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Abstract: First of all, a brief reminder on piezoelectric effect
is given. Then it is applied to a beam equipped with such actua-
tors. The influence of the shape and location is discussed. A smart
beam model is finally presented and analyzed. The controllability
is carefully examined in the framework of the H.U.M. method of
Lions (1988). Let us also underline that the asymptotic harmonic
behaviour of the structure is widely used.
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1. Introduction

In the early eighties, several people have underlined the interest of piezoelectric
effect for reducing structural vibrations. But the possibility of manufacturing a
real “smart structure” appeared immediately to be very much connected with
existence of an accurate model which could enable precise understanding and
design of the control strategy. Two papers were al the origin of this area of
mathematical modelling. The first one is by Bailey and Hubbard (1985), who
gave a mechanical discussion of the piezoelectric effect on a beam. and then
Hanagud, Obal and Calise (1987), who suggested an optimal control strategy
based on a stabilization technique. One of the first mathematical modelling ex-
ercises giving a functional interpretation of the piezo-actuators in terms of Dirac
distributions was detailed in Destuynder, Legrain, Castel and Richard (1988) in
an ONERA report. One of the important drawbacks was pointed out, specially
for acoustic applications. Tt is the spillover phenomenon which is particularly
important in the piezo-actuator technology. The reason is that it acts as a point-
wise force or a concentrated moment and therefore many eigenmodes are excited
by this kind of actuators. Thus, a part of the mechanical energy is transferred
from lower to upper eigenmodes throueh the niezoelectrie devices. Bt there are
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Balas has suggested to use Kalman filtering (see Balas, 1982). One interesting
advantage of the so-called H.U.M. method introduced and developed by Lions
(1988) is that it can considerably decrease the spillover phenomenon. Further-
more, for harmonic or quasi-harmonic structures the natural H.U.M. control is:
a) easy to determine and to apply for a real-time procedure and b) it avoids
spillover if the control period chosen is the one of the fundamental frequency of
the structure. But, obviously, this analysis rests upon a mathematical analysis
of the H.U.M. method in the case of a smart structure model with piezodevices.
The goal of this paper is to give an overview of what has been studied recently
on this problem. Many contributions used in this paper are included in the
references listed at the end.

2. Modelling of the smart structure

Let us consider a thin plate, its medium surface being denoted by w and its
boundary by 7. The normal component of the displacement field is wu(ax,t)
where z € w and t € [0, 7).

The thickness of the plate is assumed to be constant and equal to 2e. On the
upper or the lower (or both) face(s) of the plate, we set thin layers (lew microns)
of a piezoelectric material. The additional stiffness due to these actuators is
negligible. If we denote by g.3; a, 3 € {1,2} the in-plane stresses in the piezo-
layer, and by V' the voltage between the upper and the lower faces, one has the
following constitutive relationship (¢, is assumed to be constant through the
thickness of the layers becanse of their very small thickness):

Tap = ha'g?

where c is dielectric constant and h,g a symmetrical tensor which charaterizes
the piezoelectic effect. The bending moment of these stresses estimated at the
center of the plate (i.e. on w) is:

€+ a
c

Myp = hagV,
where a® is half the thickness of the piezo-layer. Let us underline that the
mechanical effect is not restricted to a concentrated torque, excepted if another
piezo-layer is set symmetrically with respect to w and with an opposite voltage.
But nevertheless, the membrane strains are usually negligible because of the
high membrane stiffness of the plate. Therefore they will be omitted in the
following.

Let us now denote by p the mass density of the plate and by D the bending
modulus. Then the model (see Destuynder, Legrain, Castel and Richard, 1988)
is:
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2ep% + DA% = (££2) VOaghagp in wx]0,7]
u(z,0) = up(z), 2,—( 0) = ui(x) in w, (1)
w(a,t) = (1 - v) %4 Au) (@) =0 on~yx]0,T],

where v is the Poisson coeflicient of the plate and n the unit normal along ~
outwards of w. Furthermore, the implicit summation convention over repeated
indices has been used (from 1 to 2 for a, 5....). Tt is worth noticing that hap
is constant on an open set w, which — in w - corresponds to the projection of
the position of the piezoelectric layer and is equal to zero outside of w,. Hence
the right hand side of (1) contains Dirac distributions (and their derivatives!).
In order to focus on the physical meaning of such terms let us use a variational
formulation. First of all we introduce the functional space

Vw)={ve H*w) v=0sur dw}. (2)

Then, multiplying (1) by an arbitrary element v in V(w) and integrating by
parts we obtain the following variational formulation:

Find u(z,t) such that:

Yo e V(w 26/)_/ 0,) Lode + D / (1 = )00 ptidape + vAUAY) da )
= (%> V(t) Iy PapOagv g

The open set wy, corresponds to the piczo device, assuming, for instance, that
there is only one of them. But (3) is formal because the functional space for w is
not explicited. We just assume that there exists a solution which is sufliciently
smooth in order to make sense to (3). Unfortunately, it will be shown in the
following that it is not realistic. Nevertheless, the mechanical interpretation of
the piezo effect will remain true. From Stokes formula we deduce that:

/ hﬂﬂaﬂ'ﬁv - / hnﬁ”aaa'“ (4)
w Ow,

P

(n = (na), and dw, is the boundary of w,). Thus, two kinds of mechanical
loading appear clearly in this expression. One is a distributed torque around
Jw, and the other is a normal torque which is also distributed along dw,. Both
are represented in Fig.

