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Abstract: This paper is concerned with domain decomposition
in exact controllability of a class of linear second order hyperbolic
systems on one-dimensional graphs in IR® that in particular serve as
descriptive models of the dynamics of various multi-link structures
consisting of one-dimensional elements, such as networks of Timo-
shenko beams in IR®. We first consider a standard unconstrained
optimal control problem in which the cost functional penalizes the
deviation of the final state of the global problem from a given target
state. A convergent domain decomposition for the optimality sys-
tem associated with this problem was recently given by G. Leuger-
ing. This decomposition depends on the penalty parameter. On
each edge of the graph and at each iteration level the local prob-
lem is itself the optimality syvstem associated with an unconstrained
optimal control problem in which the cost functional penalizes the
deviation of the final state of the particular edge from the target
state for that edge. The main purpose of this paper is to show that
at each iteration level and on each edge the local optimality system
converges as the penalty parameter approaches its limit and that
the limit system is a domain decomposition for the problem of norm
minimum exact control to the target state.
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1. Introduction

This paper is concerned with domain decomposition in exact controllability of
a class of linear second order hyperbolic systems on one-dimensional graphs in
R that in particular serve as descriptive models of the dvnamics of various
multi-link structures consisting of one-dimensional elements, such as networks
of Timoshenko beams in IR®. Assume that the system is exactly controllable for
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given target state. The optimality system for this optimal control problem may
be constructed by the Hilbert Uniqueness Method, for example. The optimality
system lives on the graph and so the components of both the forward running
state and the backwards running adjoint state are coupled at the vertices of the
graph. Therefore any discretization of the problem will inevitably lead to a very
large, highly coupled algebraic systems to be solved.

The purpose of domain decomposition in the context of exact controllability
is to approximate the global optimality system by a family of iterative PDI sys-
tems, each of which lives on a single edge of the graph and which, in aggregate,
converge to the solution of the global optimality system. On each edge of the
graph and at each iteration level the corresponding system of equations will be
the optimality system associated with some optimal exact controllability prob-
lem for that particular edge. Thus, by domain decomposition we approximate
the minimum norm control for the global exact controllability problem and the
solution of the global optimality system by solving, in parallel, a family of local
optimality systems on the individual edges of the graph.

To construct an appropriate domain decomposition for the global minimum
norm exact controllability problem we proceed as follows. We consider a stan-
dard unconstrained optimal control problem in which the cost functional penal-
izes the deviation of the final state of the global problem from the target state. A
convergent domain decomposition for the optimality system associated with this
problem was recently given by Leugering (1999). This decomposition depends
of course on the penalty parameter. On each edge of the graph and at each
iteration level the local problem is itself the optimality system associated with
an unconstrained optimal control problem in which the cost functional penalizes
the deviation of the final state of the particular edge from the target state for
that edge. The main purpose of this paper is to show that at each iteration level
and on each edge the local optimality system converges as the penalty parame-
ter approaches its limit and that the limit system is a domain decomposition for
the minimum norm exact control problem as described above. Let us mention
that the results presented here represent an extension to network problems of a
domain decomposition procedure for the computation of the minimum norm ex-
act boundary control in problems of transmission for wave equations, developed
in Lagnese and Leugering (2000). The reader may also consult Lagnese and
Leugering (2000) and Leugering (1999) and their bibliographies for a discussion
of and references to earlier work on domain decomposition in unconstrained, or
possibly control constrained, optimal control problems for special systems on
1-d networks and for partial differential equations with constant coefficients in
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2. Setting the problem

We consider a simple, connected, oriented graph G in IR? having n, vertices
and n, edges, respectively denoted by

V={v,..,vm}, E={e,....en}.

Each edge e; is parameterized by a smooth, simple path =; : [0.(;] — IR®. The
index set 7. of a vertex vy is

T = {i: m(0) = vy, or m(€;) = v}, dy. := |Z|.

If i € T, we define ;. = 1 if m(;) = v and g5, = =1 if m;(0) = vx. We also
set g =0 if i ¢ Ty, Set

Vi = {vp: dp > 1}, Vg =V\Vy.

Thus Vg is the set of simple vertices and V), contains the multiple vertices of the
graph. The vertices Vs are further separated into disjoint subsets V. Vp, Ve
where the subscripts stand for “Neumann,” “Dirichlet,” and “controlled.” For
a vertex v, € Vg we write 2, = {i; }.

Let p > 1. Tor a function r : G — IR?, r; will denote the restriction of r
to e;, that is r; = rom. If i € Z; we write r;(v;) for the evaluation of r; at
vk, that is, r;(vi) equals r;(0) or r;(£,) depending on whether =5, = —1 of +1.
Let K;(z), Ri(z), Si(z), 0 <z < /{;, be px p matrices with smooth entries such
that K; and S; are symmetric on [0, ¢;], S;(x) > 0 and K; is uniformly positive
definite, and define a bilinear form

ne  pf
B(?', ¢) = Z/U [I{‘(T: -+ R,‘?',‘) : (C': =} R,(p,) + S.,_?',-_ : (.-‘;“]t!.i‘.
i=1

where ' = 9/0z.
We set

r
He(0,6) = [ H(0,0:),
I=1

with the product norm, where H*(0. £;) is the standard Sobolev space of order
s on scalar valued functions defined on (0,£;), and introduce Hilbert spaces
(H, | - 1) and (W, || - |lv) as follows.

H={¢: G~ RP|¢; € H*(0,0;)},
ne o

lgl® = Z/ M;o; - ¢; dz,
i=1 Y0

where M;i(z), 0 < o < {;, is symmetric and uniformly positive definite with
smooth entries,

V={peH: ¢; e H(0,6), ¢i,(vc) =0if vy € Vp,
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8113 = B(9,9),

where Cj; is a real, nontrivial ¢x x p matrix of rank g, with necessarily g <
p. (Note that Cir¢;i(vk) = Cjrd;(vk) is a condition only on the components
M ¢i(vk), i € Ti, where TT; is the orthogonal projection onto the orthogonal
complement in IR” of the kernel of Ci;.) For the moment, \/B(o,¢) defines
only a seminorm on V. However, assumptions that guarantee that this is a
norm equivalent to the [T7, H'(0, ¢;) norm will be specified shortly. The space
V is dense and compactly embedded in H. The dual space of V with respect to
‘H is denoted by V*.

