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Abstract: First of all , a brief reminder on piezoelectri c: efrect 
is given . Then it is app lied to a bea m equipped with such <1cLua­
tors. The influence of the shape and location is di scussed. A srnart 
beam model is fin all y presented and analyzed. The controll ab ili ty 
is carefully examined in the fram ework of t he H .U .M. method of 
Lions (1988). Let us also underline that t he asymptot ic harmoni c 
behaviour of the structure is widely used . 
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1. Introduction 

In the early eighties, several people have underlined the in terest of pi ezoelectri c 
effect for reducing structural vibrations. But the possibility of manufacturing a 
real "smart structure" appeared immediately to be very much connected with 
existence of an accurate model which cou ld enable precise un derstanding ami 
design of the control strategy. Two papers were aL the origin of thi s area of 
mathematical modelling. The first one is by Bai ley and Hubbard ( 1985) , who 
gave a mechanical discussion of the piezoelectri c effect 011 a bemTI, and then 
Hanagud, Obal and Calise (1987), who suggested an optimal co 11 t rol strategy 
based on a stabilization technique. One of the first mathernat.ical modelling ex­
ercises giving a functional interpretation of the pi ezo-actuators in tenns of Dira c 
di stributions was detailed in Destuynder, Legrain, Castel and Richard ( 1988) in 
an ONERA report. One of the important drawbacks was pointed out, speci a lly 
for acoustic applications. It is t he spill over phenomenon whi ch is particularly 
im portant in the piezo-actuator techn ology. The reason is t hat it acts as a poin t­
wise force or a concentrated moment a nd therefore many eigenmodes are exei ted 
by this kind of actuators. Thus, a part of the rneeha.n ica l energy is transferred 
from lower to upper eigenmodes throug·h the Die:wPIPct.ric: rlc~vices _ H11 t·. t llPrP ;J r P 
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Balas has suggested to use Kalma n filtering (sec Bal as, 1982) . One interesting 
advantage of the so-called H. U .lVI. method int roduced and developed by Lions 
(1988) is that it can considerably decrease t he spillover phenomenon . f-ur ther­
more, for harmonic or quasi-harmoni c structures the natural H.U.M. control is: 
a ) easy to determine and to apply for a real-Lime procedure and b) it avoids 
spillover if the control peri od chosen is the one of the fundam ental frequency of 
the structure. But, obviously, this ana lysis rests upon a mathemat ical analysis 
of t he H.U.M. method in the case of a smart structure model with pi czodevices. 
The goal of this paper is to give an overview of what has been studi ed recent ly 
on this problem. Many con tributions used in this paper are included in the 
references listed a t the end. 

2. Modelling of the sm art structure 

Let us consider a thin plate, its medium surface being denoted by w and its 
boundary by 'Y· The normal component of the di splacement fi eld is u( :r, t) 
where x E w and t E [0, T] . 

The thickness of the plate is assumed to be constant an d equal to 2c On the 
upper or the lower (or both) face(s) of th e plate , we set thi n layers (few microns) 
of a piezoelectri c material. T he additi onal stiffness clue to these actuators is 
negligible. If we denote by aC'<p; o:,{J E {I , 2} the in-pl ane stresses in the pi ezo­
layer, and by V the voltage between the upper and t he lower faces , one has the 
following consti tut ive relat ionship (aaf3 is assumed to be consta nt through the 
thickness of the layers because of t heir very sma ll t hickness) : 

where c is dielectric constant and hap a symmetri cal tensor whi ch charatcri zcs 
the piezoelectic effect . The bendin g moment of these stresses es tim ated a t the 
center of the plate (i.e. on w) is: 

where ae is half the thickness of the pi ezo-layer. Let us underli ne that the 
mechanical effect is not rest ri cted to a concentra ted torque, excepted if another 
piezo-layer is set symmetrically wi th respect tow and wit h an opposite voltage. 
But nevertheless, the membrane strains arc usuall y negli gible because of the 
high membrane stiffness of t he plate. Therefore they will be omiiled in the 
following. 

Let us now denote by p the mass density of t he pla te and by D the bending 
modulus . Then the model (see Destuynder, Legrain , Castel and Richard , 1988) 
is: 
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{ 

2cp~:1'+V.6. 2 ·u=("-~ 11 )11onf3 h o (J in wx ]O,T[ 

u(~, 0): 1to(x ), a~!Y:, 0) ~ v.,_(x) _ in w. 

u(x, t) - ((1 - v)~ -rv.6. u.) (.t .,f)- 0 onrx]O,T[, 
( 1) 

where vis the Poi sson coefficient of the pl ate and n the unit tt ortml l along --y 

outwards of w. Furthermore, the impli cit summation convent ion over repeated 
indices has been used (from J to 2 for et , ;J .. .. ). lt. is worth noticing that ha13 
is constant on an open set wP which - in w -- corresponds t.o the projecti on of 
tbe position of the piezoelec tric layer and is equal to zero ou Lsicle of w7, . HellC·e 
Lhe right hand side of (1) contains Dirac distributions (and their de ri vat ives!). 
Tn order to focus on the physical meaning of such terms let us use a vari ational 
formulation . First of all we in trodu ce the fu nct iona l space 

11 ( w) = { v E H 2 
( w) v = 0 sur ow} . (2) 

Then , multiplying (1) by an arbi t rary element. u in V(w) and intl'gn1ti ng by 
parts we obtain the fo llowing va ri ational formul ation: 

Find 'tt(:r, t) such that: 

The open set wP corresponds to the pi e:-::o device, assuming, fo r itt stmiC'e, th at 
tb ere is only one of them. But (.1) is formal because the fu ncti onal spa ce for n is 
not explicited. We just assum e that t here ex ists a solution which is stt!fk ient ly 
smooth in order to make sense to (3). Unfortunately, it will be sltown in t.he 
fo llowing that it is not rea listic. Nevertheless, the rneclmni cal in terpretat ion of 
the piezo effect wi ll remain true. From Stokes fonnu lu we dedttcc th at: 

(n = (na_), and owp is the boundary of u.,'p) - Thus, two kinds of' rn ecltani ca l 
loading appear clear ly in this express ion. One is a dist.ri lmtecl torque around 
DwP and the other is a normal torque wh ich is also di stributed ;i\ ott g ow,,. BoL\ 1 
are represented in Fig. I . 

