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Abstract: The stabilization problem for a structural acoustic
model is considered. The model under consideration is that of acous-
tic cavity (wave equation) coupled at the interface with a flexible
wall (plate equation) which accounts for thermal effects. It is shown
that frictional, nonlinear damping applied at the boundary of the
acoustic chamber provides the uniform decay rates for the energy
function of the overall structure. The main novelty of this result,
with respect to the literature, is that the uniform stability for the
model is established without assuming any mechanical damping the
wall.

Keywords: structural acoustic model, uniform stabilization,
thermoelastic plates, nonlinear boundary damping.

1. Introduction
1.1. Description of the problem

This paper deals with stability /stabilizability analysis of structural acoustic
problems. Physical motivation for studying these kinds of problems comes from
a variety of engineering applications arising in the context of controlling the
pressure in a helicopter’s cabin or in reducing the noise in an acoustic cav-
ity which is generated by an exterior field. There is a substantial amount of
engineering literature dealing with practical aspects of structural acoustic prob-
lems, see Crawley and de Luis (1987), Fuller, Gibbs and Silcox (1990). The
formulation of structural acoustic models as a wave and plate/beam equation
coupled at the interface goes back to Morse and Ingard (1968), Beale (1976),
and references therein. More recently, structural acoustic models have attracted
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considerable attention, particularly in the context of numerical computations
and experimental studies, Banks, Silcox and Smith (1993), Banks, Smith and
Wang (1995). The mathematical control theory of these problems has started
to develop quickly in response to the great degree of interest.

A structural acoustic interaction is typically modeled by a coupled system of
equations which deseribes (i) the acoustic medium in a given three dimensional
chamber (wave equation), and (ii) the structure (plate equation) representing
a flexible (vibrating) wall of the chamber. The coupling between the wave
equation (acoustic chamber) and plate equation (wall) provides the essential
mechanism for control of the system. The properties of the system depend on the
type of coupling and of the type of the model used for a wall. For example, if the
wall is assumed structurally damped (e.g. Kelvin-Voight damping), the equation
governing its behavior is parabolic in nature, Avalos and Lasiecka (1996). The
coupling of the parabolic (wall) and hyperbolic (wave) equations yields a system
whose dynamics are related to an analytic semigroup, Avalos and Lasiecka (1996,
1997a). In this case, the plate equation alone is exponentially stable and the
entire coupled structure is strongly stable, but not uniformly stable, Avalos and
Lasiecka (1998b). In order to secure uniform stability, an additional damping
mechanism must be introduced on the wave component. In fact, it was shown
in Avalos (1996) and Fahroo and Wang (1999) that the structurally damped
walls of an acoustic chamber with viscous boundary damping acting on the
boundary of the acoustic medium yields exponential stability for the overall
system. This result was later extended to include a nonlinear boundary damping
by Avalos and Lasiecka (1997a). A much more difficult situation is when there
is no structural damping on the wall (the situation most often met in practical
applications). In this case, there is no natural “damping” mechanism either on
the wall or in the acoustic chamber. In order to obtain uniform decay rates,
one needs to introduce damping in both components of the structure. The
most challenging case is that of boundary damping (rather than the interior
damping). In Camurdan and Triggiani (1997) and Camurdan (1999), it was
shown that a “hyperbolic” structural acoustic model with boundary damping in
the acoustic medium and boundary damping via full hinged boundary conditions
applied to the plate model is uniformly stable. In Lasiecka (1999) a similar result
was shown to hold with nonlinear damping applied to an edge of the plate and
affecting the shears only (rather than shears and moments). A common feature
of all these results is that, in the case of absence of structural damping, a
damping mechanism in the acoustic medium and on the wall is needed.

The main novelty of our contribution is that we do not assume any source
of structural (e.g. Kelvin-Voight type) damping on the wall nor we require
any dissipation on the boundary of the wall. Thus, the wall is mechanically
undamped. Our aim is to show that thermal effects and boundary dissipation
affecting the acoustic medium only uniformly stabilize the overall system. To
accomplish this goal we shall use differential multipliers developed in the context
of stability analysis for the wave equation, Lasiecka (1999), together with the
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Figure 1. Cross-section of the domain Q.

operator multiplier method introduced in Avalos and Lasiecka (1997b, 1998a).
The newly developed “sharp” trace theory developed for the wave and plate
equations plays a critical role in our arguments.

1.2. The PDE model

The structural acoustic interaction considered in this paper is governed by a
coupled system of equations which describes (i) the acoustic medium in a given
three dimensional chamber (wave equation) and (ii) the thermal structure (plate
equation) representing a flexible (vibrating) wall of the chamber. The interac-
tion between the two media takes place on the boundary (interface) between the
acoustic chamber and the structure (flexible wall). This leads to a mathematical
model of a coupled wave equation with thermoelastic plate equation.

Let 2 € R3 be an open bounded domain with sufficiently smooth (say C?)
boundary I and v denote an outward unit normal vector to I'. The boundary
I" consists of three connected regions Iy, 'y ,and I'y - see Fig. (1). The pressure
in the chamber (acoustic medium) is defined on a spatial domain €, while the
displacement of the flexible walls is defined on I'y. Ty represents a “hard™ wall,
which is assumed C? and convex (this is to say that the corresponding level
set function is C? and convex), while 'y allows for the possibility of having
“frictional” walls subject to some damping. This damping is represented by
absorbing Neumann boundary conditions. We do not assume any geometric
restrictions imposed on I'y.