If the plate is reduced to a beam as shown in IYig. 2, it is then possible
to simplify the expression of the plate model because one can assume that the
deflection u does not depend of the coordinate z9. This is due to the small
width of the beam (see Fig. 2). Then a simplified expression of the right hand
side of (3) can be derived by choosing virtual functions v which only depend on
v1. Thus we obtain first:

—1 / h ~A A — / heifivay — h.. / Ao
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Figure 1. Mechanical interpretation of the piezoelectric effects
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Figure 2. A piezo-wafer sticked on a beam
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Then, let us denote by o = f(x) the equation of the curve representing the
piezoelectric device as indicated in Fig. 2. Furthermore, the shape is assumed
to be symmetrical with respect to the axis @;. The extremities being localized
at the points, with coordinates z; = a and z; = b we deduce that:

21
i /hugaangh,, f(z1) “(J,)du

or else:

/ haglupv =

b b b
2h4 ({f(li)ﬂ(ll)il - [%(;171)-0(1‘1)} - [ %(;zq)ﬂ(uq)rhm) {5)

From this formula one can derive several particular expressions for the right
hand side of the smart beam model. Furthermore, from now on only the coor-
dinate x; will appear. Therefore for sake of brevity in the notations, we shall
just write @, omitting the subscript 1.

2.1. Rectangular wafers (Fig. 3)

In this case we have:
f(z) = F(= constant on [a,b]).

Thus the beam model becomes:

2 4 n
ZEpZ; # Dg = = 2hyy (e + a.e)j—; 6, ~ 8 V(). Yt (6)

where [ is the width of the beam as shown in Fig. 2. Furthermore. 8. denotes

the derivative of the Dirac distribution at point xg. Consequently, th(- effect of
the piezo-device on the beam can be assimilated to two concentrated torques
applied respectively at points # = a and « = b and with an opposite sign.

Let us underline that if an eigenmode - say 117, — is such that:

oW, . W,
Oz a) = dz (b),

then the piezoelectric has no effect on it. Since one has:

Wo(z) = \/% sin ("L{“’) ,

the previous condition is equivalent to:

nlla nllh
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Figure 3. A rectangular wafer
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Figure 4. A triangular wafer

or else:

atb

k
is a rational number - say —
2L °

n

Because 0 < a < b < L, this situation can only occur if & < n. But even
if the position of the piezo-layer can be adjusted for one eigenmode, it appears
clearly that it cannot be done for all of them, because the set of rational numbers
is dense in the one of real numbers.

2.2. A triangular wafer (Fig. 4)
We set:

b—$1

ﬂm)=(b_a)F a<a <b.

Then, introducing this expression into the right hand side of (5), we derive
the following beam model (let us set, for instance, a = 0).

&%u v 2hnFle+a®) [, | — .
zﬁpw -+ DEE = __—T_ [50 + 55{,:| |! (”, Y(x,t). (7)

Thus the mechanical effect can be interpreted by a torque at @ = 0 and a
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Figure 5. A “Ravioli” wafer

2.3. A “ravioli” wafer (Fig. 5)
We now set (with, for instance, @ = 0 an b = x¢):
f@)=8 (xo—2)* 0<x<mo
where 3 is a sufficiently small coefficient. Then the smart beam model is:

0% d'u _ 4h11 B (e +af)

QEPW + TD@ = 7 [(.xru —x)° + 4 (x — x0) + ,t""] V(1).(8)

The mechanical effect is the one of a distributed transverse load as shown in
Fig. 5. It can be underlined that it induces a local bending effect.
2.4. An almond wafer (Fig. 6)
Let us set:
fl)=px—a)(z—=b), asx<h

The beam model is:

&%u u  2h11 B (e + a®)
2pm——m + Do = ————~
S TR ol

Xla b} (%) being the characteristic function of the interval [a, b].

[= (b= a) (& + 8a) + 2X(0,0y()]

2.5. A butterfly wafer (Fig. 7)

In order to prescribe more precisely the forces applied on the beam. one can
mix several wafers with different shapes. The first example makes it possible to
simulate a pointwise force. Three wafers are used. One is rectangular and the
two other are triangular. The clectric potentials are denoted by V). V% and Vs,
Then the smart beam model is (we choose a = b and F = (/2):

8%y o
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Figure 7. A butterfly wafer
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c

=Pt [vics -5+ va (2485 45 (25 - 01|
a L-a
Let us choose V;, i = 1, 2,3 such that:
Vi+Vs=0, Vi=-V,
Then we derive the following smart-beam model:

0%u 0*u hyy (€ 4+ a®
205 + Dy gt )
ot Ox ca(L —a)
It is worth noting that the system is equivalent to a pointwise force and that
the efficiency is very much increased if the position of this pointwise force is at
the middle of the beam.