If the plate is reduced Lo a bea m as shown in F ig. 2, it is r. !ten possible 
to simplify the expression of the plate model beca use one can assmt te that. t lt e 
deflect ion u does not depend of the coordinate .1:2 . Th is is cl ue to 1 !te stNlll 
wid th of the beam (see Fig. 2). Then a sirnp li ficd expression of lite ri ght band 
side of (3) can be derived by choosing virtual ftut ct ions v whi ch only clepettcl on 
x 1 . Thus we obtain first: 

-1 / h ~ fl ~"- / 1-,,, n ..... - '' ·· /' n ..... 
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tangential torque normal torque 

Figure l. Mechanical interpretation of the piezoelectri c effects 

X2 

0 L 

Figure 2. A piezo-wafer sticked on a beam 
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Then , let us denote by x2 = f( :r1) the equation of the curve representing the 
piezoelectric device as indicated in Fig. 2. Furthermore, the shape is assumed 
to be symmetrical with respect to the axis :r .1. The extremities being locali zed 
at the points, with coordinates x 1 = a and x1 = b we deduce that: 

or else: 

From this formula one can derive several particular expressions for tbe right 
hand side of the smart beam model. Furthermore, from now on only t he coor­
dinate x1 will appear. Therefore for sake of brevity in the notations, we shall 
just write x, omitting the subscr ipt I. 

2.1. Rectangular wafers (F ig. 3) 

In this case we have: 

f(x)=F(= constantan [a,b]). 

Thus the beam model becomes: 

f:P1L 8
4

1t _ ( e) F [s:' _ s:' ] ! ( ) 2Ep ot2 + D ox4 - 2hl 1 f. + a c£ ua. u1, 1 t , \i(x, t) (G) 

where l is the width of the beam as shown in Fig. 2. Furthermore, !l~'" denotes 
the derivative of the Dirac distribution at point :r0 . Consequently, the efl'ect of 
the piezo-device on the beam call be assimil ated to two concentrated torques 
appli ed respectively at points x = a and :r: = v and wi tl1 an opposite sign. 

Let us underline that if an eigenmode ·- say H'n - is such that: 

8Wn (a) = OWn (b), 
ox OX 

then the piezoelectric has no effect on it. Since one has: 

/2 (nllx) Wn(x) = VL sin L , 

the previous condit ion is equivalent to: 

niTa niTb 
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moment moment 

0 

a b 

Figure 3. A recta ngular wafer 

moment f force 

0 

a b 

Figure 4. A tri angular wafer 

or else: 

a±b k 
-

2
L is a rational number - say - . 

1/, 
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L 
XJ 

X! 
L 

Because 0 :=;; a :=;; b :=;; L, this situation can on ly occur if k :=;; n. But even 
if the position of the piezo- layer can be adjusted for one eigenmode, it appears 
clearly that it cannot be done for all of them, because the set of rat ional numbers 
is dense in the one of real numbers. 

2.2. A triangular wafer (F ig. 4) 

We set: 

Then, introducing this expression into the right hand side of (5), we der ive 
the following beam model (let us set, for instance, a= 0). 

o2
u D8

4
u _ 2hllF (e + ae) [o' ~ fJ ] V( ) 

2Ep fJt2 + fJx4 - c£ 0 + b b t ' V(:r , t). (7) 

Thus the mechanical effect can be interpreted by a torque at x = 0 and a 
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a 

0 

Figure 5. A "Ravioli " wafer 

2.3. A "ravioli" wafer (F ig. 5) 

We now set (with , for instance, a= 0 an b = :ro) : 

f (x )= /3 (:ro -x)2 O<x<:ro 

X] 
L 

Xj 

where f3 is a sufficient ly sma ll coefficieut. T hen Lhe smar t bea m model is: 

509 

82
u 84

u _ 4h11 /3(t:+ae) [ . _ . . 2 , . . . _. . ..:2] 1 2t:p fJ t2 + V OX4 - cf!. (:to x) + l2 (.0 .Lo) + .L 1 (f ). (8) 

T he mechanical effect is the one of a. d istribu ted t ransverse lo<l d as shown in 
Fig. 5. It can be underlined t hat it induces a local bending effect. 

2.4. A n almond wafer (F ig . 6) 

Let us set : 

f (x) = f3 (x- a)(x - b), IL::; .r::; b. 

T he beam model is: 

82u 84u 2hJJ/3(t:+ ae) , 
2t:p8t2 + Vox4 = ce [- (b -a) (bl,+bn ) +2xta,ui(:t:)) . 

X[a,b ] (x) being the characteristi c function of the in terva l [a, b]. 

2. 5. A butterfly wafer (F ig . 7) 

In order to prescribe more prec isely t he forces appli ed 011 t l1 e bea111. one can 
mix several wafers with differen t shapes. T he firsL exa mple makes it possible to 
simul ate a. pointwise force. Three wafers are used. One is rcct<mgul ur and t he 
two other are triangul al'. The electri c potenti als arc deno ted by V 1 , 112 and 1!1 . 
T hen the smar t beam model is (we choose a = b and F = C/2): 

82v. - 84u 
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L 

·t'l'ttt'l'· 
--------~T~~--~~--~r--------------------~·~ Xl 

f forces t 
Figure 6. An almond wafer 

0 

F igure 7. A butterfl y wafer 
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Let us choose 11,;, i = l , 2, 3 such that: 

V1 + V3 = o, Vi = - Vz. 

Then we derive the following smart-beam model: 

82
1L 84u __ hn (c + ae) I . 

2Epatz +V8x4- 2L ca(L - a) 1J(t)r5u(x). (9) 

It is worth noting that the system is equivalent to a pointwise force and that 
the efficiency is very much in creased if the position of th is pointwise force is at 
the middle of the beam. 

2.6. A candy wafer (Fig. 8 ) 

Let us use four piezo-devices: one is almond shaped , one is rectangul ar and the 
two last are triangular. The smart beam model is: 

2 8
2
u V8

4
'lL=2hn(c + ae)[-(J(/- )(6 J)V:() 

Ep 8t2 + 8x4 c£ J a a + b 4 t 

+2flx ra,bl(x)V4(t) + FV1 (t) (6b- 5[J + F1fz(t) (6b + 
0
;) 

+FV3 (t) (L 6~ b- 6~,)] . 
Then, setting 

and 

F 
- (J(b- a)V4 + - Vz = 0 (a + b = L!), 

a 

we deduce that: 

82u 84u 4hu (c + ae) 
2cp 8t2 + D 8x4 = cfl. flxra,bl(x)V:J(t) (10) 

with: 

a(J(b - a) 
Vz=V3 = F V4= - Vj. 