In addition to classical notation used for Sobolev's spaces we shall use the
following:
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with inner product
(w1, w2) H1(ro) = (Wi wa)L2(rg) +1(Vwr, V) p2(ry)  Ywr,wy € HY(To) (1)

The PDE model considered consists of the wave equation in the variable z
(where the quantity pz; is the acoustic pressure, and p is the density of the fluid)

24 =c*Az in Qx (0, 00)

7] d
B 0 on Ty x(0.00); 5 +dz=—g(z) on Ty x (0,00):
5= —g(z) +wy on I'gx (0,00) (2)

2(0) =z € H'(Q),  2(0) =z € L*(Q);

and the elastic equation representing the displacement of the wall « subject to
thermal effects (see, e.g., Lagnese, 1989):

Wy — YAWy + A2w = —A8 — pz,

— A0 = Ay } on Tox (0,00) (3)

We shall consider various boundary conditions associated with the plate model.
Let v denote an outward unit normal to d1I'y and 7 denote tangential direction.

Case 1 — hinged BC

w = Aw = 0;0 = 0; on 9y x (0, 00) (4)
Case 2 — clamped BC
w = aa_w 0;0 =0; on ATy x (0,00) (5)

Case 3 — free BC

Aw+(1—,u)Blw—9 0
2 Aw+ (1 - p)Byw — YWy + A 29=0 on g x (0.00) (6)
B9 a0=0

The constant A is assumed positive. The boundary conditions given for a free
plate involve the following boundary operators By, Ba

By =2vmunD? , - viD}, —viD?,
=5 [ - v3)D2 , + (D}, — D )] +lw

where 7 = (v1,12). With the model (2), (3) we associate appropriate initial
conditions
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where in the clamped and hinged case the initial conditions are subject to ap-
propriate compatibility conditions on the boundary. This is to say that wy =
0,wy; =0 on dT'y. In the clamped case we also require that %1{)0 =0; on dT.

Here @ is the temperature, ¢ is the speed of sound as usual and p represents
back pressure acting upon the wall. The function g, representing a potential
damping (friction) is assumed continuous, monotone increasing and zero at the
origin. The constant v accounts for rotational forces and here is taken to be
small and non-negative.

It should be noted that the presence of the parameter 4 in equation (3)
changes the character of the dynamics. Indeed, the “uncoupled” thermoelastic
plate is of hyperbolic type when v > 0, Lasiecka and Triggiani (1999) and of
analytic type when v = 0 (Liu and Renardy, 1995, for the clamped-hinged case,
and Lasiecka and Triggiani, 1999, for the free case).

Our goal is to show that the energy of the entire system given by (2), (3),
decays to zero at a uniform rate. For convenience, and without loss of generality,
we choose ¢ = p = 1. Also, in what follows, we assume that the constants [, d
are positive. This assumption is not essential to mathematical analysis of the
problem, but it guarantees that the constants functions are properly damped.
In the absence of this restriction, one needs either to formulate the result on an
appropriate quotient space or to account for other (lower order) terms in the
equation which prevent the value zero from being a member of the spectrum of
the corresponding linear elliptic operator.

1.3. Main results
We begin with a preliminary result stating that the system is well-posed.

THEOREM 1.1 (Well-posedness) Let Q be a bounded open domain in R® with
boundary I' as previously described. For all initial data yo = |20, 21, wo, w1, 0] €
Y . subject to compatibility conditions on the boundary, where

Y = H'(Q) x L*(Q) x H3(I'g) x H}(T'o) x L*(To)

the solution y(t) = [z, z, w,wy, 0] of the model (2). (3) exists in C([0,00);Y)
and is unique.

Proof. Since the problem under consideration is maximal dissipative, the re-
sult of Theorem 1.1 follows from the general theory of m-dissipative operators,
Barbu (1976), and also Lasiecka (1994) where, more specifically, problems with
nonlinear monotone boundary conditions are considered. | |

In order to formulate our main result on stability, we introduce some no-
tation. We define the energy functional associated with the model and given
by

 fa\ ™ 2y + T fa\ ™ Fan r' [ AETaN l M 13 1— 127 e rimn
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Ey(t) = / |Vz[2dQ +d | 22dls+ / 02 dly + a(w, w) (9
Q I'a 4

where in the clamped or hinged case, a(w.z) = ’10 AwAzdly and for the free
case

a(w,z) = [Wa,2 22,5 + Wy,yZy,y + PW2,02y,y + P04 Zrs
o

+  2(l = pwg yzgyldl +1 wzddly
JiMg
It is well known that a(w, w) is topologically equivalent to H?(I'y) norm, Lagnese
(1989). We also introduce the function h(s) which is assumed concave, strictly

increasing, zero at the origin and such that the following inequalities are satis-
fied:

h(sg(s)) > 8%+ |g(s)I* , for |s| < I

Such a function can be easily constructed in view of the monotonicity assump-
tion imposed on g, Lasiecka and Tataru (1993).
Our main result is the following

THEOREM 1.2 (Uniform stability) Let Q be a bounded open domain in R® with
boundary I as previously described. Assume that the nonlinear function g sa-
tisfies:

ms® < g(s)s < Ms%; |s| > 1 (10)

Then. with the constant v > 0, every weak solution y(t) = [z. 2z, w, w,0]"
of (2), (3) decays uniformly. This is to say. the following estinmate holds

Ey(t) S Cysy(t/To—1)); t2To (1)

where the real variable function s.(t) converges to zero as t — oo and satisfies
the following ordinary differential equation

d i :
570+ ay(s,(1) =0, 5,(0) = E5(0) (12)
The (nonlinear), monotone increasing function q.(s) is determined entirely from
the behavior at the origin of the nonlincar function g and it is gien by the
following algorithm.