Vi(£)6a(2). (9)

2.6. A candy wafer (Fig. 8)

Let us use four piezo-devices: one is almond shaped, one is rectangular and the
two last are triangular. The smart beam model is:

0%y 0*u 2h11 E-i—a

2y + D5 = LT 5 (- a) (5, + ) Vi)

28X (Va(t) + FVA(£) (6 — 81) + FVa(t) (5“ 67)

+FV3(t) (L‘S_” .= ayjﬂ :

Then, setting
Vi+Vs=0, Vo+V; =0 (hence Vo =V3=-V).

and
F
—ﬁ(b—a)%+—(1—V2 =0(a+b=1!,

we deduce that:

0%y O 4hyy (e +af
2epoy + DT % = PUEED) g Vit (10)
with:
Voo 1 as ﬂl;:_“_)m s

REMARK 2.1 From a practical point of view, it should be underlined that the
wafers must be disconnected in order to avoid a short cut. Thercfore they could
be set in different parallel plans through the thickness of the beam.
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Figure 8. A candy wafer

3. Mathematical analysis of a smart beam

Let us consider a smart beam model which corresponds to one of those described
in Section 2:

find u(z,t) such that:

(2605 + D) (w1.8) = AVi()6a(t) + BVa ()31

V(x,t) €10, L[x]0, T ' (1)
u(0,t) = T#(0,t) = w(L,t) = &%(L,t) =0, Vte]o,T].
u(z, 0) = up(z), %?(;r:, 0) = uy(z),Vz € |0, L[. (12)

Functions V] and Vs are electric potentials. Let us assume that thev are both
in the space L?(J0,T[). The initial values ug and u; are chosen in functional
spaces on |O, L[ which are deseribed in the following., But first of all, it is
necessary to introduce several notations. Lel us consider the eigenvectors 11,
(and the eigenvalues A,,) of the structural model:

2epA Wo(z) = DLW (), Ve o, L],
Wa(0) = £ (0) = W (L) = L (L) =0

dx

and the normalization condition that we have chosen is:
L
QEp/ W2(z)dz = 1.
0

The solutions can be explicited by:

J Wa(z) = \/_bll'l( = ), (13)
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Then, for any s > —1 we define the functional spaces (Lions. Magenes, 1968):

D, (0,L]) = {vEV Y {v,wn)?As < 00 (14)

nzl

where <, > is the duality product between V = H{(]0, L[) 1 H%(]0. L]) and its
dual - say V’. One has the following classical identities:

i) Do (]U!LD = L? (J0,L[),

i) Dy (]0,L[) = V = Hg (J0. L)) N H?(J0, L),

i) Dy (J0,L]) =V, (15)
iv) Dy (J0,L[) = Hj (10, L)) ,

v) D_y(J0,L]) = H' (0. L[).

The assumed solution of (11)-(12) can be expressed in the basis {117, }. One
has the following expression:

11‘-(-1; t) - zn}] an(t)” n('.[)
an(f) = (ug, W1) cos(v/Ant) + gm H ‘aln(\/?r

[AWr (a fa (t)bm(\/_,: 1‘ —§))ds— (16)
B (a fo Va(s) sin(v/ A, (t — .s})rﬂs] :

The question we are dealing with is to characterize the space in which the
convergence of the series (16) occurs. One has quite immediately the well known
result:

THEOREM 3.1

1. Let (up,w1) € L2(JO, L) x V', V,e L? (]O T|),i=1,2 then:
we CY(|0,T]; L2 (J0, L)) N C (|0, T); V'
2. Let (up,u;) € H} (JO,L]) x H~'(]O, L]), ‘l-’, € L*(J0,T]),i =1,2. then
if B=0:u€C%([0,7); H} (0, L))) nC' ([0,T]; H~ (]0, L[ ).
8. Let (uo,uy) € V x L2(]O,L[), V; € L*(]O, T[) i=1,2, then if A =
B=0:ueC([0,T);V)nC ([0,T];L*(J0, L)) .

Sketch of the proof.
Let us introduce two elements z; and z» of V, such that:

D?l 8
D =6,

2i(0) = L5 (0) = m(L) = $(L) =0, i=1.2.
Then one has:
[ 21= s i Wala)Wa(2) € Hg(10, L) 0 H2(]0, L)),
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and:

2 | n 2
"21”2,0_5 = Zn>1 L"@_]L

An

2 W,
"22”2'01, = Z . _“L(‘L“l C

nzl A,

Finally, from (16), we deduce that:

Sl < Z((uo,wn> cos?( /\nr)+(““,\” sin?(v/Aut)
n=1 n>1

t
+ (A20n B op + B2l 0r) /0 (V2 + Vf)(s)ds]

The first result given in the Theorem is a direct consequence of the previous
inequality. But one can also notice that on the one hand:

21 € H3()0, L)

and that on the other hand:

d3z - W, (a) n®113 _(nllz
o (z) = N I? cos T )
n>l1
Then from:
_ D nir!
T ey JA

we deduce that:

T I L Ol

n=>1 K]

Finally, we obtain that (if for instance B = 0), ¥t € [0, T]:

Tl Z Wa ¢
n>1 nt Jo

2 2 2
<c ["ut)"],oL s ”ulﬂ_l‘oL + (V1 ";,2(](}‘,5!')] ‘

The continuity with respect to time is deduced directly from the uniform
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4. The optimal control problem

Let us consider a smart beam model like the one studied in Section 3. The
electrical potentials are the control variables. The solution u(x,t) is the state
variable. For (up,u1) and V = (V4,V3) given, we set (Section 3):

t)=Y an(t)Wa(2)

nzl

In order to minimize u(z,T") and ‘?3‘: (z,7") we define the following criterion
with respect to the control variable: V' = (V.V;)

1 g 2] e [T .
J(V)=3 ,12 [aﬂu )? + T] +3 [o (VE(s) + Vi2(s)) ds (17)
where ¢ is an arbitrary (small) real and positive parameter. Then we introduce

the control problem:

minimize J(V),
| Fa it o (15)
Ve (L2(0,T))".