Fix an interval {¢ : 0 <t < T'}. We shall consider the variational initial
value problem

?"(t) € Vr (ri ¢)V + B(rl (b) = Z fﬁ.’ * Diy ('”k)a (1)
kv eVe
VoeV, 0<t<T,

r(0) =rg, 7(0)=ry, (2)

where " = 8/0t, (-,-)y denotes the scalar produce in the V* — V duality, and
fr € LQ(O, T;RP). Let Il; denote the orthogonal projection onto the kernel of
Cir and C;}, denote the generalized inverse of Cjy, that is C}} is a p X g matrix
such that

OxCl =L CtCy=Tk,

where I}, is the qx X g identity matrix. Set @Q; = (0,£;) x (0,7). It may be seen
that (1) is the variational form of the boundary value problem

ﬂ’f,".-;‘.,; = [K,(T: - R-;?‘i)]" - R;rf{,(?': + R-;‘:“,:_) - S,"l".,.. (.’L'._ f) = Q,‘,

T‘,‘(‘Uk,t) =0, v €Vp, i=ig,

C,;k?”i(’b‘k,t) = Cjk?‘j (Uk, t}, v € Viy, 1.5 € Iy,

E@'k[ffi('r': + R,'T")i('uk,t) = fk(l‘.)g v € Vo, i = i, (3)
Eik [I{, (?": + Rfr,;)](v;;‘f) =0, v, € Vy,i=1,

sikﬂik[K,-(r:- + R{T‘;)](Uk, f) =0, meVy, i€ I;‘-,

EiEIk Eik(C;;)T[iYi (T‘: F Rt'?“')](tlk,f-) = 0., U € VM'

where the superscript 7" on a matrix denotes transposc.

The system (3) serves as a descriptive model of the dynamics of various
multi-link structures consisting of one-dimensional elements. Examples include
networks of strings in R3, planar networks of Timoshenko beams with rigid or
pinned joints, networks of Timoshenko beams in R? with rigid or pinned or
ball joints and combinations thereof, networks in IR® that combine strings with
Timoshenko beams, planar networks of precurved Timoshenko beams, among
others. The reader is referred to Lagnese, Leugering and Schmidt (1994b) (see
also chanter IV, of Lagnese, Leugering and Schmidt, 1994a), where this system
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It is proved in Lemma 3.1, Chapter 1V, Lagnese, Leugering and Schmidt
(1994a), that if ro € V, 1y € H, [} € LZ([},T; IR?), Yk : v € Ve, and if either
(i) S; is uniformly positive definite on [0,4;],2=1,...,n; or
(1) Vp # 0 and for each vertex in V there is a path in G to a vertex in Vp
along which the corresponding matrices Cj;. are invertible,
then \/B(¢, ¢) defines a norm on V equivalent to the [T, H'(0.(;) norm and
(1), (2) has a unique solution with regularity r € C([0,7]; V), ' € C([0.T]; H),
r € C([0,7];V*). Further, the linear map (ro,r1, {fk}rwrevi.) — (r.r'.7")
is continuous on the indicated spaces. Let us remark that in the case of heam
networks, the invertibility of the matrices Cjy., @ € Zy, at a vertex v is essentially
equivalent to the assumption that the beams are rigidly connected at that vertex.
To simplify the presentation somewhat, we assume throughout this paper
that (ii) above holds, although this is inessential to the main results. In this
case, the bilinear form

L
Bi(¢, ) = / [Ki(¢' + Ri¢) - (¢ + Ri®) + Si¢p- ¢lda:
0

defines a norm on V; := H'(0, ;) equivalent to the H'(0,£;) norm. Set H; :=
HO(0, ¢;) with norm defined by f; M;¢- ¢ dr, and let V! be the dual of V; with
respect to H;. V is a closed subspace of []", V; and if A (resp., A;) is the Riesz
isomorphism of ¥ onto V* (resp., of V; onto V), we have

A¢: (A'lélv"'vAn..én.)s V¢ = (@]----e@ﬂ_.) eV.

Henceforth we shall assume (without loss of generality) that ro = ry = 0.
Set

u= [ L*o,1;R").

kv €Ve

Let f €U, (z0,21) € V x H, let 7 be the solution of (1), (2), and define

J(f)

Il

i =
3 X[ nPdes U@ - ld + @ -2 @)

kv eVer 0

where k > 0. Consider the optimal control problem

inf J5(f) (5)

feld

subject to (1), (2). According to standard arguments, (5) admits a unique
optimal control fOPY which is given by
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where p = {p;}1 is the solution of the final value problem for the adjoint system

M;p; = [K;(p; + Rip)|' — RT Ki(p} + Ripi) — Sipi, (1) € Qi
p,(i}k,ﬂ) =0, wv€ ‘.D‘ To=1k;
kaps(ﬂk.t) Cjkpj(vk,t), v € Vi, i, €14, (7
1;:[}{ —i"Rsz)]('Uk,f-) =0, v €VNnUVe, i=i, )
Eaknak[K (P! +R1px)](ﬂk t)=0, v, €Vy, i,
Y ez, ik (Cik)T [Ki (0 + Ripi)](vk,t) =0, v € Vy

p(T) =r(M(T)—=n) €H, PHT)=—-rA(r(T)—z20)€ V", (8)
The solution of (7) is to be understood in the sense of transposition:

(=5(8), p(0), (B8, v+ 3 / 9e(5)pi (v ) ds.

kv €Ve
= (K(F(T) — 21), 1) + (kA(r(T) — 20), $0)v, (9)
V(¢Us¢l!g) € V x H B ue i S ’1‘!

where ¢ is the unique solution of

(6,9 + B, %) = Tvpeve 9 - Vi (o), VHEV, 0<t < T,
H(T) = ¢o, o(T)= ¢,

Since the map (¢o. @1, 9) — (o(t), é(t). g) is an isomorphism of V x H x U onto
itself, standard arguments give that (9) has a unique solution with regularity

p€ C([0,T);H) x C*([0,T); V*), pi,(vk,-) € L2(0,T;IRP), Yoy € Vi (11)

(10)

The optimality system is therefore

rt) eV, (@) +Bre)+ . pi () i (vr) =0,
kg €Ver

VoeV. 0<t<T, (12)
r(0) =#(0) =0, (13)
together with (9) (or (7), (8)).