¢ = I-(I+p,)" (13)
py = (I+ho) () (14)
ho = h(-/mes(0,T) x T'oUI;) (15)

Moreover, in the clamped and hinged case the quantities describing the decay
rates can he made indevendent of v > 0. For the free case. the constants (hence
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REMARK 1.1 Note that the decay rates established in Theorem 1.2 can be com-
puted explicitly by solving the nonlincar ODE system (12). once the behavior
of g(s) at the origin is specified. If the nonlinear function g is bounded from
below by a linear function. then it can be shown that the decay rates predicted by
Theorem 1.2 are exponential. This is to say that there ewist positive constants
C,w, possibly depending on E(0) and such that

E.(t) < Ce™E,,, fort>0.

If. instead, this function has a polynomial growth (resp. exponcentially decaying)
at the origin, than the decay rates arc algebraic (resp. logarithmic). This can
be verified by solving the ODE problem (12) cxplicitly (sce Lasiecka and Tataru,
1993). In the clamped and hinged case, the decay rates do not depend on .

REMARK 1.2 Both clamped and hinged boundary conditions imposcd on the
plate model lead to decay rates which are uniform in ~. In the case of free
boundary conditions, the analysis is more complex and it relies critically on the
hyperbolicity property of the related Kirchoff operator. This fact prevents from
having the decay rates independent of ~v. Howcver, the decay rates are still valid
in the limit case v = 0. but their derivation rests on the analyticity property of
the thermal component of the plate.

REMARK 1.3 Other types of boundary conditions can be imposed on I'y. In fact,
one can replace the Neumann boundary conditions by the Dirichlet boundary
conditions, in which case the required geometric condition becomes (w —xg) v <
0 onT'y. Note that we do not assume any geometric conditions wmposed on
dissipative portion of the boundary 1'g U Ty, This is in contrast with most of
the literature on boundary stabilization of (uncoupled) wave or plale cquations,
Komornik (1994). Lagnese (1989).

The remainder of this paper is devoted to the proof of Theorem 1.2. Here,
we note that the main technical difficulties of the problem under study deal
with the following features:

1. The plate equation has neither structural damping nor mechanical damp-

ing, which would have induced strong stability properties for the plate.
This is in contrast with all other works available in the literature.

2. The PDE equation describing the plate model does not satisfy the Lopatin-
ski condition in the case of free boundary conditions. As a consequence,
the natural regularity of boundary traces (critical to the analysis) ave
much weaker and require more delicate arguments.

3. The value of v in the plate model under consideration char.es the char-
acter of dynamics (from analytic to hyperbolic). This forces a completely
different treatment of the problem (mainly at the level of treating the
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4. The coupling between the medium and the wall, represented by a “trace
operator”, induces a “strong” coupling (rather than “weak” coupling) in
the structure. This effect produces uncontrolled “energy level” terms in
the estimates — a notoriously difficult problem in the context of control-
lability and stabilization. Handling of this requires a special rescaling
argument.

2. Preliminaries

We shall adopt the following notation:

lwls.0 = lwlg); (v,v)a E—/ uvdS)
)

The same notation will be used with € replaced by I', ete. For s < 0, the
negative Sobolev’s spaces are defined as duals (pivotals) to H™*(€) with respect
to Lo(Q) topology.

Our goal is to show the uniform stability of the coupled PDE system (2),
(3). We begin with a preliminary energy identity which illustrates the fact that
the system is dissipative.

ProrosITION 2.1 With respect to the system of equations (2). (3). the following
energy equality holds for allT >0, s < T':

T T T
By(s) = By(T)+2 [ (glen),zredt+2 [ (96420 [ 0B ar,dt (10
L J 8

5

where, we recall, the ‘energy’ E..(t) is defined by

E\(t) = |Veliqg+dlzldr, +|zlha + lwddr, +vIVwrldr,
+ a(w(t),w(t) + |6[5 r, (17)

Proof. By applying the multipliers z; on the wave equation, w, on the elastic
equation, € on the thermal equation, and then integrating by parts, we obtain
the above equality for smooth solutions. A density argument allows us to extend
this inequality to all solutions of finite energy. |

Our basic strategy is to obtain first the estimates for the thermoelastic equa-
tions on I'g and then, for the wave equation defined on €. A subtle point of
the analysis is the treatment of the coupling and appropriate combination of
the two estimates. Notice that the coupling introduces terms of the order of the
energy.

We also note that our analysis differentiates the cases v > 0 and v = 0.
When v = 0 then the thermoelastic system represents an analytic semigroup,
Liu and Renardy (1995), Lasiecka and Triggiani (1998). Instead, if v > 0,
the dynamics of the thermoelastic plate are hyperbolic-like with finite speed
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of the overall system are very different for the cases of v = 0 and v > 0. The
difference between the two types of dynamics will play a critical role throughout
the analysis, particularly at the level of treating trace regularity and the coupling
between the two systems. Since several estimates presented in the course of
the proof will require “sharp” information on the traces of solutions to plate
equation, we find it convenient to collect these results below.

We consider the Kirchoff plate

—yAwy +A?w=f on Tyx (0,7)
Aw+ (1 - p)Biw = g,
2Z&w—i— (1 = p)Baw —'}-wij—-'u'” =gy on 9y x (0,7T) (18)
v v '

LEMMA 2.1 Lasiecka and Triggiani (1999). With reference to (18). v > 0 and
taking f = 0, g2 = 0 the following regularity holds:

s
lw(t)3,re + lwe ()] py < Crr [Iw( )3, + [ (0 )ﬁ.rﬁfo 113 2,0r, f”-] (19)

We note that standard regularity results for Kirchoff plate require g, €
HY2((0,T) x 9T'y), rather than the 1/2 derivative in space only. The proof of
Lemma 2.1, based on microlocal analysis arguments, is given in Lasiecka and
Triggiani (1999).