The solution of (18) is such that w(x, T') and 2%(x, T) are smaller and smaller
when ¢ tends to zero. But the existence and uniqueness of a solution to (18) is
only obvious for € > 0.

It can be obtained, for instance, through a classical theorem, because:

i) (L2()0,T[))? is a Hilbert space,
it) J is continuous and strictly convex,
iii) J is coercive i.e. lim J(V') = o0 when [[V||(2¢0,rp))z — o©-

The optimality equation can be easily formulated using an adjoint state
function. Because this has been a quite standard method since Pontryagin
(1974), we just give the results.

The optimal function V' = (V},V5) and the corresponding state function
u(z,t) are solution of (it is implicitely assumed that (z,t) €]0, L[x]0, 7[):

ZEp +Da 4= AVi(t)dq(x) + BVa(t)o! (z), Y (a, t),

u(O,t) g;:(o t) = u(L,t) = S¥(L,t) = 0,1,

u(z,0) = up(u), a”(l 0) = uy(2), Va, (19)
Ap(u t) + eVi(t) = 0,Vvt,

—B—B(a t) + eVa(t) = 0,1,

where p(w,t) is the adjoint state function which is defined as the solution of:

2

(2605 + DEE) (@,1) = 0.Y(x, 1),
)

.

p(0,t) = Z8(0,t) = p(L,t) = LE(L,t) = 0,¥1, (20)
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The basic point in our analysis is to study the asymptotic behaviour of the
previous solution when e goes to zero. Therefore we set:

u=ul + eu! + etc.
p=p" +ep' +etc. (21)
V =V0 4 eV 4 ete.

By substituting the expression (21) in (19)-(20) and by equating the terms
with the same power in € in the resulting expression, we obtain the following
set of relations. It enables characterization of various terms in the asymptotic
expansion.

Terms of order zero:

(ZEPW D*”a‘;f)(- t) = AVO(t)da(x) + BVS(1)0) (). ¥(a.1)
w0(0,) = £42(0,¢) = wO(L,t) = L2 (L,t) = O, V4, (22)
u’(z,0) = ug('r:)‘ 82 (2,0) = g (1)

Ap®(a,t) = O,Bi—f(a,t) =0,Vt, (23)
(2055 +DFE) (@,) =0,¥(x,1)
Plzt) = L:,%Zl Dy, (x), —a‘ig(' 2 T) .
p°(0,8) = LB (0,1) = (L, t) = LB (L, 1) = 0,V
w(z,) = Loz aﬁ(t)tfvn(a)) .

i

|
™

v
o
=
=
<

(24)

Terms of order 1:

(QEPW + D%;i‘ ) (z,t) = AV (t)da(x) + BV (1), (2), V(2. 1),
ul(o,t) = Zul(0,t) = u! (L, t) = L4 (L, 1) = 0, ¥, (25)
u!(z,0) =0, ‘?3‘; (z,0) =0,Vz.

p'(a,t) + V2(t) = 0, —B%?’: (a,1) + V2(t) = 0,¥4t, (26)
f (2Ep""—;5‘- z D%ifi) (z,t) = 0,Y(z, 1),

p'(0,t) = £&(0 0,t) = p(L,t) = 25 (L,t) = 0,4,
$ pMET) =T, 2 "”u’ (@), 27)
% (@,T) = — Yoz al (T)Wa(2). Va

ul(@,1) = Loz 0 (O Wa(@))
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Let us sketch the solution method for this set of equations. As a matter
of fact it leads to the well known H.U.M. method suggested and developed by
Lions (1988).

A basic point is to prove that for T large enough, the equations (23) and
(24) lead to p°(x,t) = 0 and therefore u°(2:,T) = aé;—‘:)(a,t,T) = 0, V2. But
unfortunately the multiplier method cannot be applied directly as it was the
case for the problems treated by Lions (1988) (see also Komornik, 1994, for the
multiplier method). This difficulty is due to a second order derivative term at
the point z = a.

4.1. Characterisation of the terms p° and u°

. . < O1.° P .
Assuming, for instance, that u®(z, 7)) and 2 (2, T) are elements of the space
) 3 ) ot 3

L%(]0, L) x V', the solution p°(x,t) of (24) is also given by:
P(z,t) =) Balt)Wa(z)
n>1
where:

Ba(t) = BalT) e [\/mt - T)] - “3%) sin (\/T”(t - T))
0

(a2(t) are the coefficients of the expansion of u® in the basis 117,).

But the structure is harmonic (i.e. the eigenfrequencies are integer multiples
of a fundamental one). Hence, setting:

211 n211%2D
r=7 = 75 (= )

and from (23), multiplying successively by cos /A, (t—T), sin VA, (t=1") and by
integrating from 0 to T}, we deduce that (A and B are assumed to be different
from zero):

a2(T1) = a%(Ty) = 0.
and therefore:
P°(z,t) =0 VY(z,t) €]0,L] x]0,Ty].
A similar property will be discussed in details in the following. Furthermore

it is obviously true for any 7' > T7.