Now suppose that for each (zg,21) € V x H the system (1), (2) (with r¢ =
ry = 0) is exactly controllable to (zp, z1) for 7' > Tg. This is of conrse equivalent
to the observability assumption

(b0 @) SCr > Hﬁ"ik(t‘a—-')l|iv_,[umm_:-)- T > T, (14)
kv €Ve:
where ¢ is the solution of (10) with g, = 0. (We remark that for every T > 0
one has the reverse inequality

N7 e e M2 e < Ol b2 e
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see Chapter IV, Lemma. 3.2, Lagnese, Leugering and Schmidt, 1994a). Then as
k — oo the solution r(-; &), p(-; ) of the above optimality system converges in
appropriate spaces to the solution of (12), (13), (7), and

p(T) =po, B(T)=p, (15)
where (po, p1) € H x V* is the solution of
((Pos p1), (=21, 20))Hxv = Z 1Dy, (Vks ')”iz((),T;II{")" (16)
kv €Ver

(-, Y1 xy denoting the inner product in the H x V* — H x V duality. It is
well known that this system is the optimality system for the state constrained
optimal control problem

e
inf Y / | fi2dt (17)
J0O

fEUad kg €Ver
subject to (12), (13), where
Z/{ad = {f EU: T‘(T) = 20, 7"(T) = Ml}. (]8)

The main purpose of this paper is to develop a domain decomposition method
for uncoupling this optimality system. Let us note that although what follows
is presented in a general framework, the observability estimate (14) is known to
hold only for tree graphs in which the root node is in Vp, all of the terminal
nodes are in Vi, and Cy, = I, the p-dimensional identity matrix, at cach vertex
v € V.

The remainder of the paper is organized as follows. In the next section a
domain decomposition due to Leugering (1999) for the optimality system (7),
(8), (12), (13), associated with the penalized cost functional (4), is introduced.
This decomposition is an iterative procedure in which the coupling conditions at
the multiple vertices are replaced by Robin type boundary conditions, thereby
replacing the global optimality system by a sequence of local problems on the
individual elements of the graph. Tt is proved in Leugering (1999) that the
solution of the global optimality system is recovered in the limit of the local
solutions as the number of iterations goes to infinity. FFor each value of the iter-
ation parameter, each local problem is itself the optimality system for a certain
local optimal control problem on an edge of the graph. The main contribution
of this paper is in Sections 4 and 5, where we investigate the limit of the local
iterations (for each fixed iteration parameter) as k — oo and prove that the
limit iteration represents a decomposition for the optimality system associated
with the cost functional (17), that is to say, the local problems obtained in the
limit as k — oo are themselves optimality systems for certain state constrained
local optimal control problems and the solution of the global optimality system
is the limit of the solutions of the local problems as the iteration parameter
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3. The local optimal control problems and domain decom-
position

Consider an edge e; of the graph G joining vertices v; and v, At least one
of these vertices, say vg, belongs to Vjy. For v; there are four possibilities:
v; € Vg, v; € Vi, vj € Vi, v; € Vp. The form of the local optimal control
problem will differ slightly depending on the particular case considered. but the
analysis is the same in all cases. We will therefore consider in detail only the
first possibility, v; € V¢, and leave the minor changes needed to treat the others
to the reader.
Let Ajx, pix be arbitrary L2(0,T;IR”) functions. We introduce the cost
functional
% 0 IR (i 2
Ji(fi, f2) = -f (111" + = f2]%)dt + —/ BCkri(vg, ) + pig|~dt (19)
2 Jo B 28 Jo
K .
+35(Ini(T) - zioll}, + 17:(T) — zalI3,).

where H; = H°(0,¢;) with norm ||p;||+, = (]Gr M;pipida)'2, V; = H'(0.6;),
£ > 0, and zg, z;; are the ith components of zp, z;. Consider the optimal
control problem

inf JE(fi, f2) (20)
f1.f2eL2(0,1;IR")

subject to the variational problem
(Fi, B)v, + Bi(ri, @) = f1 - d(v;) + (fa + Aix) - Cixd(vi), Yo € Vi, (21)
7:(0) = 1:(0) = 0, (22)

where
£
Bi(ri,¢) = [ (Ki(ri + Riri) - (¢ + Ri0) + Siri - o)da.
0

The problem (21), (22) has a unique solution with regularity C([0,7;V;) N
CY([0,T); H;) N C2([0,T); V!). The boundary value problem corresponding to
(21) is

My = [Ki(r) + Rars)] = BTKG(r! + Riri) = S, (3,1) € Qi,
&ij[Ki(r} + Riry)|(vj,t) = fi(t), €55 #0, v; € Ve,
e,—,—c]'[,-k[K,-(r:- + R,‘?"i)]('b'k, t} = 0,

ek (CR)T K (r! + Riri)](vk,t) = falt) + Ak (t). vk € V.

(23)

The local optimal control problem has a unique solution and the optimal controls
are given by
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where p; is the solution of

M;p; = [Ki(p, + Ripi)) — RTK;(p} + Rip;) — Sipi, (v.1) € Q.
€ij [Ki(p§ s Ripi)}(’l/j,f) =), Eij 75 0, v; € Ve

Eiknik[I(i(T); -+ qupi)](vk. t) =10, (25)
ek (CH)T[Ki(p: + Ripi)) (v, t) — BCikri(vi,t) = pin(t), vy € Vay,
pi(T) = 6(Fi(T) — zin), piT) = —rAi(ri(T") — 2i0), (26)

where A; is the Riesz isomorphism of V; onto V. The solution p; of (25), (26)
may be taken in the transposition sense:

((—I'h'(f) i), (6(1), 6w xrt, = ((=pi(T), pi(T)). (6°, 6" ))v, e,
/ [f1(8) - pi(vj, 1) + fa(t) - Cinpi(vg, t)]dt

T
+/ (BCikri(vr,t) + %) - Cino(vg. t)dt,
t
Vfi, fa € L*(0,T;R?), (¢°,¢") € Vix H;, 0<t < T,
where ¢ is the solution of

<¢.’w>vi +Bi(¢~"/}) =fi- ( ) + fo - Cipd(vg), Yo e Vi, t < T,
o(T) = ¢°, (15(T) =¢.

To allow for the possibility that v; belongs to Vp, Viy or to Vi rather than
to Ve, we adjoin to (23), (25) the conditions

ri{v5,t) = pi(v;,t) =0, g5 £ 0, v; € V),
il Ks(rf + Rirg))(v;,t) = 0
€ij[ K (Pl + Ripi)](vj, 1)
{ ei;(CT[Ki(r] + Riry)]
ei;(C3) 7 (K (Pz + Ripi)]

= v‘i_/ # () Uj = ‘/A'V', (27)
(v ) BCi;pi(vj,t) = Aij (t),
( ) = ;’jcl‘j’l“i('t/‘j,f) = /L,j('[), U5 & VM.’

The local optimality system is therefore (23) - (27).