LEMMA 2.2 With reference to (18) with v > 0 and taking g, = g2 = 0, the
following regularity holds: there exists a positive constant p > 0 such that

T i
] |w|§/2+p,3rgdt’ < Cry [lu*(ﬁ)ig‘r.} + 1“%(0”%,1"0 + / |f|“11+p,r0 ‘“] (20)
0 Jo

The value of p depends on the geometry I'g. However, it is always positive.

We note that the standard regularity result gives the above inequality with
p=0.
Proof. The result of Lemma 2.2 with [ = 0 was proved in Avalos and Lasiecka
(1997b) (see formula (2.70)). The estimate due to the additional forcing term f
is obtained by a standard semigroup argument applied to the Kirchofl plate.

Our next result deals with the case of v = 0, where the linear thermoelastic
system represents an analytic semigroup. In this case, we have higher interior
regularity of the solutions

LEMMA 2.3 With reference to (18) with f = A8 + f1. v = 0 and taking g, =
—0,gy = —%ﬂ, where @ is the solution to the heat equation in (3), we obtain
the faﬂowz'ng reqularity:

/ [lw®)3.r, + lwe®) 1, ] dt < CrEL(0) +Cr / |F1l21 pyctt (21)
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Proof. It was shown in Lasiecka and Triggiani (1998) that the thermoelastic

system with free boundary conditions generates an analytic semigroup e on

the space
X = H*(Q) x L2(R) x Ly(®)
The domain of the generator A is given by

D(A) = {(w,w,0) € HY(Q) x H*(Q) x H*(Q):

subject to the boundary conditions in(3)}
By a standard interpolation result
D(AY?), D(A*/?) c H3(Q) x H'(Q) x H'(©) (22)

Since it is also known, see Lasiccka and Triggiani (1998). that A is dissipative
and invertible, analyticity of e'* implies, Bensoussan, Da Prato, Delfour and
Mitter (1992) the following estimates

5
] |4 2et e} dt < Criafk
0

/T
0

Writing the solution to thermoelastic system as:

w(t) w(0) € _ 0
A2 wy(t) | =eMAa'? | w,(0) +/ AeM =) 4~V2 | 1(5) | ds
0(t) a(0) “0 0

2

#
dt < Cp / |f13dt
X J0

t
A/ A9 f(5)ds
0

we obtain

2
T| w
[ wy dt S
v 0 D(AY/2)
T w(0) T 0 ?
/ A2eAt |y (0) +/ AN =)4=V2 | fi(s) || ds
0 6(0) L 0 5
i 0 1
< CrE.(0)+Cr f A2 f dt (23)
JO {]
5
Application of the inclusion in (22) completes the proof. 5|

Finally, we recall another trace result valid for the Kirchoff plate with
clamped boundary conditions which takes advantage of the fact that the clamped
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LEMMA 2.4 Let w be a solution of (3) with clamped boundary conditions and
~ > 0. Then, the following trace reqularity takes place:

T
/u [Awg o, dt <

T
C/ [l + lwild v, +ANweli g, + 107 r, + 1221, ] dt
0
+C[Ew(0) + Ew o (T))
where the constants C do not depend on ~.

The proof of this Lemma is given in Avalos and Lasiecka (1997h, 1998a) for the
equation without a z; term. However, an identical argument can be applied to
account for the z; term,

3. Plate equation
Let the plate energy E, - (t) be defined as

Euq(t) = [w() [ 2(rg) + V0 (O] 2y + alw(t),w(t)) + 005 -, (24)
LEMMA 3.1 With respect to the thermocelastic component of the model (3). with
v > 0, the following inequality holds: ¥ e > 0. 3C. 1, such that

T
/ [a(w, w) + w3, +¥IVwlg ] dE < €Cy [Euny(0) + Ev s (1)) (25)
S0

T
+C?‘.‘r,f-/ (16 ro + 12112 1,0] dt + Crs clot(w, )
0

where lot(w,0) = Suthe[u,’."]“'“:’(t) 2 o dt + 10(1)[2, arol- The constants C. do
not depend on v in the case of hinged and clamped boundary conditions. In the
case of free boundary conditions, however. the constants C., may blow up with
v — 0. However, if v = 0. then the constant Cy = C.—o is well defined.

Proof. We introduce some notation. Let Apu = —Au; D(Ap) = H*(Iy) x
H{ (o). Let the Dirichlet map D be defined as follows:

D : Ly(0Tg) — La(I'g); ADg=01iny: Dg =g on dl'y

and let o denote a restriction (trace) operator to dl'y. With the above notation
one can write
A = Af-— &D’)Ug = &(6 — D",(}U) = —."ln(ﬂ — D"}'l|0}l
in H)(Q).0 € H'(Q)
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We apply the technique introduced in Avalos and Lasiecka (1997b, 1998a),
that is, we multiply the first equation in (3) by AL_}]B and integrate from 0 to T’
to obtain

T
f (’w“ — vAwy, + Aw + Al + z, ABIQ)LE(;‘O) dt = 0. (27)
0

We deal with each part separately:

(1) Using integration by parts, substitution of boundary conditions, the se-
cond equation of (3), formulas in (26) give (detailed computations are in Avalos
and Lasiecka, 1998a, pp. 171-172).