4.2. Characterization of terms of order 1 and the H.U.M. algorithm

Our goal is to characterize a solution of (25)-(26) and (27). This is where the
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Step 1. Let (¢, ¢1) be two functions in, respectively, the space H2(]0, L[)N
H}()0,L[) and L%()0,L[). We define a function — say ¢'(x,t) - solution of
(analogous to (27)):

2epg—i? +Dg—z‘€-(x, t) =0, Y(a, t)
0(0,1) = ££(0,t) = p(L,t) = £L(L,t) =0, W, (28)
(x,0) = ¢1(x), 32(2,0) = do(z), Va.

We know from Theorem 1 that:
¢ € C°((0,T); H2 (J0, L[) N Hg (10, L)) n €’ ((0,T]; L* (10, 7))

Step 2. Let ¢! and ©? be the two solutions of (28) but for two initial
conditions — say @' = (¢],¢5) and ¢ = (¢7, ¢3). Then we define the bilinear
form which is obviously symmetrical and positive:

P T a1 )
(o', ¢%) :A2/ o' (a,t)¢?(a, t)dt + 32/ ai(a.t)aL(a.f)dt. (29)
0 Jo 3.1: 3:::

By multiplying (22) by ¢?(z,t) and integrating over |0, L[x]0, T[, we obtain:

2 0 4.0
2ep/ / (3 u a u )g&‘?(l\i}d;}:dt

=A/U VO(t)e?(a,t)dt w.15'/ V“(f)——{a, t)dt

E Top', 0
i I i 2 2 [ op e _
=-A .[n p (z,t)p*(a,t)dt — B s a,t) r (@, t)dt.

Finally, using an integration by part:

L
[/ B (z,0)%(z, O}d:.-,—f u¥(z, 0)38—2(3 O)rh]
0

= A2/ p'(z,t) % (2, ) + Bzf —81(3 t ?—(ﬁ-(u t)dt (30)
0
Thus we introduce a variational problem:
find ¢ € V* such that:
Vép e V' AT (¢,89) = £(39) (31)

where:

L
{6¢) = 2¢p |/D Uy (1?)5¢1 (z)dx — /U

L

un(x)éqﬁg(:z:)d.ar} (32)

and:

— (6051: 6@)‘
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REMARK 4.1 If (31) has a solution — say ¢ — then the control VO defined by:

9]
VP = —Ap(a,t), Vy = B (a,), Wt (33)
(¢ being solution of (28) with the initial condition ¢), is such that u°(x,t)
satisfies:

oul
Bt

Hence the H.U.M. algorithm consists in solving (31) and then setting V°
defined by (33). But the analysis of the bilinear form A7 is not so easy. This is
the goal of the next step.

Step 3. Analysis of A7 and characterization of V*. Let us first choose for

T the value of the fundamental period; i.e. T = %”1 = Ty for which we have

u(z,T) = T)=0.

proved that p° = 0.
Furthermore, we assume that min(A42, B%) > 0. Then let » be the solution
of (28) for ¢ € V x L%(]0, L[). From:

(z, l( o1 ()W ( dz)cos \/_t
=2 |([

(fo ¢2 H n(
= ot

>sm \/_t Wa(

and because of the orthogonality in L2(]0,7[) of the harmonic functions, we
deduce that:

11 27172 . 9l
Mg, 0) = % <A2 sin’ (%) + nng B2 cos® <”—La>> (34)

n>1

L 2 1 L 2
( / m(:s)wn(w)dx) +x( | ¢2($)"Vn($)da;)

Thus, one has in this particular case (see the definition (15)),

{ AT (¢, ¢) > Ty min(A2, B2) (||én 1§ or, + | 62]3-) (35)
AT (9,6) < Ty max(42, B2) (112 o1, + 6211 01)

where ¢ is a constant (equal to €p).

Therefore, At is a norm in the space H{(]0, L[) x H~'(]0, L[). Furthermore,
it is bilinear and continuous. The completed space with respect to the norm
induced by A™" is contained in L2(]0, L[) x V’. Furthermore, it can be character-
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Then, depending on the ratio a/L we can define precisely the completed space
V*. It appears, for instance, that if a/L = r/q where ¢ is odd and obviously
0 < r < g, then one can choose A =0 and B # 0 in order to have the coercivity
of the bilinear form A™* on the space: L?(]0.L[) x V. Let us also point out that
for a = 0 or a = L one has directly:

V' =H; (10, L)) x H™' (10, L) . (36)

In this particular situation (@ = 0 or L), only one control is necessary (the Dirac
derivative).

Finally the linear form ((:) is continuous on V* as far as the initial data
satisfy:

(uo,u1) € H) (O, L]) x H' (JO, L]).
Hence we can formulate our conclusions as follows: “if min(42, B2) > 0, the
variational equation (31) has a unique solution (and this is even true with 4 =0
and @ = 0 or L), as soon as the initial data satisfy: (ug.u) € H, (JO, L) x

H-1(]O,L]).
Step 4. The controls defined by:

{ Vi(t) = —Ap(a, t),Vt € ]0,T1[, -
Va(t) = B22(a,t),¥t €0, T}, :

are such that:

du
& (.’B,T]) = U.VI € ]O.L{
Because of the definition of V* one has V;,Vy € L2(]0,T)]).

u(z, V) =

REMARK 4.2 For any time larger than T\ there also exists an exact control.