REMARK 2.1 From a practical point of view, it shmLld he 1mdcrhned that the 
wafers must be disconnected in order to avoid a short cut. TheTcfore they could 
be set in different parallel plans through the thickness of the beam. 
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L 
X] 

F igure 8. A candy wafer 

3. Mathematical analysis of a smart beam 

Let us consider a smart beam model whi ch corresponds to one of those described 
in Section 2: 

find u(x, t) such that : 

{ 

( 2Ep ~:~ + V ~:~) (x1, t) = AV1 (t )80 (t) + BV2(t)o~(t) 
V(x, t) E] O, L[x ]O,T[ 

82 ':)" 
u(O, t) = ax~ (0, t) = u(L, t) = ~~~ (L, t) = 0, Vt E]O, T [. 

au 
u(x, 0) = uo(x), at (:1:, 0) = u 1 (x), Vx E ]0 , L[. 

( I I) 

(12) 

Functions Vj and V2 are electri c potent ials. Let us assume that t hey are both 
in the space L2 (]0, T [) . The init ial values 'Uo and ·tt 1 are chosen in fun ctio11al 
spaces on ]0, L[ which a re described in the following. Bu t first of all , it is 
necessary to introduce several notat ious. Let us consider t he eigenvectors Hl , 
(and the eigenvalues An) of t he structural model: 

{ 
2EpA W (x) =. V d"W" (x ) V:r. E ]0 L[ n n . d x4 ' · ' ' 

Wn(O) = d~~~ (0) = Wn(L) = "~~" (L) = 0, 

and the normalization condition tha t we have chosen is: 

2Ep 1L Hl~ (x)dx = I . 

The solutions can be expli citccl by: 

f W (x) = C sin (nih:) 
n VEPI . L ' (13) 
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Then, for any s 2: - ]we define the fun ctional spa.ces (Lions, Magf'nes, 1968): 

( ]LI) 

where< , > is the duality product between 1/ = HJ(]O, L[) n H 2 (] 0. L[) ~mel iLs 
dual - say 11'. One has the following classica l idenLi t ies: 

l 
i) Do (]0, L[) = L2 (] 0, L[) , 
ii) D1 (.]0, L[) = 1/ = HJ (]0, L[) n H 2 (]0, L[) , 
iii) D_1 (]0, L[) = 11' , 
iv) D 1 (]0, L[) = HJ (]0, L [) , 

2 

v) D _!(]0, L[) = s-1 (]0, L[). 
2 

(] 5) 

The assumed solution of (1 1 )-(12) cnn be expressed in the basis {1V,J . One 
has the following expression: 

1

1L(x, t) = I':n>l ctn(t)H1n(x) , 

an(t)· .. = (uoJT!J)cos.(At) + (n~, ) sin ( At) 

+):: [Awn(a) j~ 111 (s) sin( vT,;(t - s))ds-

B 81~" (a) J~ 112(s) sin( A(t - s))cts], 

(16) 

The question we are dealing with is to characterize the space i11 which the 
convergence of the series (16) occurs . One has quite imm ediately the well known 
result : 

THEOREM 3.1 

1. Let (uo,u1) E L2 (]O,L[) x 11', 11i E L2 (]O,T[) ,i = 1, 2 then: 
u E C0 ([0, T]; L 2 (]0, L[)) n C 1 ([0, T]; 11') 

2. Let (no, ul) E HJ (]0, L[) x H - 1 (]0 , L[) , Vi E L2 (]0, T [), i = I, 2, then 
if B = 0: u E C0 ([0, T] ; HJ (]0, L[) ) n C1 ([0, T] ; s - 1 (]0, L[) ). 

3. Let (110, uJ) E 11 x L2 (]0 , L[), Vi E L2 (]0 , T[) , i = 1, 2, then if A = 
B = 0: u E C0 ([0, T] ; 11) n C1 ([0, T]; L2 (]0, L[) ). 

Sketch of the proof. 
Let us introduce two elements z 1 and z2 of 11 , such that: 

{ 

D~;} = oa, 
vd4z" - o' 

d x '' - a> 

zi(O) = ~(o) = zi(L) = ~(L) = 0, i = I, 2. 

Then one has: 

f z 1 = I':n :?: l >-:. 1~::: (a)Wn (x) E HJ (]0, L[) n H2 (]0, L[), 
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and: 

{ 
II 11 2 " IW,,(aW 
Zl 2 OL = Lm>l .A ' 

' - n ? 
2 _ 1 8W,(a.) -ll z2 II2,0L- l::n2:1 :\:;;-[--a;-[ · 

Finally, from (16), we deduce that: 

'\:"" 2 ['\:"" (( 2 2 (\ ( 'll], Wn? . 2 (\ ~ lan(t)l :::; c ~ uo, Wn) cos (v Ant)+ An sm ( V Ant) 
n2:1 n2:1 

+ (A2 IIziii§,oL + B2 llz2 ll§,o£) 1t (V? + Fn(s)ds] 

The first result given in the Theorem is a direct consequenee of the previous 
inequality. But one can also notice that on the one hand: 

and that on the other hand: 

d
3
z1 ( ) = _ '\:"" Wn (a) n3

H
3 

. (nnx) 
dx3 x ~ A V cos L . 

n2:1 n 

Then from: 

we deduce that: 

Finally, we obtain that (if for instance B = 0), 'It E [0, T]: 

L a~(t)A~ :::; c [lluol li,o£ + lltttll~t , OL + L. IW~(~) I 2 rt v?(s)ds] 
n2:1 n2: l An Jo 

:::; c [lluolli,o£ + llu1II~ J , OL + 11Ftlli2(IO,L[)J · 

The continuity with respect to time is deduced directly from tbe uniform 
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4. The optimal control problem 

Let us consider a smart beam model like the one studied in Section ~). The 
electrical potentials are the control variables. The solution u(:r, t) is the state 
variable. For ( uo , ui) and V = (V], V2) given, we set (Section 3) : 

u(x, t) = 2: an(t)Wn(x). 
n21 

In order to minimize u(x, T) and ~~- (x, T) we define the following criterion 
with respect to the control variable: V = (l', , V2 ) 

where f. is an arbitrary (small) real and positive param eter. Then we in troduce 
the control problem: 

{ 
minimize J(V) , 
V E (L2 (]0, T [) )

2
. 

(18) 

The solution of (18) is such t hat ?t(x , T) and ~~- (x, T) are sma ller and smaller 
when f. tends to zero. But the existence and uniqueness of a solution to (18) is 
only obvious for f. > 0. 

It can be obtained, for instance, through a classical theorem, because: 
i) (L2 (]0 , T[)) 2 is a Hilbert space, 
ii) J is continuous and strictly convex, 
iii) J is coercive i.e. lim J(V) = +oo when 11V II woo,T[))2 -4 oo. 

The optimality equation can be easily formul a ted using an adjoint sta te 
function. Because th is has been a quite standard method since Pontryagin 
(1974), we just give the results. 

