a constant $c(\varepsilon)$ such that

$$
\begin{equation*}
\|L(u)\| \leq \varepsilon\|\nabla u\|+c(\varepsilon) L(\|u\|) \tag{26}
\end{equation*}
$$

Proof: Assume for simplicity that $N \geq 3$: the cases of $N=1,2$ are analogous and simpler. We recall that by the Sobolev imbedding theorem there exists a constant S such that

$$
\|u\|_{2 N /(N-2)}^{2} \leq S\|\nabla u\|^{2}
$$

for all $u \in H_{0}^{1}(\Omega)$.
Given $\delta>0$ arbitrarily, by Proposition 2.1 there exists a constant $c(\delta)>0$ such that

$$
L(x)^{2} \leq \delta|x|^{(2 N+4) / N}+c(\delta)
$$

for all real x. Since

$$
\frac{N}{2 N+4}=\alpha \frac{1}{2}+(1-\alpha) \frac{N-2}{N}
$$

if $\alpha=2 /(N+2)$, applying the interpolational inequality we have, denoting by $|\Omega|$ the volume of Ω,

$$
\begin{aligned}
& \|L(u)\|^{2} \leq \delta\|u\|_{(2 N+4) / N}^{(2 N+4) / N}+c(\delta)|\Omega| \\
& \leq \delta\left(\|u\|^{2 /(N+2)}\|u\|_{N /(N-2)}^{N /(N+2)}\right)^{(2 N+4) / N}+c(\delta)|\Omega| \\
& =\delta\|u\|^{4 / N}\|u\|_{N /(N-2)}^{2}+c(\delta)|\Omega| \\
& \leq \delta S\|u\|^{4 / N}\|\nabla u\|^{2}+c(\delta)|\Omega|
\end{aligned}
$$

Since $L \geq 1$ everywhere in case of $\|u\| \leq 1$, hence we deduce the estimate

$$
\begin{equation*}
\|L(u)\|^{2} \leq \delta S\|\nabla u\|^{2}+c(\delta)|\Omega| L_{k}(\|u\|)^{2} \tag{27}
\end{equation*}
$$

and (26) follows by choosing $\delta=S^{-1} \varepsilon^{2}$.
Henceforth assume that $\|u\|>1$. Let us note that

$$
\begin{equation*}
\ell(a b) \leq C \ell(a)+C \ell(b) \tag{28}
\end{equation*}
$$

for all real numbers a and b. Indeed, assuming for example that $|a| \geq|b|$, using (22) we have

$$
\ell(a b) \leq \ell\left(a^{2}\right) \leq C \ell(a)<C \ell(a)+C \ell(b)
$$

Now given $u \in H_{0}^{1}(\Omega)$ such that $\|u\|>1$, setting $v:=u /\|u\|$ and applying (28) we have

$$
\begin{aligned}
& \int_{\Omega} L(u)^{2} d x=\int_{|u| \leq\|u\|} L(u)^{2} d x+\int_{|u|>\mid u \|} L(u)^{2} d x \leq|\Omega| L(\|u\|)^{2}+ \\
& \int_{|u|>\|u\|}(1+|u|)^{2} \ell(u)^{2} d x \leq|\Omega| L(\|u\|)^{2}+ \\
& 2 C^{2} \int_{|u|>\|u\|}(1+|u|)^{2} \ell(v)^{2} d x+2 C^{2} \int_{|u|>\|u\|}(1+|u|)^{2} \ell(\|u\|)^{2} d x
\end{aligned}
$$

Since $\|u\|>1$ implies that

$$
1+|u| \leq\|u\|(1+|v|)
$$

we have

$$
I_{1} \leq\|u\|^{2} \int_{|u|>\|u\|} L(v)^{2} d x \leq\|u\|^{2}\|L(v)\|^{2} .
$$

Furthermore, since $|u|>\|u\|>1$ implies that

$$
1+|u| \leq 2|u|
$$

we have

$$
I_{2} \leq 4 L(\|u\|)^{2}
$$

Substituting them into (29) we find that

$$
\|L(u)\|^{2} \leq\left(|\Omega|+8 C^{2}\right) L(\|u\|)^{2}+2 C^{2}\|u\|^{2}\|L(v)\|^{2} .
$$

Applying (27) for v and using the inequality $L(x) \geq|x|$ we obtain that

$$
\begin{aligned}
& \|L(u)\|^{2} \leq\left(|\Omega|+8 C^{2}\right) L(\|u\|)^{2}+2 C^{2}\|u\|^{2}\left(\delta S\|\nabla v\|^{2}+c(\delta)|\Omega| L(1)^{2}\right) \\
& \leq 2 C^{2} \delta S\|\nabla u\|^{2}+\left\{|\Omega|+8 C^{2}+2 C^{2} c(\delta)|\Omega| L(1)^{2}\right\} L(\|u\|)^{2} .
\end{aligned}
$$

For $\delta=\varepsilon^{2} /(2 C S)$ the lemma follows.