Ve e, >0, 3C, C,,, such that

Y (wee = AW, AG0) oy dt = Jo [0, + 1Vl ) ]
< |w:|o rol A5 0lo,ro |5 + 7 Vwiloro VAL 0o, ro[,, ;
4+ fo [lwelo,ro[0lo,re + ¥IVwiloro | VEoro] dt + Efg lwl3 o
\ +f0 [Cl0f o + Ca(Dyow, w) ]dia+ fo | Tozi Dyow dTodt
< E1C|E ,~(0) + Ey+(T)]a —r—CfD P ] rudl‘
+Ef [lwef3 1, + ’yleio ro) dt + Ce ]0 0% 1,
L te fo |'w|2‘ndt -+ CJU a(Dyow, w)dt + Co, ¢, SUPye(o,7] |9(t)|"11/2+£:‘|.“

In the last step we used

lwelo,re | AL 8lo,re + ¥ Vwelo,ro[ VAL Olo,r, <
er[[weld ry +7IVweld ) + Ce, VAR 03 1,
S €1 [lwl[(z}.[‘g + Titht%‘rgl ¥ Cf-l 162 IHIZ— 1/2+4e2,Tn

Note that neither of the constants C' and C. depend on T or 7.
(2) Another integration by parts and application of boundary conditions
gives that in the case of clamped or hinged boundary conditions

T
fo (A%, A5'6) 1o r,, dt =

T a T
—-/ (Aw,ax‘iaw) dt+f a(w, A'0)dt (29)
0 arg 0

and in the case of free boundary conditions

T
/0 (8%, 45'6) 1o r,, dt =

T ¥ 1
f {n a l—]n\ T [ o Aa=1lm.n o Tk

(28)



Uniform stability in structural acoustic systems 569

By applying the estimate in Lemma 2.4 in order to eliminate the trace of
Aw for the clamped case, we obtain the following inequality valid in the clamped
and hinged case

i
/0 (A%w, A5'0) 1o r, dt <
T
e [ wlar + ud, + 21Vl + 2P,
T
+elBuy(0)+ a0+ Ce | 1R (31)
Instead, in the free case we simply have

i T
/ (A%w, 450) 1o r dtge/ |wla,rydt + C. }9|]r0dt (32)
0 JO

0

(3) Application of the standard Green’s formula gives:

T
/(A(),A,—;a) dt<C/ 1017 dt (33)
0

(4) Finally, for the last term in (27):

/T (20 AD0) g,

C/ A lrodz‘—i—C/ j0|lro dt (34)

>
dt < / |2¢|=1.10 | AR Ol1 1 dt <

Combining equations (28) - (34) results in the following:

ProposITION 3.1 For any T > 0 and €. €;, 1+ = 1,2 small enough there exist
positive constants C > 0,C, C,,, independent of v such that

7
(L= 25)/ [l’wtlzo,ru '1'7W’U"t|2o,r0 } dt <
’ T
€1C [Ey (0} + Ey (T)] + Ce / 1013 -, dt
I T ’
+C/ A dt+€/0 lwl3 -, dt

+C / (Dyow, w)dt + Ce, ., sup [0, 0, . (35)
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The main technical issue to be tackled now is the estimate for the term
fﬂ (DAow,w)dt in (35) in the case of free boundary conditions. Notice that
this term disappears in the hinged or clamped case. In the case of [ree bound-
ary conditions, this estimate will introduce dependence of the constants on the
parameter v. Moreover, the cases v > 0 and 7 = 0 need to be treated separately.

ProPoSITION 3.2

o Let v > 0. Ve, eq > 0. there exist constants Cer~,Cey ey Such that the
following estimates are valid in the case of free bmmdaﬁ; conditions

T
/ a(Dyow, w)dt < e/ Iwig rodt + Cr,5, ‘f (EA Ty + 1013 roldt
0 0

+EUCT"¥ ’hu'([}) + CT."P'_-EJDIOt(w? )
e Let y=0. Ve >0 3Cr, such that

T T
/ a(Dyow,w)dt < eCrE.(0) + C'r/ !z.-_li,.ru dt + Cp c lot(w,f) (36)
0 0

Proof. Follows through several steps. We write w = w;, + wy. where w,
corresponds to the plate equation (3) with the zero initial data and no forcing
team. The basic semigroup estimates and “sharp” regularity result in Lemma
2.1 applied to the Kirchoff plate give:

IA

:
O+ e, < Cry [ [I80R e, + a5, + 108 ar, ]

< Cry [ (0 + o] (37)

where in the last step we use the boundary conditions satisfied by the # variable
as well as the trace theorem.

Therefore, by regularity of the Dirichlet map D € L(H*2(8Ty) — H?(Tg))
and trace theory

T
/0 a(Dyowy, wy)dt < Cf lwn3,r,dt < Cr, r/ (163 5, + |2e/21 ,) dt - (38)

which gives the right estimate for the first component w;. As for the second
component ws, we notice that ws satisfies the homogeneous Kirchoff plate equa-
tion with nonzero initial data and no forcing term. Thus, the “sharp” regularity
result of Lemma 2.2 applies and gives

T
/0 |w2i§;2+p,arudt < CT.-r [[W(U)l%,r‘o + |wr.(0)|?).ro] (39)

Hence, by using trace theory and regularity of the Dirichlet map, moment
inequality and the estimate in (39) we obtain:

/T /T
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T .
‘Se/ﬂ |w2]§,rodt+0f/0 |”’?|§/2.arnf“

T T T
= E/O |w213,1‘0dt+50/0 [w2|§;‘2+p‘(‘)|1udt+c{s‘0£ l"'“‘zﬁ;‘z.nlu.df (40)

But, by (38),

% 2
/u lwal3 5,0, dt

IA

T T T
P v 2
C/ l'wg|f‘r0 < C/ |'1t?||f‘ro + / |lwlf
0 0 0

”
C-,r-,')-/ [|9|?_,~(, + ]zii%],ro](ﬂf+C'rfr)f{w,9) (41)
J0

IA

Hence
- i
/ G(D’mw'z,wg)df < E/ ]11.'2|§_ru dt + EnC’r‘.rE.r_“-(U)
0 0
T
+Craalot(,0) + Cripe [ 105, +
Jo

Combining (38) and (42) and taking ez < 1/4 gives the desired result in Propo-
sition 3.2 for v > 0.