The optimal function V = (V1 , V2) and the corresponding s ta te fun ction 
u(x, t) are solu tion of (it is imp licitely assumed t hat (x , t) E]O, L [x ]0, T[): 

2cpf;f + vg:~ = AV1 (t)6a( x ) + BV2(t)6~(x), \i(.1:, t), 

u(O, t) = g:~ (0, t) = u(L, t) = g:~ (L, t) = 0, \it, 
u(x,O) = ·uo(u) , ~~(x, O ) = H 1 (x),\ix, 
Ap(a, t) + cV1(t) = 0, \it, 
-B~(a, t) + cV2(t) = 0, \it , 

(] 9) 

where p(x, t) is the adjoint state function which is defined as t lt c so lu t ion of: 

f 
( 2cpft; + v~) (x, t) = 0, \i(:i:, t), 

2 ? 

p(O, t) = ~(0, t) ~ p(L, t) = !Ji3(L, t) = 0, \it, (20) 
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The basic point in our analysis is to study the asymptotic beha viour of the 
previous solution when E goes to zero. Therefore we set: 

{ 

u = t£0 + w 1 +etc. 
P = Po + f.Pl + etc. 
V = V 0 + E V 1 + etc. 

(21) 

By substituting the expression (21) in (19)-(20) and by equating the terms 
with the same power in f. in the resulting expression , we obtain the following 
set of relations. It enables characterization of various terms in the asymptotic 
expansion. 
Terms of order zero: 

{ 

(2t:p 8;;so + D 8
8

4

: 4°) (x, t) = AV.1°(t)ba(x) + BV2°(t)6;, (:1;), \i(:r , t) 

u0 (0, t) = 8;:2° (0, t) = u0 (L, t) = a;~~o (L, t) = 0, \it, (22) 
u 0 (x , 0) = uo(x), 8lft

0 

(.1:, 0) = n 1 (x). 

Terms of order 1: 

(25) 

(26) 

( 
82 1 ~) 2t:p7J{f- + 'D ax4 (x , t) = 0, \i(x, t ), 

1 82 1 . 1 ()2 ,J 
p (0, t) = ~(0, t) = p (L, t) = ~(L , t) = 0, \it , 

. J(T) 
P1(x T) =" ~W (x) ' un~ l ).,. n ' 

(27) 
a 1 
Tt-(x, T) = - l:n> l cx;.(T)Wn(x), \ix, 

( u 1 (x, t) = l:n~l ~;.(t)Wn(x) ) . 
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Let us sketch the solution method for this set of equations. As a matter 
of fact it leads to the well known H.U.M . method suggested and developed by 
Lions (1988). 

A basic point is to prove that for T large enough, the equations (23) and 

(24) lead to p0 (x, t) = 0 and therefore u0 (x, T) = 8{/i
0 

(:r, T) = 0, Vx . But 
unfortunately the multiplier method cannot be applied directly as it was the 
case for the problems treated by Lions (1988) (see also Kom ornik , 1994, for the 
multiplier method). This difficulty is due to a second order derivative term at 
the point x = a. 

4.1. Characterisation of the terms p0 and u0 

Assuming, for instance, that 7t0 (x, T) and 88~.
0 

(x , T) arc elements of the space 
L2 (]0, L[) x V', the solu tion p0(x, t) of (24) is also given by: 

p0 (x, t) = L f3n (t)Wn( x) 
n2':1 

where: 

. o (T) o (T ) 
f3n (t) = ~cos [v>:;;(t - T) J - a,~ sin ( J):;;(t- T)) 

An VAn 

(a~(t) are the coefficients of the expansion of 1t
0 in the basis Wn)· 

But the structure is harmonic (i.e. the eigenfrequencies are integer multiples 
of a fundamental one) . Hence, setting: 

211 ( n
2
l1

2
V) 

T = T1 = ~' An = L22cp , 

and from (23) , multiplying successively by cos ~(t-T), sin ~(t-T) and by 
integrating from 0 to T1, we deduce that (A and B are assumed Lo be different 
from zero): 

and therefore: 

p0 (:r,t) = 0 V(x,t) E ]O,L[ x ]O,Tl[· 

A similar property wi ll be discussed in details in the following. FurLhennore 
it is obviously true for any T 2:: 1] . 

4.2. Characterization of terms of order 1 and the H.U.M. algorithm 

Our goal is to characterize a solu t ion of (25) - (26) and (27). This is where the 
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Step 1. Let ( ¢0 , c/Jl) be two functions in, respectively, the space H 2 (]0, L[) n 
HJ(JO, L[) and L2 (]0 , L[). We define a funct ion - say <p1 (:t , t) ·~ solu tion of 
(analogous to (27)): 

{ 

2cp~ + Dfl;(x, t) = 0, \1(:1:, t) 
82 8 2 

<p(O, t) ':_ ~(~, t~= :(L,~) = ~(L, t) = 0, \It: 
<p(x,O)- c/>1(x), at (x,O)- c/>2(x), \lx . 

(28) 

We know from Theorem 1 that: 

<p E C0 ([0, T]; H2 (]0, L[) n Hci (]0, L[)) n C1 ([0, T]; L2 (]0, T [) ) 

Step 2. Let <p 1 and <p2 be the two solutions of (28) but for two initial 
conditions - say ¢ 1 = ( ¢}, ¢~) and ¢2 = ( ¢?, ¢~). Then we define the bilinear 
form which is obviously symmetrical and positive: 

>7 ( ¢1
, ¢2

) = A2 r <p1(a, t) <p2 (a , t)dt + B2 r ~~.1 

(a , t) ~:.
2 

(a,t)dt. (29) 
lo }0 ux ux 

By multiplying (22) by <p2 (:1;, t) and integrating over ]0, L[ x ]0, T[, we obtain: 

2cp 1T 1L ( o;~o + D ~~~;) <p2 (x , t)dxclt 

( T {T O<p2 
=A Jo V1°(t)<p2 (a, t )dt- B Jo V2°(t) ox (a, t)dt 

r j·T opl o<p2 
= -A2 Jo p1 (x, t)<p2(a, t)dt- B 2 

0 
ox (a, t) ox (a, t)clt. 