Let us summarize the previous results.

2

THEOREM 4.1 Let us assume that T > Ty and that min(A%, B*) > 0. Then
for any initial data (uo,w;) in the space H{(]0, L) x H~1(]0, L]) there exists an
exact control — say Vi(t) and V,(t) — such that:

Vi, WV, € Lz(]O,T[), and u(z,T) = QE( , 1) =0, Vaz€|0,L],

where u is the solution of:

96l x +D<" Y = AV (t)0q(z )+Bv,(r)5;,(x) Y(z,t) €]0, L[x]0, T
u(0,t) = $%(0,t) = u(L,t) = Zu(L,t)=0, Vte€lo.T]

du

A F R i AN ¥ | .. ~Inn T1
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4.3. Convergence of (u,p*,V¢) to (u%,0,V") when ¢ goes to zero

As a matter of fact, the asymptotic expansion of (u, pt, V) with respect Lo ¢
that we have defined, is formal. A convergence resull can nevertheless be proved
(and even under more suitable assumptions). This is summarized herecafter.

THEOREM 4.2 The assumptions are those of Theorem 4.1. Then:
Ve =0 VO in (L2(J0,T]))*
{ U =g u® in CH([0,T); H1(J0. L)) N CO([0.7); Hy(]0. L]))
(p° —e—o0 0 in the same space as u*).
Sketch of the proof. First of all let us recall that the H.U.M. control

is such that (relation (26) ensures that this exact control is the one which is
minimum in L?(]0, T) norm):

\4

€(Y/C eryr0y E 012 e 5 i 2 ;
JW) IV = 5 VOl gy = A5 WV lzgompy:
where U7 is the subspace of L?(]0, T[) denoting the controls which are exact at
time 7" (i.e. the solutions w satisfly: w(x.T) = %‘;-(:::T) = 0). Then from (26)
one has:
1 0 op' 0 o
p (a,t) + AV (E) = 0, a—(u.. t)— BV, (t) =0,Vt € |0, T|.
1
It is then clear that V¢ is uniformly bounded in (L?(]0,T7))* with respect
to e. Hence, there is a subsequence - say V' — which converges for each com-
ponent in L?(]0,T[) weakly to an element V= of the same space. Then, the
corresponding sequence of solutions u* to the beam model is a Cauchy se-
quence in C°([0,T); L?(J0, L[)) N C' ([0, T}; V') and therefore, it is convergent to
u*. From the inequality J¢(V¢) < J¢(V?) we deduce that:
du*
*(z,T)= —(z,T) = 0.
w'(2,T) = —5-(@,T)

Thus, V* € U+ and because:

*Nz2¢0p2 < lim i ‘./L(H
”V “L-(]g_p“ e lim tl’n—afﬂ

L2qorp*’
we can conclude that V* = V% and v* = u".
The strong convergence of V¢ (the whole sequence because of the uniqueness

of VO), is finally a direct consequence of:

2 e
Ve = VOllago.rpe = IV Nz2gosre + IV

2
I L(jo,1])*

T i T
.—2/ VE(t) e VO(t)ds < 2 [HV” |i‘-‘uu e / VEe(t) e 1“’"({)(;53}
0 . ! J0
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5. Non harmonic structures and arbitrary boundary con-
ditions

Let us consider now the case of a clamped beam. First of all, the eigenmodes
of the structure are now the solution of:

2epAn Wy (z) = d—‘:"-()ﬂ<‘b<L (38)
Wa(0) = €L (0) = Wa(L) = £ (L) = 0.
The normallzat.lon condition is, for instance:
L
2ep/ |Wi(2)[? dz = 1.
0
Then a simple calculation gives:
= D (g
An < () '
Wa(z) = An [ch (42) — cos (4£) + (39)
cotg (&) (sin ( «“—[j ~sh (,u,,L])]

where p, are the solutions of the equation:
ch i, cosp, =1;

for a cantilever beam we would have obtained —1 instead of 1 and the expression
of W, would be slightly different.
It is easy to check that:

\/_-—-K[ n +0(1)} K € R"* k(n) € N*, (40)

where 0 (-}‘;) is equivalent to % when n tends to infinity.

A mechanical structure such that (40) is satisfied is called: “Asymptotically
harmonic”. It is worth noticing that (40) allows multiple eigenvalues. But the
beam does not admit multiple eigenvalues. Hence, the following will not care
about this possibility, even if the results can be extended to operators such that
the multiplicity is upper bounded. Then, the basic property which will be used
in the following is summarized in the next lemma. In the formulation given
hereafter eigenvalues are implicitely assumed to be simple. Furthermore, such
results are very much connected to those of Ingham (1936). Nevertheless, they
are explicited briefly in order to simplify the reading of the paper.