3.1. Domain decomposition

The idea of domain decomposition is to decouple the global optimality system
(7), (8), (12), (13) associated with the penalized cost functional () through an
iterative procedure in which the coupling conditions at the multiple vertices (the
third and last conditions in (3) and (7)) are replaced by the following Robin-type
boundary conditions:

e (CEYT (PP + Rir™ ) (we £) + BCiupl™ (vg, ) = AL,
er(CH)T KoY + Rip! ) (ve, 1) ~ BCur ]+ (v, 1) = p.,
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where 3 > 0, A%, uf; are arbitrarily chosen L*(0,T; IR”) functions and for n > 1

2 .
Boi= 22 S Coup(vit) ~ ACup ot

JEIk
- Zsﬂc( OTUG(Y + Rir)] vk, 1)
JEIJL
+eik(C T[K ) + Rarl))(vk. ). (29)

Wi = ch? (vg,t) + BCHT T vk, 1)
JGIk
—a > el CHIT K ((P2) + Ryp}))(vk. t)
;-"GIL
+€3k T[K (P, +Ril’?}](”ksf)- (3[])
The decomposition expressed in (28) was introduced by Leugering (1999), who
arrived at it through an augmented Lagrangian approach combined with a sad-

dle point iteration. Thus for ¢ = 1,...,n., one considers the sequence of local
problems

Mrn+l [K ((Tﬂ+l) +R??Hl ].i' B.‘I\ (( n+|)r+ R .f”+l} S,i?':H-I,
M;p?“ [K (( n-ll} ;P‘ !-I)].a RTI\ nH)r+ R,]’J"”) S'.*','.J;}H.

(z,t) € Qi (31)
P (wg,t) =57 (5,1) = 0, v; €V, (32)
ek [Ki((rPY + RirPH)))(w,8) = —pP (v.1), (33)
kK0 + RipPt))(vy,8) =0, v; € Ve, h
e[ Ki((rMY) + R ) (vj,t) = 0 (34)
ek [Ki((0F ') + RipP )] (v, t) = 0, v; € Vi, "
kL [K ((rP) + R ) (vg, t) = 0, (35)

S 1]
eIl [K ((PFTY) + RipP™™))(wk, t) = 0, vx € Vi,
ex(CR)TK:((r?™) + Rir?)] (v, 1) + BCik Pt (vist) = AT,
eak(C YT IK(@F) + Ripf™))(vk, t) — BCuwr? ™ (v t) = pull,
v € Vi, (36)

M) = M0y = 0,

iy
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where Zio0 = 2pgO0mMy, T = 2197,
From the discussion in the previous subsection it can be seen that the above
system is the optimality system for the local optimal control problem

inf I (fr f) (38)
fi,.f26L2(0,1;IR")

where (when v; € V)
T fr, o) ]/T(If P L+ [ 13Ckr enn) + Pl
o 5 e =] % 8 Fr—— i ikt Vs *) T g A
i 1, J2 2/, 1 D,.rf '?-ff‘u'h k) gl
K i " . n o 2
+5 (I HT) = zolly, + 177 (D) = zal3e,).

subject to the variational problem

FHL oy, + Bi(r L 0) = fi - 6(v;) + (f2 + M%) - Cird(ur),
Vo € Vi, (39)

ri*1(0) =#71(0) =0, (40)
The following convergence result is proved in Leugering (1999)

THEOREM 3.1 Let {ri,p;}|=, be the solution of the global optimality system
(7), (8), (12), (13), and {r™*', pP* 1}’ be the solutions of the local optimality
systems (31) - (37). Then as n — 00,

(r?,77) = (ri, i) in C([0,T); Vs x Hi), i=1,...,ne,
(o2, 7) = (piy8) i C([0, T H; ¥ V) §= 1yon oWy
P2 (Vk, ) = iy, (vk, ) strongly in L2(0,T IR?), Yuy € Ve.

4, The limit as Kk — ¢

In this section we study the limit as k£ — o0 of the optimality system (31) - (37)
for each fized value of the iteration parameter n. We therefore omit the iteration
index and begin by considering the limit as £ — 0o of the optimality system (23)
- (27) in which it is assumed that the inputs Aig = Nig(-;8), i = pir(-; 5)
depend on k. We consider in detail only the case v; € Ve, that is, the system
(23) - (26), and comment briefly on the other possibilities v; € V. v; € Vp,
v; € Vir. The solution of the optimality system is denoted by r;(-:#), pi(-; k).
The optimal controls are

fE@t) = =pi(vj, tik),  f5(t) == —BCup (v, t: K).

It is assumed that A\ (-; %), pir(-; k) satisfy
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and that the local problem

(f';:i) ’J«’)v,- i Bi (Tia ’f:}) = f1 . w(ﬂj) + .f'.! k C:‘k’U"('*-'k)‘ VC' € vi- (42)
T‘,‘,(U) = T"{ (0) = 0,

fi, f2 € L3(0,T;IRP), is exactly controllable to V; x H; for T' > Ty, which is
equivalent to the observability assumption

T
||(¢fn,¢3-1)|]?,t_xv‘, < C'T/ (|¢i(,;aj,t)[2+ lCr.kvq}l-(-:}k‘tHg)df. (43)
0
for T > Ty, where ¢; is the solution of

(v, + Bilu¥) =0, VY eV,
$i(0) = ¢io € Vi, ¢i(0) = iy € H;.

It is known that for every 7" > 0 the reverse inequality is true:

/ |¢i(vja |:Z * Icak¢;("ks )| )‘H < CT” (510} Qll)”?{ Ea L ('I"I)

We remark that if v; € Vi the first term on the right hand side of (42) is omitted
(i.e., we set f1 = 0), as is the first term in the integral in (43). If v; € V). the
first term on the right hand side of (42) is replaced by f) - C,;¢(v;) and the [irst
term in the integral in (43) by |Ci;¢i(v;,t)|*. 1f v; € Vp the first term on the
right hand side of (42) and the first term in the integral in (43) are dropped and
the space V; is modified to include the requirement that ¥(v;) = 0.
Let fl, fg be such that the corresponding solution r; of (42) satislies

%(T) = Zi1,

and set f5() := fa(-) = Mie(-; ). Then

7i(T) = 20,

TR 15) € TEC, I = I[(Ih(r)'”r—lf}()l \di
1 ¥
?ﬁ

It follows that

|BC;k7i( (g, t) + pi(t; h)] dt.

I, f5, Ciri(vk, k) are bounded in L*(0,T; IR”),
VE(ri(T; k) — zjo) is bounded in V;,
VE((T; k) = zi1) is bounded in H;.

From (41) and the boundedness of f{*, f§ we also have
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Y

Therefore
(ri(T; ), 7(T K)) — (zi0, 2i1) strongly in V; x H,,
and, as k — oo through some subnet of £ > 0,
= fe°,  f¥ — ££° weakly in L2(0,T;1RP),
(ri(-;8)y 7 (-3 8)) = (ri(+),7:(+)) weakly* in L*®(0,T;V; x H,)
and strongly in C([0, T]; H'=¢(0, ;) x (H(0,4;))*).
Cix7i(vk, 3 &) = Cigri(vi, ) strongly in L2(0, T; R?),

where

(Fiy @)v; + Bi(rs, @) = f7° - o(v;) + (f5° + M%) - Cird(vi), Yo € Vi,

7'7;(0) = 7‘1(0) = 05
ri(T) = zi0, 7i(T) = 21,

Set

;;.d ={fi, [ € LQ(O,T; IRP) : the solution of (21), (22)
with Ai = ASP satisfying (49)}.