Finally, using an integration by part: 

2cp ~(x, O)<p2 (x , O)clx- 1L
0 (:1:, O)___f_ (x , O)cl:1: [j ·L 0 0 1.£ a 2 l 

0 ot o m 
2 r 1 2 2 rT ap, a<p2 

=A lo p (x, t)<p (.T, t) + B lo ax (a, t) OX (a, t)dt 

Thus we introduce a variational problem: 

find cp E V* such that : 

\18¢ E V* >.7 (¢ ,8¢) = £(8¢ ) 

where: 

£(8¢) ~ 2<p [foL u1 (x)8¢ 1(x)dx - t uo(x )8ql, (x)dx1 

and: 

(30) 

(31) 

(32) 
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REMARK 4.1 If {31) has a solution -say¢ - then the contml11° defined by: 

0 0 8~ 
111 =-A~( a, t), 112 = B a:r (a, t), '<:It (33) 

(~ being solution of (28) with the 'iniJial condition ¢), is such that n°(x, t) 
satisfies: 

Hence the H.U.M. algorithm consists in solving (31) and then setting 11° 
defined by (33). But the analysis of the bilinear form >.T is not so easy. This is 
the goal of the next step. 

Step 3. Analysis of >..T and characteri zation of V*. Let us first choose for 
T the value of the fundamental period; i. e. T = ~ = T1 for which we have 

proved that p0 = 0. 
Furthermore, we assume that min(A2 , B 2

) > 0. Then leL <p be I he soluti on 
of (28) for¢ E 11 x £ 2(]0, £[) . From: 

~(x, t) = L [(1L ¢I(x)Wn(x)dx) cos( />:t) 
n2;:1 ° 

and because of the orthogonality in £ 2(]0, T[) of the harmonic functions, we 
deduce that: 

T1 ( (niTa) n2
II

2 
• (niTa)) )..Tt(¢,¢) = L 2 A2sin2 L + J:2B2 cos2 L 

n2;:1 

(34) 

[ (t ¢ ,(x)W.(x)dx ) 

2 

+ L (t ¢,(x)Wn(x)dx) ' ] 

Thus, one has in this particular case (see the definition (.15)), 

(35) 

where c is a constant (equal to Ep). 
Therefore, )..Tt is a norm in the space HJ(]O, L[) x H- 1(]0, L[). Furthermore, 

it is bilinear and continuous. The completed space with respect to the norm 
induced by )..Tt is contained in £2(]0, L [) x 11'. Furthermore, it can be character-
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Then, depending on the ratio a/ L we can define precisely the completed space 
V*. It appears, for instance, t hat if a/ L = r'/q where q is odd and obviously 
0 ::; r::; q, then one can choose A= 0 and B f. 0 in order to have the coercivity 
of the bilinear form >71 on the space: L2 (]0, L[) x V'. Let us also point. out th at 
for a = 0 or a = L one has directly: 

V* = HJ (]0, L[) x H-1 (]0 , L[). (36) 

In this particular situation (a = 0 or L ), only one control is necessa ry (the Dirac 
derivative). 

Finally the linear form £(-) is coutinuous on V* as far as the initi al data 
satisfy: 

(uo , u1) E HJ (]0, L [) x H- 1 (]0, L [) . 

Hence we can formulate our conclusions as foll ows: "if min(A2 , B 2) > 0, the 
variational equation (31) has a un ique solution (and this is even true with A.= 0 
and a = 0 or L), as soon as the initi al data satisfy: (v.o, ·uJ) E H<\ (] 0 , L[) x 
H - 1 (]0, L[)" . 

Step 4. The controls defin ed by: 

{ 
V1(t) = -Acp(a,t) ,Yt E ]O,TJ[ , 
V2(t) = B %;(a, t) , Yt E ]0, T 1 [ , 

are such that: 

au 
u(x , TI) = ox (x , T I) = 0, Yx E ]0, L[ 

Because of the definition of V* one has V1 , V2 E L2 (]0, T 1 [) . 

(37) 

REMARK 4.2 For any time larger than T 1 there also e:cists an e:wct control. 

Let us summarize the previous results. 

THEOREM 4.1 Let us assume that T 2 T1 and that rn in (A2,B2) > 0. Then 
for any initial data ( u0 , ui) in the space HJ (]0, L[) x H- 1 (]0, L [) ther·e eJ;ists an 
exact control - say V1 ( t) and V2 ( t) - such that: 

au 
Vj, V2 E L2 (]0, T[), and u(x, T) = at (x, T) = 0, Y:1; E] O, L[, 

where 1L is the solution of: 

{ 
2Eft¥ + V$:~ = AV1(t)oa( x) + f3V2(t)o;,.(x), Y(:r, t) E] O, L[x]O, T[ 
u(O, t) = ~:'i (0, t ) = 1t(L , t) = ~:~ (L, t) = 0, Yt E]O, T [ 

I '\ au , r.\ 
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4.3. Convergence of ( 1/,E, p', 11') to ( 11° , 0, 11°) when f goes to zero 

As a matter of fact , t he asymptot ic expa nsion of ( 1L c, p c , 11c) with rcspec:L Lo c 
t hat we have defined, is formal A convergence resu!L can neverth eless be proved 
(and even under more su itable assumpt ions) . This is summarized hereaJLer. 

THEOREM 4. 2 The assnmptions are those of Theorem 4 .1. Then: 

in (£2 (]0, T [)) 2 

in C1 ([0, T]; g -J (]0, L [)) n C0 ([0, T]; Hd (]0, L [)) 

(pc -> ,_,o 0 in the same space as ·t{) . 

Sketch of the proof. First of a ll le t us recall that t he 1-l .U. J\!l. cont rol 
is such t hat (rela tion (26) ensures th at t hi s exact control is the one whi ch is 
minimum in £ 2 (]0 , T[) norm): 

J '(Vc) S J '(V
0

) = ~ IIV0 ll~v(Jo ,T [ )) " = )~~T ~ I IV II ~L 2 (JO,T f )) 2 

where ur is the subspace of £ 2 (]0, T[) denoting t he controls whi cl1 <m:' exact at 
timeT (i. e. the solu t ions ·u. satisfy: u(:r, T) = ~~ (x, T) = 0). TlH'n from (26) 
one has: 

p1 (a , t) + A111°(t) = 0, a;~ (a, t )- B 112°(t ) = 0, \It E ]0 , T [ . 

Jt is then clear that 11' is uniforml y bou nded in (£2 (] 0, T[)) 2 with respect 
to c Hence, there is a subsequence - say 11'' - whi ch converges for each com­
ponent in £ 2 (]0, T [) weakl y to an element 11* of t he same space. Then, the 
corresponding sequence of solu t ions ·1/ to the beam model is <1 Ca uchy se­
quence in C0 ([0, T ]; £2 (]0, L[)) n C1 ([0, T]; 11') a nd t herefore, it is convergent to 
v.* . From the inequality J ' (V') ::; J '(V0 ) we deduce tha t: 

tt*(x,T) =a~* (x,T) = 0. 