4. Proof of Theorem 1.2

Without loss of generality we assume that v_{0} and v_{1} vanish outside the interval ($a+\delta^{\prime}, b-\delta^{\prime}$) for some $0<\delta^{\prime}<\delta$.

Applying Theorem 1.1 we obtain control functions h_{a} and h_{b} and a solution

$$
v \in C\left([0, T] ; H_{0}^{1}(a, b)\right) \cap C^{1}\left([0, T] ; L^{2}(a, b)\right)
$$

of (1) satisfying (4). Notice that, in particular, v is bounded.
Let us consider, for every $0<\sigma<\delta^{\prime}$, a cutoff function $\chi_{\sigma} \in C^{2}(a, b)$ satisfying

$$
\begin{aligned}
& \chi_{\sigma}(x)=1 \quad \text { if } \quad a+\sigma<x<b-\sigma, \\
& \chi_{\sigma}(x)=0 \quad \text { if } \quad a<x<a+2^{-1} \sigma \text { or } b-2^{-1} \sigma<x<b .
\end{aligned}
$$

We may choose it so that

$$
\begin{equation*}
\left|\chi_{\sigma}^{\prime}(x)\right| \leq c \sigma^{-1} \quad \text { and } \quad\left|\chi_{\sigma}^{\prime \prime}(x)\right| \leq c \sigma^{-2} \tag{30}
\end{equation*}
$$

A simple computation shows that for every $0<\sigma<\delta^{\prime}$ the function $v_{\sigma}:=\chi_{\sigma} v$ solves

$$
\left\{\begin{array}{l}
v_{t t}-v_{x x}-f(v)=h_{\sigma} \text { in }(a, b) \times(0, T), \tag{31}\\
v(a, t)=v(b, t)=0 \text { for } t \in(0, T), \\
v(0)=\chi_{\sigma} u_{0} \text { and } v^{\prime}(0)=\chi_{\sigma} u_{1} \text { in }(a, b)
\end{array}\right.
$$

with

$$
h_{\sigma}=\chi_{\sigma} f(v)-f\left(\chi_{\sigma} v\right)-2 \chi_{\sigma}^{\prime} v_{x}-\chi_{\sigma}^{\prime \prime} v
$$

Hence,

$$
h_{\sigma} \in L^{\infty}\left(0, T ; L^{2}(a, b)\right)
$$

and

$$
h(x, t)=0 \quad \text { for any } \quad a+\delta<x<b-\delta
$$

Moreover,

$$
\begin{equation*}
v_{\sigma}(T)=v_{0} \quad \text { and } \quad v_{\sigma}^{\prime}(T)=v_{1} \quad \text { in } \quad(a, b) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v_{\sigma}\right\|_{\infty} \leq\|v\|_{\infty} \tag{33}
\end{equation*}
$$

Now, by the same method used in the proof of Cannarsa, Komornik and Loreti (1999) [Theorem 1.1], we conclude that the problem

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}-f(u)=h_{\sigma} \text { in }(a, b) \times(0, T), \\
u(a, t)=u(b, t)=0 \text { for } t \in(0, T), \\
u(0)=u_{0} \text { and } u^{\prime}(0)=u_{1} \text { in }(a, b)
\end{array}\right.
$$

has a unique solution

$$
u_{\sigma} \in C\left([0, T] ; H_{0}^{1}(a, b)\right) \cap C^{1}\left([0, T] ; L^{2}(a, b)\right)
$$

The proof will be complete if we show that

$$
\left\|u_{\sigma}(T)-v_{\sigma}(T)\right\|_{H^{1}(a, b)}<\varepsilon \quad \text { and } \quad\left\|u_{\sigma}^{\prime}(T)-v_{\sigma}^{\prime}(T)\right\|_{L^{2}(a, b)}<\varepsilon
$$

if σ is chosen to be sufficiently small. For this purpose, let us set

$$
w^{\sigma}=u_{\sigma}-v_{\sigma}
$$

Then, w^{σ} satisfies

$$
\left\{\begin{array}{l}
w_{t t}(x, t)-w_{x x}(x, t)=\varphi(t, x, w(x, t)) w(x, t) \quad \text { in } \quad(a, b) \times(0, T) \tag{34}\\
w(a, t)=w(b, t)=0 \quad \text { for } \quad t \in(0, T)
\end{array}\right.
$$

where φ is given by

$$
\varphi(t, x, w)=\int_{0}^{1} f^{\prime}\left(v_{\sigma}(x, t)+\lambda w\right) d \lambda,
$$

so that

$$
\varphi\left(t, x, w^{\sigma}(x, t)\right) w^{\sigma}(x, t)=f\left(u_{\sigma}(x, t)\right)-f\left(v_{\sigma}(x, t)\right) .
$$

Using assumption (8) and estimate (33), we have that

$$
\begin{equation*}
\left|\varphi\left(t, x, w^{\sigma}\right)\right| \leq \beta^{\prime} \ell\left(w^{\sigma}\right)^{2} . \tag{35}
\end{equation*}
$$