Then f°, f° € U;d. For any fi. fo € U7 ; we have

Jﬂﬁfﬂ<fﬂff)—l/ZUUW+lMOWﬂf
g N 1 92 ) = Yy ]72_20 1 ,gzv(,

1 7~ :
+—/ |BCikpi(vi, t; K) + pak(t; r)|2dt.
28 Jo

(406)

where p; (- ; &) is the solution of (21), (22) with A = A (-5 &). Since A\jp (-3 5) —
A% strongly in L2(0,7;IRP), it follows that (p;(-;),pi(-; k) — (pi(+). pi(*))

strongly in C([0,T]; Vi x H;), where p; is the solution of

(i, O)v, + Bi(pi, #) = fr - ¢(v;) + (fa + A%) - Cind(vi). Vo € Vi,

pi(0) = pi(0) =0, pi(T) = zi0, pi(T) = za1.

Therefore
; K(fK R 1 " 2 L. 2
limsup Ji*(ff', f3) < 3 (If1 (@)1 + Blf:z(t)l‘)dt
K—00 0

1

oy
I / 1R A M. +) 1 ..0012 14 e N~

(50)

(51)
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On the other hand, as x — oo through a subnet we have
i T
00 2 I 00 2 ; 1 f 002
(I @) + E!fz ()] )dt‘rﬁ |BCikri (v, t) + pi |t
0 0

< liminf (fUT([f;‘(r.)["' + gl f5 (1) ?)dt

+3 fOT |BCikri(vr, t; k) + pik(t; h‘)|2d.t) (
< liminf JE(fF, f5).

53)

Therefore

Ji(f‘loo! 50) S Ji(f]ﬁf?)! V(fl?f?) € u;‘(]! (rj‘l)

where
|
Ji{f]sf’).) = 5/0 (1f|(f)|2 . E|f2(”l2)(ﬂ
1. )
+E/u |BCirpi(vi, t) + ik (1) dt. (55)

and where p; is the solution of (50), (51). It follows that (f7°, f5°) is the element
in U;d that minimizes J;( fy. f2) subject to (50). (51). Therefore. the limits in
(46) hold as k& — oo through the entire net x > 0, and then (52), (53) imply that
I — £ and f§ — f$° strongly in L?(0,T;1R?) as x — 00. As a consequence
(ri(-;8),7:(-58)) = (r:(-),7:()) strongly in C([0,7]:V; x H;) where r; is the
solution of (47)-(49).

Now consider the adjoint state p;(-; #), which we write as p, (- 5) = qi(-:5)+
si(+; k), where ¢;(-; k) differs from p;(-; ) in that

%(T; k) = ¢i(T; %) = 0,
instead of (26), and s;(-; ) differs in that
ei(CH)T[Ki(s} + Risi))(vp, t:5) = 0, v € Viy

instead of the fourth equation in (25). For every 7" > 0 we have the estimate

T
(g (-5 .), i (- ?“r)”!?:{[ﬂ,?‘i;v,xﬂ,) <Cr ﬁ |3Ckri(vx. i) + p (2 ’-'-)szit-
and from the observability assumption (43) we have for 7' > Tj

!!
RSSO ENTAE NGED S "noo PR <1 L S P S S A | L 71
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Therefore
T

(T ) (T Do < Cr [ 11 = )t

J()
+HCik(pi — i) (vk, £ #)[*)dt
s 2
<cr / AFEOR + 17507

+|8Cskri (v, t5 &) + g (¢ H)|2)dt.

Applying this inequality to the difference of solutions corresponding to different
values of k, we obtain

(0i(T;5),2i(T5 K)) = (Pio, pin) strongly in H; x Vf
for some (pio, pi1) € Hi x V. Since also
BCiri(vk, 3 k) + pin (- 8) = BCuwri(vi, +) + pSE(+) strongly in L2(0, T IRP),
it follows that

(pi(-;6), D (-5 8)) = (pi(-), pi () strongly in C([0,T]; H; x V).
where p; is the solution of

M;p; = [Ki(p; + Ripy)l' = R Ki(p} + Ripi) — Sips, (:1) € Qs
quj[I\/i(]); + R,'pi)]('l)j,f) = 0, 5,,j 7& 0, Uy € V(,'. (5())
Ezk”zk[h (P} + Ripi)l(ve. 1) = 0, ’
g (C ) [I\ (pl + R; p,)](’l.’;;.f) == ,30,,,7’/'7-(1!;,.1) = /l,?,f. v € Vg,

pi(T) = pios  pi(T) = pir. (57)
This solution has the additional regularity

pi(vj,+), Cigpi(vg,-) € LQ(O,T; RP).
and we have

0} = = limgase il vy, 8} = =ppluy, ), (58)
jQOO() = —limy e fljcihpi(lt’k«, B H') = '/*/))Cik[)x ('“A:- ) ‘

strongly in L2(0,T;1R?). The solution p; of (56), (57) may be taken in the
transposition sense:

((=pi(8), Pi(1)), (6(1), S vixrt, = ((=pir. pio)s (G0, 1))y, e,
/ [f1(t)  pi(vj, ) + fo(t) - Ciwpi(ve, t))dt

+/ (BCikri(vk, t) + pgy) - Cind(vi. t)dt, (59)
Ji
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where ¢ is the solution of
(&), + Bi(.¥) = f1 - ¥(v;) + fo - Carto(vi), YO € Vi, t < T,
O(T) = ¢o, &(T)=¢r.

If we choose f; [) = —T,'('l.l'_?', J fz() = —3Cri(vg,-) + )\?f. oo = Zins D1 = 21,
then ¢ = r; and (59) implies

i
((pir, —pio)s (zi0s 1)), xn, =f (Ipi (05, )* + B(ICikp, (vk. )
+Cikri vk, )[2) = AP - pi (ks t) + pSE - 7ivg, )]t (GO)
We have proven the following result:

THEOREM 4.1 Suppose that T > Tp. that (43) holds and \jp(-:x) — A,
k(&) — p& strongly in L*(0,T; R”) as x — oo. Let ri(-:x), pi(-; 1) be
the solution of the optimality system (23) - (27) with inputs A (-1 5). pip (-1 8).
Then

(ri(-36), #:(-58)) = (ri(-),7:()) in C([0.T; V; x Hy).