Thus, 11* E Ul_ a nd because: 

IIV *IIL" (lOT[)2 ::; lim inf 1111 c'll , 
' ,, -+ O L " (]o,:r[) 2 

we can conclude that 11* = 11° and ·u.* = ·u.O . 
The strong convergence of 11' (the whole sequence beca use of t he uniqueness 

of 11° !) , is fin ally a direct consequence of: 

IJv' - 11°JI~2(Jo ,r[)2 = IW' IIi"(Jo,Tfl 2 + IJ11° ll~2( f o,r[)~ 

~2 iT V'( t) • V0( t)ds S: 2 [I IV" II ~'(IO,T[)' - iT V' ( t) • V0(t)ds] 
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5. Non harmonic structures and arbitrary boundary con­
ditions 

Let us consider now the case of a clamped beam. First of all, the eigenmodes 
of the structure are now the solution of: 

{ 
2EPAn Wn(x) = d:~" (x), 0 < X< L, 
Wn(O) = d~~~~ (0) = Wn(L) = d~~, (L) = 0. 

The normalization condition is, for instance: 

2Ep 1L !Wn(x)! 2 dx = 1. 

Then a simple calculation gives: 

{ 

An = E~p ( ~) 
4 

W n (X) = An [ ch ( ~) - COS ( T) + 
cotg (LT) (sin(¥) -sh (f.ln]J) ] 

where f.Ln are the solutions of the equation: 

ch f.ln cos f.ln = 1; 

(38) 

(39) 

for a cantilever beam we would have obtained - 1 instead of 1 and the expression 
of Wn would be slightly different. 

It is easy to check that: 

.fi: = K [k(n) +0 (~)] K E R+*,k(n) EN*, (40) 

where 0 ( ~) is equivalent to ~ when n tends to infinity. 
A mechanical structure such that (40) is satisJi.ed is called: "Asym ptoti cally 

harmonic". It is worth noticing that ( 40) allows multiple eigenvalues . But the 
beam does not admit multiple eigenvalues. Hence, the following will not care 
about this possibility, even if the results can be extended to operators such that 
the multiplicity is upper bounded. Then, the basic property which will be used 
in the following is summarized in the next lemma. Tn the formulation given 
hereafter eigenvalues are implicitely assumed to be simpl e. Furthermore, such 
results are very much connected to those of lugha.m (1936). Nevertheless, they 
are explicited briefly in order to simplify the reading of the paper. 

LEMMA 5.1 Let An be a sequence of positive real numbers satisfying 

where: 

- -· - ( 1 \ ! ' 
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and let us set: 

2IT 
Tl =K. 

523 

Then there is a constant c which is independent of n and such that for any 
nand m: 

It cos ( fi:t) sin ( v'>.:t) dtl ~ inf(~,m) 

n # m l.f' cos ( fi:t) cos ( v'>.:t H ~ inf(,~ , m) 

n # m, It sin ( fi:t) sin ( v'>.:tH ~ inf(,:,m) 

Proof. Because the proof is a simple calcul ation we just give t he main lines. 
Thus let us set: 

2ff 
s = Kt, where K = T

1 
. 

Then from: 

A= foT
1 

sin2 
( fi:t) dt = ~1 

- ~ fo
2

n cos [2 (k(n) + 0 (;;)) s] 

we deduce that: 

A = T1 
- ~ f

2

n cos(2k(n)s)cos (2 · o (2_) s) ds 
2 2 }0 n 

+~ la2

n sin (2k(n)s) sin ( 2 · o ( ~) s) ds 
and from standard inequali ties: 

1 cos ( 2 . 0 ( ~) s) _ , 1 ~ ~-~ , \f s; 

lsin(2·o(~) s) l ~~~,\is, 
we obtain the first estimate. The other ones are obtained by a simil ar method. 
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5.1. Analysis of the H.U.M. algorithm 

Because of the similarity with t he previous analysis, t he only new poin t is the 
coercivity of the bilinear form >7. Its definition is the same: 

where <p is now the solution of: 

{ 

2Ep~ + Df-'f = 0, li(x, t) E]O, L[ x ]0, T[ , 
rp(O, t) = %;. (0, t)

8 
= rp( L, t) = %; (L , t), lit E]O, T[, 

rp(x, 0) = c/>1 (x ), %'f (x, 0) = <Pz(x ), \lx E]O, L[. 

Let us assume for instance that (see Section 4): 

Then the solution rp(x, t) can be written: 

rp(x, t) = L a:n(t)Wn(x) 
n2: 1 

with 

o.(t) ~ ( t ¢,(x )W.(x)dx) cos ( v:>:;;t) + 

(IoL <Pz(x)Wn(x)dx) . ( ) 
A sm At. 

Let n 0 be an integer number which will be specified later on. 
Then we split <p (and ¢> ) into two contributions setting: 

¢> = ¢>no + cf>cno' 

and 

{ 

¢>n0 (x) = l: lSnSno (IoL cf>t(x)Wn(x)dx, j~L ¢>z(x)Wn(x)d:r) Wn(;r), 

'Pn0 (X, t) = Z.::l:Sn:Sno O:n(t)Wn(x), 
rp(x, t) = 'Pn0 (x, t) + 'Pcn0 (X, t). 

Let us now consider the expression of >71 (T = T1!), and Lemma 5.1 : 

( 41) 

(42) 

( 43) 
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[ (t ¢I (x)Wn (x) dx) 

2 

+ L (t ¢2(x)W,.(x)dx) ' ] 

Hence, for no > ;
1 

- I, one has (c2 > 0): 

[ ( 
L ) 

2 
1 ( L ) 2] fa ¢1 (x) Wn (x )dx + An fa ¢2 (x) Hfn (:r)d:r . 

Let us now assume that the eigenvectors Wn sati sfy the following property 
which can be checked directly using the explicit expression of H'n given in (39): 

2 (dW )2 

(Wn(a)) + £ 2 dx n (a) 2: c3 > 0, \in . (46) 

As a. matter of fact , the deta il s of t his proof are in Des tuynder, Santi (1999). 
Thus, from (43)-(44) we fin all y obtain (where: c4 > 0): 

).,Tl (¢cno , ¢cno ) 2: C4 ( 11¢Jcnai1~2(JO , L[) + ll¢2cnaii;J-2(JO,J,I) ) · (4 7) 

The inequality (45) proves the coercivity of >71 on the space of ft~n c ti on s of 
£ 2 (]0, L [) x H- 2 (]0, L[) , bu t res tricted to those whi ch are orthogonal (for each 
component) to the n 0 first eigenvectors. 