LEMMA 5.1 Let A, be a sequence of positive real numbers satisfying

= i)

where:

e s bmsws ezl Y S
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and let us set:

211
T =—.
K
Then there is a constant ¢ which is independent of n and such that for any
n and m:

Tl i 9 T] ¢

/ sin (\//\nt> dt — —| £ —,

0 2 n

c

< =

/OT cos? (@t) dt — %

n’

/OTl cos (\/xt) sin ( )\mt> dt| < —illf(vz, -

Ty
n#Em: /0 cos (\//\—nf) cos ( )\mt) dt| < —_—inf(vcz, =
2 T, /OT1 sin ( /\nt> sin ( /\mt) dt| < m

Proof. Because the proof is a simple calculation we just give the main lines.

Thus let us set:

211

s = Kt, where K = —E-

Then from:
T 211
A= / sin? <\/)\nt> dt = o l/ cos {2 (l.:(n) +0 (l)) s}
0 2 2 0 n

we deduce that:

A—ﬁ——-]—/gn 5(2k(n)s)cos [ 2-0 ) d
=271, cos S ~ |5 )ds

+§/O sin (2k(n)s) sin (2 -0 <E> s) ds

and from standard inequalities:

1

cos <2-0(——> s) -1 <%,V$;
n n

sin (2 ) (l) 5) < 0—2,‘9’3,
n n

we obtain the first estimate. The other ones are obtained by a similar method.
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5.1. Analysis of the H.U.M. algorithm

Because of the similarity with the previous analysis, the only new point is the
coercivity of the bilinear form A”. Its definition is the same:

I_ (f)] dt

T | i~
AT (¢, 0) =/ﬂ [AZ lo (a,t)[? (t) + B |g—: (a.t)

where ¢ is now the solution of:

26,0"&7? + D-—5§ =0, V(z,t) €]0, L[x]0, T,
©(0,t) = (0 r) = @(L,t) = $2(L,t), V€0, T, (41)
¢(z,0) = ¢1(1). 70 (2,0) = d2(2), vz €]0, L[.

Let us assume for instance that (see Section 4):
¢ = (¢1,02) € HY (O, L)) x H™' (JO, L) .

Then the solution ¢(z,t) can be written:

z,t) =Y an(t)Wa(z)

n=l

with

(] (@)W () )ws(\/_ t)+

= )dx
(fn @(\/)gn( ) ) sin (\/)\_nt) ;

Let ng be an integer number which will be specified later on.
Then we split ¢ (and ¢) into two contributions setting:

‘;5 = ¢no + ¢cnm (‘12)

and
¢ng ZI‘Q‘I(nu (f() ¢] H, E)(i’l Jn ¢2 l)H!n{T)dI) W n{ .
wna{m,t) = Yi<ngno @n(t)Wa (), (43)

P(z,t) = Pno(@,t) + Peng (2, 1)

Let us now consider the expression of A" (T = T}!), and Lemma 5.1:

: 2
A20007 (a2 1. R2 (fm_“(m\ \ {44

\Th 7 A
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7 2 . 2
</o 91 (l‘)”,’n(l‘)dl‘) 5 (/0 952(3’)‘/"’11(17)651‘)

Hence, for ng > Til — 1, one has (¢y > 0):

AT (Desigs Peno ) = 2 Z <A2(I'I~'n(a‘>)2 + B2 <%> (1:)2> (45)

n>ngo

L A g " ~ 2 I IJ N X/ ~ e ’
</0 (J)l(x)l’f'n(l)clm) + :\—,: (/0 o)W ,l(l,)d.1,>

Let us now assume that the eigenvectors W, satisfy the following property
which can be checked directly using the explicit expression of W, given in (39):

(Wn(a))? + L <d;: (a)) >c3 > 0,Yn. (46)

As a matter of fact, the details of this proof are in Destuynder, Santi (1999).
Thus, from (43)-(44) we finally obtain (where: ¢4 > 0):

ATt ($engs feno) 2 €1 (I81emal3aqo,p + I92emalfr-2(10,0p ) (47)

The inequality (45) proves the coercivity of A™ on the space of functions of
L%(]0, L]) x H=2(]0, L]), but restricted to those which are orthogonal (for each
component) to the n, first eigenvectors.

Let us now use the Cauchy-Schwartz inequality with the bilinear form A"
(which is obviously symmetrical and positive). With the terms ¢, and ¢c,, as
defined in (40) and (41), one has:

)‘Tl (d’nm ¢Cn0) S [)‘Tl (d)‘n.(_n q/)n()) + )\Tl (¢C7107 (r")CTLo )] .

ng + 1
Thus, we deduce that:

)‘Tl (¢» QS) = /\T] (‘pnm (Z)no) oI /\Tl (¢cno ) ¢cno) =+ 2/\7‘1 (¢710 ) (y’l’cno) (48)

c y ;
Z (1 - n() + 1) [/\Tl ((bnov ‘f)no) + /\71 (@Cno: ¢Cn0)] .

Finally, the coercivity of AT* is proved as soon as it can be done for the
finite dimensional space spanned by the ng-first eigenmodes for each component
of ¢. The norm is of no importance because we consider a finite dimensional
space. Thus, it is sufficient to prove that \/ATi(-,-) is a norm on this space.
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Castel and Richard (1988). We used Bellman Theorem (see for instance Faurre,
Robin, 1984). The method can be presented as follows.