(pi(-18), Bi(-3 ) = (pa(-), Bi()) in C([0, T]; H; x V).

pi(vj, &) = pi(vj,+) strongly in L?(0,T; IR") if v; € V¢,

Cikpi(vk, ;&) = Cikpi(vk, ) strongly in L*(0,T; IR"). vy € Vi,
where r;, p; satisfy (47) - (49), (56) - (58) with (pio, pi1) € H; x Vi the unique
solution of (60). This latter systemn is the optimality system for the state con-
strained optimal control problem

?ﬂiﬂ Ji(f1. f2)
ad

where J; is given by (55).

REMARK 4.1 If v; € VpUVy, the first term in the integral in (60) is not present
and one sets f; = 0 in the definition of the cost functional J;. If v; € Vyr, the
first term in the integral in (60) is replaced by

B(ICijpi(v; t)? + |Cijri(vj, t)|?) — As iy, ) + gy - ri(vg, 1),
and the cost functional J; is given by
(i fo) = f (A1 + 2l + 18Cakputw,t) + s
+Iﬁcijpi(vjs ) + pa; ()%} dt,

where p; is the solution of
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pi(0) = p:(0) = 0,
pi(T) = zio, pi(T) = za1.
REMARK 4.2 Assume that v; € Vi (the other possibilities are handled simi-
larly) and let us comment further on equation (60) for (pio, pi1). which in fact
may be constructed in a manner similar to the Hilbert Uniqueness Method.
This pair is chosen so that the solution of the problem
M;#; = [Ki(r} + Riry)) = RTK; (v} + Riri) — Sir,
M;p; = [Ki(p, + Ripi)] — P’I\ (p + Rip;) — Sipi, (a,t) € Q,,
{ &i;[Ki(r} + Rirs)](vj,t) +p (15,8) =0,
Eij{j(i(p;+Ripi)]( ) = c‘” 750 v; € Ve
{ eikﬂik[K,-(r; +Ri7‘,;)](l}k, ) == ((i])
il ik [Ki(p; + Rip))(vk, 1) = 0, vy € Viy
Elk(c+) K ( + Riry)] (g, t) +!3ch[)i(l’;‘«,f) =A%,
eik(Cip)T [Ki(p) + Ripi))(ve,t) — BCuri(ve,t) = pS, vk € Vi,
7:(0) = 7:(0) =0, pi(T) = pio, 2i(T) = pir
satisfies

ri(T) = zi0, #:(T) = za1. (62)

For arbitrary (pio,pi1) € Vi X H;, (61) has a unique solution (it is the optima-
lity system for an unconstrained LQR problem). This solution may be written
ry =10+ 72, p; = p? + p°, where

Y, p? is the solution corresponding to A% = S =0,

7%, ps° is the solution corresponding to p;g = p;; = 0.
‘or T' > Ty we may define a space F; which is the completion of V; x H; with
respect to the norm

T 1/2
B0, i), = {/ (20, D1 + [CorpCo, O + [Coar (o 1))
0

Indeed, if ||(pio,pi1)|lF, = 0 then clearly »? = 0 and then the observability
assumption (43) gives p;o = p;1 = 0. In fact, it may be shown using (43) and
(44) that F; is the same as the space H; x V" with equivalent norms. In addition,
one verifies that

((pios pin), (~7",?(T), 7'19(T))>H, xv; = [|(pio, Pin )”%‘,'

Let A; denote the canonical isomorphism F; — F* = H;xV,. Thenif (—z;, Z,0) €
F and if we set
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we will have

(M) =40, #(T)=24:.
It follows that (62) will hold if we choose

(Pios pir) = A7 (=21, 2i0) = (=7{°(D), 7°(T))) (63)
It may be checked that (63) is the same as (60).

4.1. Application of the Theorem to the optimality system
We assume that
)\m, ,u?k are independent of k. vg € Vi, i € Iy

Then according to Theorem 4.1 the solution =!(-;x), p!(-;x) of (31) - (37)
corresponding to n = 0 converges as £ — o0 in the manner described in Theorem
4.1 to v}, p!, where r!, p! satisfy (31) - (36) with n = 0 and

r1(0) =7{(0) =0, r}(T)=zo, #}(T) =z,

pi(T) = pior  §i(T) = piy,
and where (pl, pl;) € Hi x V! is the solution of (when v; € Vi)

P
((Pl!l;"P;!o)=(3io|zi1))v.x?-(. =/ﬂ HPE("-‘J‘J)IZ+.-'3(|C:L-P;I(f'k-”|2

+Cikri (v, D7) = Nk - 1} vk 1) + i - v (g, 1)) dt.
In particular,
Cikri (i, 8) = Cixri (-58),  Cirp} (g, 3 8) — Cigpl (-5 8).
vk € Vi, (64)
strongly in L2(0 T; lRp) hence
gk (C [K + RirH](wk, s k) = Al — Cirp! (g, *)
= s,k( T[I{ ((r}) +1?7,)](u,€_ )_

Etk(c )T[K ((p!) + R:P; Nk, 5 8) = pd + Ciar) (vr, )
== e,k(C* YTIK((p}) + Rip})) (v, -)

strongly in L2(0,T;IR?). The convergence expressed in (64) and (65) holds for
every vy € Vi and @ € Iy, It follows from the definitions (29), (30) of AL, ul,
that as Kk — oo

Mi(58) = Z Cikp} (v, ) = Cirp} (v, )

JEIL

——Zejk TG () + Rirh)) vk, )

JCIJ\

(65)
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/L”‘ Y _}”_ZCJ“ Voo C,AI (l*/ )
]EIL

Z eik(Cof) K ((p})" + Ryp))](vk, )
JELy
—s,k(C,t) (K ((92)" + Ripi)) vk, ) 1= pin ()
strongly in L?(0,T;TR"). Tt follows from Theorem 4.1 that as k — o0
(rF( 3R, 72 (5 m) = (rE0), () in C(0,T] Vi x Hy),

(5 8), (5 8)) = (02 (), 97 () in C([0. T); Hy x V),

P2 (vj, ;&) — pi(vj,-) strongly in L*(0,T;IR?), v; € V¢,

Cikp%(vk, S K) — C’,:kp?(vk., - strongly in L2(0, T; R”), v, € Vi,
where 72, p? satisfies (31) - (36) with n = I and

ri(0) = 7} (0)‘0 (1) = zi0, 1(T) = 21,

A(T)=ph, P2T)=1pl,

and where (p%),p?) € H; x V! is the solution of (when v; € Vi)

(P2, —P%), (zi0, i1 )) vt =/ (197 (v, )% + B(ICikp} (v 1)

+HCinr (v, )[?) = Ak - 97 (vrs t) + iy - 7 (v, 1)]dt.
One may now proceed inductively to obtain the following result.
THEOREM 4.2 Assume that 9, A% € L*(0,T; IR”) are independent of k., Yk :

vp € Vi, i € Iy, and let rH1(; ) PE(R), mo=0.1,..., be the solution of
the optimality system (31) - (87). Then as k — o0,