Let us now use the Cauchy-Schwar tz inequali ty with the bilin ear form ,\T1 

(which is obviously symmetrical and posit ive). ·wi th the terms cPno and cPcna as 
defined in (40) and (41) , one has: 

AT1 
( cPno' cPcno ) ~ _____..:._____+ J [ ,\Tl ( cPno' c/>no) + ,\TI ( cPcno' c/>cno)] · 

no 

Thus, we deduce that: 

Finally, the coereivi ty of ,\T1 is proved as soon as it can be done for the 
fini te dimensional space spanned by the n 0-first eigenmodes for each component 
of¢. The norm is of no importance because we consider a fini te dimensional 
space. Thus, it is sufficient to prove that ,j-\T1 (- , ·) is a. norm on thi s space. 
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Castel and Richard (1988) . We used Bellman Theorem (see for instance Faurre, 
Robin, 1984). The method can be presented as follows. 

Let ¢no = (¢In0 , ¢2no) be a couple of functions in the space spanned by the 
no-first eigenvectors. We set: 

<pn0 (x, t) = _?= [,e~ cos( At)+ ~sin ( At)] TVn(.1.:) 
n-l,no 

where: 

n=l,no 

Then the condition: 

).,T' (¢no' ¢no) = 0 

is equivalent to: 

{ 
<pn0 (a, t) = 0, Vt E [0, T1], 
8~:0 (a,t)=O, VtE[O,T1]. (

49
) 

Expliciting these relations and their derivatives at t = 0, one bas: 

{ 
L n=l,no ,B~A~Wn(a) = 0, Vk = 0,1, 2, .. . etc. (

5
0) 

Ln=l,no ,B~A~ d~~n (a) = 0, Vk = 0,1, 2, ... etc. 

{ 
L n=l,no ,BAA~Wn(a) = 0, Vk = 0,1, 2, ... etc. ( ) 

dW 51 
Ln=l,no fiAA~&(a) = 0, Vk = 0, 1, 2, ... etc. 

Because we already mentioned that: 

(Wn(a))2 + L2 (dWn (a))
2 

> 0, Vn, 
dx 

we can conclude from ( 48)-( 49) that (An -/=- Am if n -/=- m): 

,B~ = ,B~ = 0 \In = 1 , no. (52) 

Hence, ~(-, ·) is a. norm, and fin all y we proved that the bilinear form is 
coercive on the space L2(]0, L[) x H-2(]0, L[). Because it is also continuous on 
HJ (]O,L[) x H - 1(JO ,L[), one can say that the completed space V* (see (31)) 
is between these two. As we did this for t he simply supported beam it can be 
characterized using the zero of t he sine and cosine functions . 

REMARK 5.1 Many various examples can be treated by the strategy ·nsed in this 
section. If the eigenvalues have a multipl-ic-ity larger or eq1wl to two, it becomes 
necessary to add another contro l point at, for ·instance, :r = b -/=- a. Then. the 
coordinate b should be chosen such that N the multipl'icity is two): 

rlat I ~~:'(a), T~~~+ l (b) ' --~- n 
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3(1-v

2
) 

y = - 2- 2-
£ R 

u (x,t) 

L 

2 E is the thickness 

R is the radius 

L is the length 

v is the Poisson coefficient 

annular boundary 
conditions 

X 

Figure 9. An a.xisymmetrica.l and cylindrical shell 
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REMARK 5.2 There exists an e.mct control forT = T 1 but also for any time 
larger than T1 . 

6. Case of an axisymmerical shell 

Let us consider the case of a. cylindrical shell as shown in Fig. 9. T he t ransverse 
displacement is denoted by u(x, t) and is solu tion of: 

{ 

2Ep~ + V ( ~:~ + "(4U) = 

Abn(x)Vl(t) + Bb~(x)V2(t) \f(x, t) E]O, L[x]O, T[ ' 
u(O, t) = ~:~ (0, t) = u(L, t) = ~:~· (L, t) = 0, lit E]O, T[ 

au 
u(x, 0) = uo(x), at (x , 0) = 1t 1 (x), \fx E]O, T[. 

where 1 4 is the so-called Batdorf coefficient of the shell. The eigenvectors are 
easy to characterize. One has: 

TV ( ) {1 . (nllx) 
•' n X = v ;;;£ Sill L 

and the eigenvalues are: 

An = 2:c ( n:~4 + 'Y4) 
The hypothesis of Lemma 5.1 are clearl y satisfied and therefore the H. U .M. 
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7. Conclusion 

The exact controllabili ty of several smar t beam models has bee11 studied in 
this paper. The differences between t hem reside in Lhc boundary conditions. 
The first point is that we showed how combinat ions of several pi ezo-dcvices 
make it possible to simulate a pointwise force or a pointwise bending moment. 
Even a uniformly distribu ted loading can be genera ted. Tn t he ex peri menta I 
manufacturing the smar t beam will be realized by setti ng the va rious piezo 
wafers at different positions through the tbi ckuess of the beam. T his will enable 
avoiding shortcuts. But a Paraday protec ti on is certaiuly recommended in order 
to suppress electromagnetic effect between two different devices. 

Then, the harmonic behaviour of the spec trum of the beam leads to a simpl e 
way of analysis of the H. U .M. method suggested and developed by Lions ( 1988) . 
It is also shown that the importan t featnre is that we only used the asywptotic 
behaviour of the spectrum. In the present situation t he exact H. U .M. control 
has also two main advan tages. F irst of all this control is the one whi ch has 
the minimum L2 (]0, T[) norm. Secondly, certainly a decisive argument. iu favor 
of t he method of J.L. Lions, is that the "Spill over" is com pletely avoided fo r 
a harmonic structure and very much reduced for an asymptot icall y harmonic 
structure. Let us shortly explain why. Let us assume, for instance. that the 
ini t ial condition of the smart beam model is proportional to the eigenvector Wn· 

Tf an optimal control is compu ted in the one dimensional space spanned by the 
single mode Wn, t hen a. part of the init ial euergy is spilled over the other modes 
even if they had no energy at t he initi al time. Let us recall that this op timal 
cont rol is the solution of (18) bu t t he fun ctional J is given by (I 7) where only the 
term with the index n is considered in the summ ation. Nothing guarantees th at 
this optimal cont rol will tend to the H.U.l\11. control when E tends to zero, bu t 
that would be true, as we proved it, if a ll the terms were taken into accoun t in the 
defini tion of J at (17) . Besides, because for an harmoni c structure, t he bilinear 
form >7' is diagonal in the basis of the eigenmodes w, , a ll the coeffi cients of 
the eigenmodes are equal to zero at time T 1 even if only the contribu t ion of the 
n t h mode is considered (the other ones are zero because the bilinear form ).,7', is 
diagonal in the basis of the eigen modes). Thi s pmperty is rea lly very important. 
In the practical implementation of the control procedure, it means th at it. is not 
necessary to identify the coeffi cients of all the other eigenrnodes except for the 
ones (displacement and veloci ty) of Wn. Furthermore, the computation of thi s 
optimal control is analytical (i t is a cl assical exercise) . Beca use onl y "sine" and 
"cosine" fun ct ions are used in the expli cit expression of t he T-T. U .l\11. con trol, tll ey 
can be easily generated using electronic devices in experimental simulations. 