Let ¢ny = (P1ng> P2n,) be a couple of functions in the space spanned by the
ng-first eigenvectors. We set:

o= 3 [t

n=1,ng

sin(yv/Ant)| Wy(z)
\/T

where:
bno= Y (B B)Wa(a).
n=1,ng
Then the condition:

AT (Grgy Pno) = 0

is equivalent to:

(pno(a; t) = 0, YVt € [O,_’f‘]] 5
aﬂ&( t) = (49)
£ (a,t) =0, Vi€ [0,Ti].

Expliciting these relations and their derivatives at t = 0, one has:
D i 1noﬁ0'\kw a)=0;, ¥Yki=0,1,2,...8tc (50)
Zﬂ‘—‘] noﬁDAﬁd:; ( ):Ov Vk:U,l,:Z,...Ct.c. »
Zn—l Mo ﬁnAkW (a) =0, Vk=0,1,2,...etc (51)
Sncino BAAEL (0) =0, Vk=0,1,2,...etc.

Because we already mentioned that:

dw,
(Wn(a))® + L? ( - (a)) > 0,Vn,

we can conclude from (48)-(49) that (A, # A, if n # m):
,(33 = ﬁ,ﬂ =0 Yn=1,ny. (52)

Hence, \/F"T(, -) is a norm, and finally we proved that the bilinear form is
coercive on the space L*(]0, L[) x H~2(]0, L[). Because it is also continuous on
H{(J0,L[) x H~1(J0, L[), one can say that the completed space V* (see (31))
is between these two. As we did this for the simply supported beam it can be
characterized using the zero of the sine and cosine functions.

REMARK 5.1 Many various examples can be ireated by the strategy used in this
section. If the eigenvalues hove a multiplicity larger or equal to two, it becomes
necessary to add another control point at, for instance, x = b # a. Then, the
coordinate b should be chosen such that (if the multiplicity is two):

aae| Wala), Wopn(b) |,
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. uxt)
//_—4\ annular boundary
/ conditions
————— X
= L -
i 8 ( _\,2) 2 ¢ is the thickness
Y ==% 1 R is the radius

e R .
L is the length

v is the Poisson coefficient

Figure 9. An axisymmetrical and cylindrical shell

REMARK 5.2 There exists an ezact control for T' = T but also for any time
larger than T".

6. Case of an axisymmerical shell

Let us consider the case of a cylindrical shell as shown in IMig. 9. The transverse
displacement is denoted by u(z,t) and is solution of:

ZEp% +D (g%‘j + '}"‘u) =

Abn(2)Vi () + Bo.(2)Va(t) Y(w.t) €)0,L(x]0,T[ *

u(0,t) = £%(0,t) = u(L,t) = L%(L,t) =0, Vi €]o,T|
du

" ot

where 4* is the so-called Batdorf coefficient of the shell. The eigenvectors are
easy to characterize. One has:

Wa(z) = ”éf: sin (%)

and the eigenvalues are:

D (n'T*
A““z—pe( I ”)

The hypothesis of Lemma 5.1 are clearly satisfied and therefore the H.U.M.,

u(z,0) = up(z), —(2,0) = wy(x), Va€]0,T].
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7. Conclusion

The exact controllability of several smart beam models has been studied in
this paper. The differences between them reside in the boundary conditions.
The first point is that we showed how combinations of several piezo-devices
make it possible to simulate a pointwise force or a pointwise bending moment.
Even a uniformly distributed loading can be generated. In the experimental
manufacturing the smart beam will be realized by setting the various piezo
wafers at different positions through the thickness of the beam. This will enable
avoiding shortcuts. But a Faraday protection is certainly recommended in order
to suppress electromagnetic effect between two different devices.

Then, the harmonic behaviour of the spectrum of the beam leads to a simple
way of analysis of the H.U.M. method suggested and developed by Lions (1988),
It is also shown that the important featnre is that we only used the asymptotic
behaviour of the spectrum. In the present situation the exact H.U.M. control
has also two main advantages. First of all this control is the one which has
the minimum L?(]0, T[) norm. Secondly, certainly a decisive argument in favor
of the method of J.L. Lions, is that the “Spillover” is completely avoided for
a harmonic structure and very much reduced for an asymptotically harmonic
structure. Let us shortly explain why. Let us assume, for instance. that the
initial condition of the smart beam model is proportional to the eigenvector wy,.
If an optimal control is computed in the one dimensional space spanned by the
single mode w,,, then a part of the initial energy is spilled over the other modes
even if they had no energy at the initial time. Let us recall that this optimal
control is the solution of (18) but the functional J is given by (17) where only the
term with the index n is considered in the summation. Nothing guarantees that
this optimal control will tend to the H.U.M. control when ¢ tends to zero, but
that would be true, as we proved it, if all the terms were taken into account in the
definition of J at (17). Besides, because for an harmonic structure, the bilinear
form AT is diagonal in the basis of the eigenmodes w,, all the coefficients of
the eigenmodes are equal to zero at time 71 even if only the contribution of the
nth mode is considered (the other ones are zero because the bilinear form A7t is
diagonal in the basis of the eigen modes). This property is really very important.
In the practical implementation of the control procedure, it means that it is not
necessary to identify the coefficients of all the other eigenmodes except for the
ones (displacement and velocity) of w,,. Furthermore, the computation of this
optimal control is analytical (it is a classical exercise). Because only “sine” and
“cosine” functions are used in the explicit expression of the H.U.M. control, they
can be easily generated using electronic devices in experimental simulations,
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