Applying Cannarsa, Komornik and Loreti (1999) [Lemma 3.1] to problem (34) we deduce that the energy of w^{σ} is bounded. So, w^{σ} is also bounded, and we obtain

$$
\varphi\left(t, x, w^{\sigma}\right) \leq C
$$

for some constant $C>0$ independent of σ. The standard energy estimates may then be used to the prove continuous dependence on initial conditions of the solution to (34), that is

$$
E_{\sigma}^{\prime}(t):=\frac{1}{2} \frac{d}{d t} \int_{a}^{b}\left|w_{t}^{\sigma}\right|^{2}+\left|w_{x}^{\sigma}\right|^{2} d x \leq \frac{C}{2} \int_{a}^{b}\left|w^{\sigma}\right|^{2}+\left|w_{t}^{\sigma}\right|^{2} d x \leq C^{\prime} E_{\sigma}(t)
$$

where C^{\prime} denotes another positive constant independent of σ. Therefore,

$$
E_{\sigma}(t) \leq E_{\sigma}(0) e^{C^{\prime} t}
$$

and the proof will be complete if we show that $E_{\sigma}(0) \rightarrow 0$ as $\sigma \rightarrow 0$. To prove the last claim we note that

$$
E_{\sigma}(0)=\frac{1}{2} \int_{a}^{b}\left|\left(1-\chi_{\sigma}\right) u_{1}\right|^{2}+\left|\left(1-\chi_{\sigma}\right) u_{0}^{\prime}\right|^{2} d x+\frac{1}{2} \int_{a}^{b}\left|\chi_{\sigma}^{\prime} u_{0}\right|^{2} d x .
$$

Since the limit, as $\sigma \rightarrow 0$, of the first two terms in the above right-hand side is 0 , we only need to consider the right-most term

$$
\int_{a}^{b}\left|\chi_{\sigma}^{\prime} u_{0}\right|^{2} d x=\int_{a}^{a+\sigma}\left|\chi_{\sigma}^{\prime} u_{0}\right|^{2} d x+\int_{b-\sigma}^{b}\left|\chi_{\sigma}^{\prime} u_{0}\right|^{2} d x
$$

It is sufficient to establish the inequalities

$$
\begin{equation*}
\int_{a}^{a+\sigma}\left|\chi_{\sigma}^{\prime} u_{0}\right|^{2} d x \leq C \int_{a}^{a+\sigma}\left|u_{0}^{\prime}\right|^{2} d x \tag{36}
\end{equation*}
$$

and

For this we use Poincare's inequality as follows. Since

$$
\left|u_{0}(x)\right|^{2}=\left|\int_{a}^{x} u_{0}^{\prime}(t) d t\right|^{2} \leq(x-a) \int_{a}^{x}\left|u_{0}^{\prime}(t)\right|^{2} d t \leq \sigma \int_{a}^{a+\sigma}\left|u_{0}^{\prime}\right|^{2} d x
$$

for all $a<x<a+\sigma,(36)$ follows by using (30):

$$
\int_{a}^{a+\sigma}\left|\chi_{\sigma}^{\prime} u_{0}\right|^{2} d x \leq c^{2} \sigma^{-2} \int_{a}^{a+\sigma}\left|u_{0}\right|^{2} d x \leq c^{2} \int_{a}^{a+\sigma}\left|u_{0}^{\prime}\right|^{2} d x
$$

The proof of (37) is similar.

5. Proof of Theorem 1.3

We argue as in the previous proof and consider a cutoff function $\chi \in C^{2}(a, b)$ satisfying

$$
\begin{array}{lll}
\chi(x)=1 & \text { if } & a+\delta<x<b-\delta \\
\chi(x)=0 & \text { if } & a<x<a+2^{-1} \delta \text { or } b-2^{-1} \delta<x<b .
\end{array}
$$

Then, applying Theorem 1.1 we obtain control functions h_{a} and h_{b} and a solution v of (1) for which (4) holds true. A simple computation shows that $u:=\chi v$ solves (6) with

$$
h=\chi f(v)-f(\chi v)-2 \chi_{x} v_{x}-\chi_{x x} v
$$

and that conditions (10), (11) and (12) are also satisfied.

References

Cannarsa, P., Komornik, V. and Loreti, P. (1999) Well posedness and control of semilinear wave equations with iterated logarithms. ESAIM Contrôle Optim. Calc. Var., 4, 37-56.
Cazenave, T. and Haraux, A. (1980) Équations d'évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse, 2, 21-51.
Imanuvilov, O.Yu. (1989) Boundary control of semilinear evolution equations. Russian Math. Surveys, 44, 3, 183-184.
Ta-Tsien Li and Bing-Yu Zhang (1998) Global exact controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl., 225, 289311.

Zuazua, E. (1993) Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré, Analyse non linéaire, 10, 109-129.