References 

A Nn P. RSON. E .H .. CRAW LEY , E. F . (1989) Piezocemm·ics act11.ation of one an d 



A mathematical analysis of a sma rt-beam 529 

and Astronautics. 
BALAS, M.J. (1982) Trends in large space structures control theory; Fondest 

hopes and wi ldest dreams. I.E.E. A-ut. Conf. A . C. 27, 3, 522-!i% . 
BAYLEY, T., HUBBARD , J.E . (1985) Distributed piezoelectri c polyrner; ac tive 

vibration control of a cantilever beam. Jo1tr. Gu-idance, 8, G, 605-611. 
BAZ, B. (1998) Passive magnetic damping composites. ln : Nato Advanced 

Research Workshop , J. Holnicki and J. Rodcll ar, eels. Birl<ha.user , Berlin . 
CHONG , K .F. (1998) Smart structures research in the U.S. Tn : Nato Advanced 

Research Workshop, J. Holni cki and J. Rodell ar, eels. Birkhi.i.uscr , Berlin. 
DESTUYNDER, PH ., LEGRAI N, I. , CASTEL, L. , RICHARD , N . (J988) T heoret­

ical numerical and experimenta l use of piezoelect ric dev ices for control 
structure interaction . La recherche aerospatiale, ONERA , Frai1 c:e. 

DESTUYNDER, PH ., SAID! , A. (1997) Smart materials and fl ex ible structures. 
Control and Cybernetics , 26 , 2, 1 61-205. 

DESTUYNDER, PH. (1998) On the a ppli cation of piezoelectri c devices for im­
proving the aerodynamics of an airfoil. Nato Advanced Resea·rch Work­
shop, J. Holnicki and J. Rodellar, eels. Birkhauser , Berlin. 

DESTUYN DER, PH. , SANTI , F. (1999) Utilisation d7t calw l.formel po·u.r opt-i­
miser les performances de contmlab·i['ite d 'llne stT7t.Ct1l're eq'll:ipee de pastilles 
piezo- electriques. Rapport interne de recherche, CNAM, Pari s. 

FAURRE, P. ( 1990 ) Cours d 'opt-imisation, Ecole Polyteclm:irru.e. Ecl i tiou El­
lipse, Paris. 

FAURRE, P. , ROBIN, M. (1984) Elements d'automat·iq7t.e. Dunod, Pari s. 
FRIOT, E. ( 1 997) Controle optimal par retroaction de la transparence acov.s­

tiq7te des plaques a l'aide de mater'iaux piezo-electTiqv.es. Ecole CEA EDF 
INRIA Materi aux intelligents et structures adaptatives. Avril 1997, Pole 
Leonard de Vinci, Paris. 

INGHAM , A.E. (1936) Some trigonomet.ri cal inequali ties with appli cat ions to 
the theory of series. Mathemat'ische ZcitschTift, 41, 367-379 . 

HAGOOD , N.W ., VON FLOTOW, A. (1990) Damping of s!.nJ c!.ur<ll vibrations 
with piezoelectri c materi als and pass ive electri cal networks. Jour. Sounds 
and Vibmtions , 146, 2, 243-268. 

HANAGUD, S. , 0BAL, M .W., CALISE, A . .J. ( J987) 0ptim81 vibrat ion coutrol 
by the use of pi ezoceramic. sensors ancl actuators. Amer. Inst . of Aero. 
and Astra., 987-997. 

HARAUX, A., JAFFARD, S . (1991) Pointwise and spectral cont rol of plate vi­
brations. Rev. Mat. IbeToarnericana., 7, 1-23. 

J EZEQUEL, L ., l CHCHOU, M.N. ( J997) Controle adaptatifdesystcm.esparma­
teriaux piezoelectriques. Ecole CEA EDF TNRIA Matcri aux iJJtelli gents 
et structures adapta tives . Avril 1997 , Pole Leonard de Vinci, Pari s. 

KoMORNIK, V. (1 994) Exact controll abi li ty and stabili zation. T he mu lt ipli er 
method . R.M.A., Masson, Pari s . 

LAGNESE, J. E., LIONS, J.L . (1990 ) Jvlodelling analys is and control of thin 



530 P. DESTUYNDER 

LIONS, J.L. (1988) Controla.bi li te exa.cte, per turbations et stabilisation de sys­
temes distribues. R.M.A., 8 et 9, Masson, Paris. 

LIONS, J.L ., MAGENES, E. (1 968) Problemes av.x limites non homo,r;enes et 
applications. Dunod , Paris. 

MAZOYER, TH. (1997) Applicat·ions de la sim1tlation mtmeriqne de r:omposants 
piezoelectriques au controle actif et serni-actif de vibmtions. Ecole CEA 
EDF INRIA Materiaux intelligents et structures adaptatives. Avril 1997, 
Pole Leonard de Vinci, Paris. 

OLGAC, N., JALILI , N . (1 998) On the control of fl ex ibl e beams using delayed 
resonator vibration absorber; Theory and experiments. Nato Advanced 
Research Workshop. In: J. Holnicki and J. Rodellar, eels. Birkh£inser, 
Berlin. 

RUSSEL, D.L. (1997) Jntrod1tction to the formation theor·y of linear elastic 
structures, chapter 1-4. Keynote lecture given at the Ecole CEA EDF 
INRIA Materiaux intelligents et structures adaptatives. Avril 1997, Pole 
Leonard de Vinci, Paris. 

TUCSNAK, M. (1997) Regularity and exact controllability for a beam with piezo­
electric actnators. Ecole CEA EDF JNRIA Materiaux intelligents et struc­
tures adaptatives. Avril 1997, Pole Leonard de Vinci, Paris . 

T UCSNAK, M. (1994) Controllabilite exacte d'une poutre munie d 'act ionneurs 
piezo-electriques. C.R. Acad. Sc·i., Paris, 319, serie J, 697-702. 

TYLIKOWSKI, A. (1998) Simulation examinations of annular pl ates excited by 
piezoelectric actuators. In: Nato Advanced R esearch Workshop, J. Hol­
nicki and J. Rodellar, eds. Birkha.user, Berlin. 

Tzou, H.S., ANDERSON, G.L. (1992) Intelligent Stnt.ctw-al Systems. Kluwer 
Academic Publishers, Boston. 