The argument for v = 0 is as follows. We apply the result of Lemma 2.3 and
the interpolation inequality

T T T T
/ a(Dypw,w)dt < C/ lw|3 rdt < e/ |w|§_rndt+Cc/ lw|? r,dt
0 0 Jo Jo
T
< eCrE.(0)+ ECTj |;_'¢|2i,,rU + Cilot(w, ) (42)
0
This gives the desired inequality for the case of v = 0. |

From Propositions 3.1 and 3.2 after taking ep, e small enough so that egCrp -,
eCr < €1C, we obtain

PROPOSITION 3.3 Let v > 0. Ve, €1 3 Cy e, such that
= 7
/ [, +21Velr,] de < @G, B (0) + By (D] +¢ [ ok,
0 Jo
#
+CT,e.61 / [|9|?‘I‘g + lz"-lz—],r‘ﬂ]{i{ + Cr,y.e,e4 Lot (w, 6)
0

Moreover, the constants C., do not depend on ~y in the hinged and clamped cases.

Continuation of the proof of Lemma 3.1. Next, we multiply the same equation
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we obtain

T
T ’
(we, w)p, |8+ (Yo, V), |1~ Un [l v, + 1Vl r,] fzr]

4 T T g g
= —/ a(w,w)dt +/ (V0,Vw)r, dt —/ (8, =——w)ar,dt —/ (z¢w)r, dt
0 0 0 v 0

In the case of clamped or hinged boundary conditions, the only difference in the
expression is that the boundary integral |, o 10 %'u:)ar" does not appear. Taking
norms and using the trace theorem gives

/D " o)t <

T
T .
(we, w)r, |?; + 'y(V'wt,Vw)l-u]U - /ﬂ [|?Uti?*o + ”:'|V'U-‘a||%o] dt

T
[
0

<e€ [|u"fo|g,]'n T 1'Jivuj-'-|ll-;,|‘n] |;}]“

+

T 9
[}(9, Ew)arodi

T 1
/ (V6, Vuo)y, dt‘ %
0

Noticing that

; T
6r- T (V*w;, VTIJ)LQ([\O)|U

‘(wtvw)Lz(ro]
+C. [|w|%,r‘o + 'T|vw|%.l"u] |g < f[Eu‘.‘r(U) 2 Eﬂ'.‘r(T” + Cclot(w, )

we obtain
T i . ‘
|| a0 < 0 By (©) + B (@] +C1 [ [, + 21V, ]
0 0
" T _
+s/ lwl3 ., dt+Cs/ [1012 ., + l2e|21 1] dt + Ceolot(w, 8)
0 0
Thus, we have that Ve, e; > 0 there exist suitable constants C¢ ¢, > 0 such that

T
= s)/ a(w, w) dt < €1C [Ewry(0) + Euey(T)] +
0
T
CI/O [[w:%.ro +’Y|Vwa|c23.ro] dt

T
+Ce / (162 1y + 12¢/21 1, ] dt + Ce,lot(w,0) (43)
0

If the € of equations (43) and the one of Proposition 3.3 is small enough,
these equations can be combined to produce the inequality

T
lr i z (] . = " T B = ~ P N i
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T
+Cr,,e / (161310 + |2t21,r,) dt] + Cr,, Lot (w, 0) (44)
0
which is the desired result in Lemma 3.1 for v > 0. 3
4. Wave equation
Let E.(t) be the energy defined by
E.(t) = 25,0 + V20,0 + dlz(O)f5 r, (45)

LEMMA 4.1 Consider the wave equation with boundary conditions

zw=A0z in Q
%z=0 on Iy, %&-Jr-dz:-—g(zf_) on Iy (46)

3:2=—g(zt) +wy on To;
Then, for any o < T'/2 there exist suitable constants C, possibly depending on

a, such that

T—a
f E,(8)dt < C[Es(a) + E(T - a)]
(&3 T )
'|'CT/D (12e[2 rour, + 19(20) & rour, + [weld r,] dt + Criot(z) (47)

-
where lot(z) < Cj (121350 + |2e|2s0)dt; 6 > 0.
0

Proof. The following trace regularity valid for the wave equation is necessary
for the proof.
Consider the wave equation

zy=A0Az in Qx(0,7) (48)
%z =0 on T x(0,7)
LEMMA 4.2 Let z be a solution to ({8) with the interior reqularity

2 € C(0,T; H'(@)) N C(0,T; Lz(@);

and the following boundary regularity

é%z,zt € Ly((0,T) x TgUTy)
Let T > 0 be arbitrary and let o be an arbitrary small constant such that
a< % Then we have that:

[ |12l <a ]2

1

2
I EA | S— .’ dt + I(:H::\]
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We note that the above inequality does not follow from the standard trace the-
ory and the assumed interior regularity. This is an independent trace regularity
result. The proof of this Lemma follows from Lemma 7.1 in Lasiecka and Trig-
giani (1992).