(P w), P (5 8)) = (P () A (D) in ([0, T Vi x M),
iR P (5 R) = @B () i O([0, T) Hi x V),
p;“r]( Uy i ) — p:'“(v 2 strongly in L*(0,T; IR). v; € Ve,
Curpi (vr, 3 &) = Cip? (vn, ) strongly in L*(0,T5 IR?). vy € Vi,
where v pPY satisfies (31) - (36) with AL, w3 given by (29) and (30). and

) = i 0) =0, #PTHT) = ng, FPTUT) =,

() ] )

g T =9, B T = Y

and where (plstt, pit!) € My x Vi is the solution of (when v; € V)

(66)

2P
((P?lH _p?0+l):(z'i0,3il)>v,><7t =/ [|P?H('Uj=f)|2
0

+L3’(101kp7+ o, OF + 1Cur ™ (v, 1))
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5. Convergence

[n this section it is proved that the aggregate of local solutions {r/'*', pr 17
of (31) - (36), (66), (67), whclc AW . are given by (29) and (30), mn\f('lncs as
n — oo to the solution {r;, p;}', of the global optimality svstem (9). (12) - (16)

for the global, state constrained optimal control problem (17) Hlll)|(‘(l to (12),
(13). The proof follows along the lme@ of the proof of Theorem 5.1 of Leugering
(1999). We first observe that {r;,p;}!", satisfy the local houndan conditions
(36) at the multiple nodes and ther efore

=gt gy, =gt —p, 020,
satisfy the Jocal problems (31) - (36) with Al uli. replaced by

D= A% = Nig, il = B — ik,

where
2
Nt 1= 22 37 Coupy(okyt) = BCuupi(vns)
JGIl
i Z E_‘,lk( F[K_-;'(T'; + R;r;)|(ve. t) + E.‘k(C.EL)T[KJ(?‘: + Riry)|(vk. t),

JEIL

2
Hik = —f Z Cjk?.j ('Uk,f,) + IUC,';.—T‘,' ('t.’k.f-)
JE€L

2 57 e (CRTIES (0 + Ry (ks 0) + ()T U0, + Bap) (e, )
€I
In addition,

F0) = 7R 0) = 77HT) = 7 (1) =

1 1 1 1 71-|- 1 |
T =0k = pio=0%"y P2 1)-—.0..' =i v FRT,

where ¢, := ¢, (po.p1) is the solution of (16),

pioi=poom € Hi, pia =A[(A ') om] € V).

The solution #7+1, prt!

(f?‘“,f;‘;‘} € C([0,T); Vi x H;),
@t i) e ([0, T); Hy x V),
P (v5, ), Cixdt (g, +) € L2(0,T;IRP), v; € Vi, vy € V.

has the regularity

and satisfies (31) - (36) in the following sense:
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where

—ppH (v5,1) - 9(vy)
(ﬂClA[?"‘H('Uh t)
<737+ ¢>('Uj»vk’t’): _(/301177:”1( £} = )‘"(
(UCMP?H(PA )—/\’ ( )) 05(“!-)-
~(BCu it (ve, t) — A (¢

depending on whether (v; € Ve, v € Vi), (v v € Vi), or (v; € Vp U
VN, vk € Vi), respectively,

(=B, B (1)), (6(E), 0 (D) wxrs = (=BT B, (G0 01 ))v e,

i T
‘/ (BBt (vg, vy t)dt + / (BCik " (v t) + jif}) - Cindlun, t)dt, — (69)
¢ t
0 S t< Tv thf? € LQ(OT IR'TJ)7 (Q)Oq)l) € Vi X Hi-,
where

A@) B (v t) + fot) - it (vp. 1),
(F 57 Y vy, vk, t) = § F1(8) - Cyt 1( t) + fa(t) - Carf ™' (0. 1),
fo(t) - Copptt! (llb,f),

again depending on whether (v; € Ve, v € Vi), (v, v € Vi), or (v; €
Vb U Vy, v € Var), respectively, and where ¢ is the solution of

(6, 0)v, + Bi($,%) = (F.0)(vy, v, 1), Vo € Vi

(1) = ¢o, ¢(T) = ¢r.

The following convergence result will be proven:

THEOREM 5.1 Assume that T' > Ty and the observability assumptions (14) and
(43) hold. Then as n — oo,

— 0 weakly* in L=(0,T7;V; x H,),
— 0 weakly* in L*=(0,T;H; x V}),
— 0 weakly in H; x V},

— 0 strongly in L*(0,T; IR?).

(f?’ tht
(ﬁ:laf’?,t
(ﬁ;novﬁzn]
f)?; (5,

Rt s Nt Sem?

Proof. We sum (68) and (69) over i = 1,...,n, and obtain

Ne

S by, + Bt o)+ Y B (0 o, (1) (70)

1=1 v €V

L N NRCA i N = NN T i Y = 0 M. 2N
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Te

Z((_P‘E::l(t)ﬁﬁ?‘l-l(t))! (Qﬁi(t)a éi,t(t)))v;x‘?{i
i=1

e

— Z((_ﬁﬂﬂ rﬁ:’}}—kl)) (¢i0) (ﬁﬂ ))V" X H;

i=

1
T T
- /fij'g}?f](vj,t)dt— % Zj gik (t) - Carp 1 (vg, t) dt
A :

JvieVe kg €V i€y, 4

T
+ Y > ]: (BCukF™+ (v, t) + AR (1)) - Cirdi (v, t) dit. (71)

kv EVar €Ty
Vfi;» gix € L*(0,T;IRP), (¢i0, $ir) € Vi x Hi.

Now set £ =0 in (71) and choose ¢;0 = ¢ = 0,

£ () = =05 (v5,°), v; € Ve,
gik(') = —)Bcikﬁ?—i—l ('Uks ) 4> ;?k('). v € Vg,

Then ¢; = 77! and we obtain

T . T .
0= > fﬂ B i t)Pde+ D Z/U [BUCHD (v, ) (72)

Jwvi€Ve kv eV i€y
+|Cikff“(-uk,t)|2) - ";?k(t) . C‘t-kﬁ;f"“(-vk,t) + pl(t) - Cik,f;"“(vk,t)] dt.
From (36) we have
_:\?k(t)_' CarBp ' (v, 8) = g5 |(CR)TIK((FFHYY + Ry ™)) (vn, 1) 2
— B — SICuBr (v, 1),
A% () - Cirp ™ (v, 1) = 55 |(CR)T (K (@) + Ripy ™)) (g, )2
— a5 |An @)1 — §|CafT* (uk, B) 2.