As the first step in proving Lemma 4.1, we use the multipliers method with
the multipliers h - Vz and zdiv h, where h(x) is an appropriately constructed
vector field. In the special case when Ty is flat, one takes a classical radial
vector field h(z) = (2 — zo) with z¢g € I';. However, in a more general convex
case, a more complicated construction is necessary. This construction is based
on Lemma 4.13 in Tataru (1999). Indeed, following Tataru (1999), we define
a C? convex function {(z), which is supported in the neighborhood of T'; and
enjoys the following properties:

T = {z € R?%l(z) = 0); 3—3!}! =1lonly

Due to the convexity and regularity of I';, such a function [(2) can be always
constructed. Let zg be a point in R?® such that (z —a0) - v < 0 on I';. Since I'y
is convex, such a point (outside §) can always be found. Next, define

h(z) = (z — zg) — V[l(2)(z — 20) * ve(2)] + M(2)VI(2); A > 0

where v, denotes an extension of normal derivative v into a collar neighborhood
of the boundary I'y. One easily verifies that due to the relations ﬁ{ =1l =
0; on I'y, we have that h-v = 0 on I[';. Moreover, selecting an appropriately
large constant A, an appropriately small neighborhood of the boundary I'y, and
recalling the convexity of [, we obtain that J(h) > 0, where J(h) denotes the
Jacobian of the vector field h. Indeed, to establish this it is enough to show
that J(h) > 0 on I'y. Straightforward computations yield
J(h) = I = J(V)(xz = zp) - ve + LI(V((z — 20) - ve)) = VIV ((z — x0) - Ve)
(VIVE((z — zo) - ve)]” + AVIVTL + MJ(VI) (49)
The above formula, when restricted to I'y gives
J(h) =1 = J(V)(z - z0) - v — VIVT ((z — 20) - ve) — [VIVT ((z — z0) - ve)]”
+AVIVTI (50)
Hence, for all points on I'; and vector u € R® we have
(J(h)u,u)ps = |u|? = (J(VD)u,u)gs(z — 20) - v — 2V - uV ((z — 20) - Ve) -
+A(VI - u)? (51)
Due to convexity of [ and the condition (x — z¢) -» < 0 on I'y, we obtain

(TJu,uhps > Juf? + (VL )? = elul? = (Vw9 (@ — o) - we)l?

1

™~



ot
=
31

Uniform stability in structural acoustic systems

where in the last step we have selected A > -|V((x — 2¢) - v.)|*. This proves
the strict positivity of the Jacobian J(h) and leads to the construction of a field
h such that h-v =0o0n T and J(h) > 0 in Q.

With the above construction, we apply standard, by now, multiplier calcu-
lations which lead to:

T
/ E.(t)dt < C|E.(s) + E+(T)]+

-
C/ / [22 + ¢%(20) + 22| d(To U T) (53)
& Ul
T Tlg |2
—1—0/ |we |3 rﬂdt—%C/ —z dt + Cplot(z)
5 . s 197 lorour,

The term which needs to be further estimated is the last boundary term in
(53), which involves tangential derivatives not controlled by the energy norms.
To accomplish this we shall use the result of Lemma 4.2. This gives

/T—a a 2

Ez dt <
era [|zt|[21,r'2uro - ]Ea‘b‘r:upﬂldr + Crlot(z)

0,guUlz

T
< CT/ [1zeld,rouro + 19(20) 6, rp0r, + lweld r,] dt + Clot(2) (54)
0

Next we apply (53) with s replaced by a and T replaced by T' — «, and use
classical trace theory to absorb [ . z°dx

T—a
/ E.(t)dt < C[E.(a) + Eo(T — a)]

7
< CT/ [z l%,r‘gul‘o +19(20) 13 rp0r + i’"-'t%,ro] dt + Cr lot(z) (55)
0

which provides the desired conclusion in Lemma 4.1, ||

5. Coupled system

For the final analysis, we will combine the energy estimates obtained for the plate
and wave equations, and then absorb the lower terms by means of a standard
compactness/uniqueness argument.

PROPOSITION 5.1 Let T > 0 be sufficiently large. The following estimate holds
Jor the solution to (2) and (3).

T T
/ E,(t)dt + E(T) < Cv,’f‘jﬂ (1617 r, + |3£|{2),1‘ﬂ1_11"2 +19(20) 13 rour,) dt
0
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where the constants C, 1 do not depend on « for the hinged and clamped boun-
dary conditions.

Proof. We shall combine equations (25) and (47). We multiply (25) by a
suitably large constant Ay (possibly depending on T) and add the result to
(47). This gives:
T T—o
AT/ Eu.n(t]dt+/- E.(t)dt <
0 o
€CyAT[Ey 4(0) + Ew(T)] + C|E.a + E.(T - a))

T
+AT CT,‘T,E / [lgl?,]‘o =+ Eztl?-l.ro] dt
0

T

+0r [ (oo + 1960 puor, + lufi, ] d

+Ar Cr,y,¢ lot(w, 0) + Cr lot(2) (57)
We take A7 > 2Cr, which allows us to eliminate the term with |w,[3 , from
the right hand side of inequality in (57) . We also select small € = ¢(T"), so that
eC,Ar < C. This gives:

7 T—a
/ Ey~(t)dt + / E.(t)dt <
0 o
Cy [Ewn(0) + Ewy(T) + Ez(a) + Ex(T — o]

T
"f'C-r.T/; (Ieﬁ,l‘o i Izt|g,ruur2 + |ze|2 ry + 19(20) 13 rour, ) dt
+Cr1[lot(w, 8) + lot(2)] (58)

Hence

T—a
| B0d <0y B0) + B (@) + Byfa) + By(T - a)

T
+CmT/O (1612 1y + |2el3 rour, + 19(z0) 18 rour,) @t
+Crylot(w, ) + lot(z)] (59)

Here, we recall, the energy E.(t) is defined as in (17). Our next step is to
use dissipativity of the energy to eliminate terms involving a. By using the
energy identity in Proposition 2.1 and the simple inequality

( /: ) /T 1) E,(t)dt < 2aE, (0)

we obtain

fﬂl-\)-d"\'l’h(/\\.n{m\‘-u
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T
CT'.#A (|9ﬁ‘l‘g * 1zf|g,l‘ou1‘2 =+ ]9(31)’%,1‘@!"_,) dt
+Cr[lot(w, 8) + lot(z)] (60)

Once more using the energy relation gives that for t <T

T
Ey(t) 2 Ey(T) - Cr» /n (161 £, + 1202 rour, + lo(ee)Bour,) dt

Hence

.
TE(T) < CLEL(T) + C’r,-r/(] (wlf.ru te ]3t|(2),ruurz + |g(2g)||2~0urg) 4
+Cr~[lot(w, ) + lot(z)] oy

Combining (61), (60), and taking 7" > C, leads to the desired conclusion in
Proposition 5.1. )

Our next step is to eliminate the lower order terms from the inequality
in Proposition 5.1. This is done via the usual compactness and uniqueness
argument.

PROPOSITION 5.2 Let T be sufficiently large. With respect to the coupled PDE
system (2), (3) there exists a constant Cp > 0 such that

T
lot(w,0) + lot(z) < CT/ (1218, rours + 1902013 rour, + 101 ) dt - (62)
0

cr is independent of v in the hinged and clamped cases.

Proof. The conclusion follows by a contradiction from the usual compactness
and uniqueness argument. Since this argument is standard, we shall not report
all the details. We shall only point out the main steps. The compactness of
lot(w, 8) + lot(z), with respect to topology induced by the energy E., 7 > 0,
follows from the compact embeddings

H?¢(T'o) x H'™¢(I'g) x H'~¢(0) x H~*(N)
C H?3(Tg) x H'(Tg) x H'(Q) x Ly(9); ¢>0

As for the uniqueness part, we deal with the following overdetermined sys-
tem:

Zy =il\E on [0,7] x

# = on [0,7] x ToU Ty

L:=0 on [0,7] x Iy (63)
2z — qp, on [0,T] x Ty
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Wy — YAy + A% =0 on [0,T] x [y
0=0; Aw; =0 on [0,T] x I'y
AW+ (1= p)Byw =0 on [0,T] x 8Ty

%A'ﬁ-} + (1 = ﬂ)B‘z'l:'} = ’}’5%‘15“_ =0 on [U,T] X 81‘0
{2(0), 2:(0), w(0), w,(0),0(0)} = {Zo, 21, Wo. 01,60} € Y

Our aim is to show that the above overdetermined system admits only the zero
solution. Since we also have

Wege = YAy — A2, = 0,0n [0,T] x Tg

we obtain
éz‘lﬁg =0 on [0, x Iy
6=0 on [0,7T] x Ty

Ay + (1= p)By, =0  on [0,7] x 9Ty
Z Ay + (1 — p)Boy =0 on [0,7] x 9y

Therefore, by the uniqueness of solutions to elliptic equations, w; = 0, and
by going back to the wave equation we obtain

2y = AZ on [0,T] x Q

Z =0 on [0,T] x F'gUT,

%z =0 on [0,7] x Iy (64)
@ =0 on [0,7] x T’y

5-2+dZ=0 on [0,7] x T

Holmgren’s Theorem implies z; = 0. This reduces the entire problem to the
following static equations

A%H=0 on [0,T] x I'y

=0 on [0,T] x T (65)
Aw+ (1 —p)Biw =0 on [0,7] x 8Ty

Z AW+ (1 — p)By =0 on [0,T] x 9Ty

Az=0 on [0,7] x Q

L27=0 on [0,T] x 1 U Ty (66)
aiu'z“-’rd*:(] on [0,T] x I'

By the uniqueness of elliptic equations (note that {,d > 0) we conclude that
Z =1 =60 =0 as desired. =

Completion of the proof of Theorem 1.2

Combining the results of Propositions 5.1 and Proposition 5.2, we obtain

rT



Uniform stability in structural acoustic systems 579

where the constants Cr do not depend on -+ in the clamped and hinged case.
By using the assumptions imposed on the nonlinear function g and splitting
the region of integration into two: z; < 1 and z > 1 we also obtain:

T
/ﬂ (122 cours + 19(0)Rrour, + 02r,] dt <

T
Crommll +hal [ [ lg(a)seds + 16, la (68)
0 I'gUlN2

where we have used Jensen’s inequality. Combining (67) and (68) and recalling
monotonicity of hy we obtain:

T
E.(T) < CroymntI + ho] /U /] loG)zude + 0 )t
= Cry,mM I + hol[E4(0) — E(T))] (69)

where in the last step we have used the energy relation. Since [I + ho] is invert-
ible, this gives

[+ hol ™ (C5 7m,m Ex(T)) < E4(0) — E4(T) (70)
and
p(E"r (1)) + E":(T) < E,(0)

with p defined by the Theorem 1.2. The final conclusion of Theorem 1.2 follows
now from application of Lemma 3.1 in Lasiecka and Tataru (1993).
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