Therefore (72) implies

i
0=2 |52 (vy, ) [2dt
5 2
, P

jwieVe

T
£ 3 Z/ [BC#B;* (ok, )2 + |Cir7H (v, 1))
kv €Vag i€Zy ¥ 0
+5(CHTHE) + B, O

H(CHR)TIEG((FTY + R 7))ok, O)1) — j%-(I)h\?‘k(f)l2 + a5 @)1%)] dt,
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which we write as

Ertl=—2 ¥ / v, t)|2dt

JiujeVe

Z 3 / 2+ ()2 dt, (73)

k v EVar i€LE

where

Entl = Z Z/ [,5(|C:k}‘3’:l+l(vk’t)iz+|Ctk?~”+1(w"‘t)|2)

kv €Var 1€y,

+%9( T IK((BEHY + Rapp ")) ok, 2)

+H(CR)TIK(FFYY + R ™)) (wr, 1)[?)] dt.

We proceed to caleulate the double sum on the right hand side of (73). To
simplify the notation we set

D{kﬂ' = E‘ik(C:;:)TI{g(T‘; + Ri?‘i)-
Then
=2 S o BC 7
ih =g > Cjk} (k. 1) — BCukD} (v, )
i€l

2 <n
- > D7 (v, t) + DigF (v, £).

JE€ET,
‘We have
2 _ 45 2 2
Ae®F = =1 D Ciad}wr, )2 + B(Cunp (vi, 1)
k €Lk
4 b | §
dﬁ tkpz (ﬂks * Z thpj (ﬂk: f')
JEI
_| > Dy vk, )P + | Digi (vr )2 — —D,k;"(w t): Y DT (g, t)
k JET, JET)
8,8 i 43 - i
> Y Cubt(ve,t) - > Djsi) (b‘k,t)-i—— T vk, t) + > Cnly (vg, 1)
k jez, €T JjET,
+E?-cik;s3(uk, + 3 Gk (ks t) = 2CukT (0, ) - Da (v, )
k JEIx
There.fore

Z > ER@P= ) Z(,@ic\skp:(“k £ + —Ii’lv:f?('”k-f)l2 (74)

k v €V 1€Tx kv eV i€y
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—2C;kp7 (vk, t) 'Dsk?:?(vk't))-

Similarly,
HOMD WAV W (I
kivp €Var 1€k kv €Var i€y

+2Cik3=?{'ﬂk't) . Dikﬁ?(vk, f))
From (73) - (75) we obtain

.
pi=pr-2 Y [ 0
15

jiv;€Ve

+2 Z Z/ (ka? D;.pt _C'Hrf)? g

ki €V i€y

—iD,ap (o, t)* (75)

Next, use (71) with n in place of n+ 1, t = 0 and ¢; = 7.

local boundary conditions (36) we obtain

Z / 177 (05, 1) 2l

+ Z Z/ Cir7i' » Dirp; — CikPy; - Dig7}' ) (v, t) dt.

kv €V i€T,

It now follows that

T
Entl — pn _ 9 Z ~n+| | & |pn (L‘ | )[2) dt

1!
JiwEVe

and then, by iteration, that

n+1

Ertl=E' 4> 3 / 15 (v;.1)|2dt,

=1 jivieVe:

(76)

D7 )(vg, t) dt.

By utilizing the

(77)

where Y7 ag (a1 + any1)/2 + 3j—5 ae. We deduce from (77) that

% / 1, (v )Pt < o0,

=1 jw;eVe
{E™}22_, is bounded.
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and, on a subsequence,

CitP (v, ) — 758, Cul (vp.-) — g weakly in L2(0,T: IR?),

DMk, ) — le, D pt (v, -) — PL weakly in L2(0,7; IR”) (79)

for some rzk,pm, P € L%*0,T;IRP). In fact, it may be proved as in
Leugering (1999) tha,t the convergence in (79) is through the entire sequence.
Therefore we may pass to the limit in (36) to obtain

RS Z 55— 8% — Z i (80)

JETy JGIL
o d o
— B = — Z ¥ . BFE — Z B+ PR, (81)
JGIL JEI;

By summing (80) and (81) over ¢ € Z; we find that

PO __ poo
%Gﬁl:k ik T ZiGI;\. ik T 0’ (82)

whby =00 o)
Tah = 4. Zjelk_"jk’ PR = dL Zjej.k Pjk:

from the third and fourth of which follows that

Tk =Tsk  Dik = Pk Vi J € L. (83)

The boundedness of {E™} together with (78) implies that

(7, 71y Tige) is bounded in C([0,T];V; x H; x V).

Write p = ¢* 4 37, where ¢* has homogeneous boundary data and 57(T) =
§7,(T) = 0. The boundednesq of {E™} implies that (3},357,) is bounded in
C([0,T); Vi x H;) and, together with the observability assumption (43), that
(pi, P& ) is bounded in H; x V¥, Hence (¢, ¢%,) is bounded in C'([0, T]; H, x V})
and therefore so is (p}, pf';). It follows that, on a subsequence,

(F7,72y) = (Fay Fig) weakly* in L®(0,7;V; x H;),

IR

(P&, py) — (pi, piy) weakly* in L0, T H,; x Vi),
1 Vs y 1/
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Upon passing to the limit in (68) and (69) and utilizing (82) and (83), it is seen
that 7;, p; is a solution (in an appropriate weak sense) of the system

Mi‘f"i'tt_ = [I(I(f: “+ R,;T‘:i)]" - R?I\’t (?_:; + B.,'_T‘:t') — STy,

{ M;pi e = [Ki(p: + Ripi)|' — RT K (; + Ripi) — Sipi, (2,t) € Qi
Fi(vk,t) = Pi(vg, t) =0, v € Vp,

{ £:;[Ki (7, + Rify)|(v;,t) = 0,
&i;[Ki(P; + Ripi))(vj, t) =0, ;5 #0, v; € Ve UV,
il [Ki (7 + Rify))(vk, t) = 0,

{ kIl [KG (P; + Ripi)] (v, t) = 0, vi € Vi,

{ e (C)T[K:(7] + Rifi))(vx, t) = R,
eik(CL )T [K:i(#: + Ripi))(ve, t) = P, vk € Vi,

7(0) =7:(0) =0, H(T) = pio, p;(T) = Par.

From (82) and (83) it follows that {7;}}'-, is the solution of the global system (3)
with fr = 0 and vanishing initial data. Therefore7; =0in Q;, i =1,..., . On

the other hand, it is also seen that {p;}!', is a solution of the global system (7)
and satisfies p;, (vj,+) = 0 for every j : v; € V. The observability assumption

(14) then implies that pg = pjy =01f T > Ty, hence p; =0in Q;, i = 1,..., 1.
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