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Abstract: The stabiliza.tion problem for a. structural acoustic 
model is considered. The model under consideration is that of acous­
tic cavity (wave equation) coupled at the interface with a. flexible 
wall (plate equation) which accounts for thermal effects. It is shown 
that frictional, nonlinear damping applied at the boundary of the 
acoustic chamber provides the uniform decay rates for the energy 
function of the overall structure. The main novelty of this result, 
with respect to the literature, is that the uniform stability for the 
model is established without assuming any mechanical damping the 
wall. 
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1. Introduction 

1.1. Description of the problem 

This paper deals with stability /stabiliza.bility analysis of structural acoustic 
problems. Physical motivation for studying these kinds of problems comes from 
a. variety of engineering applications arising in the context of controlling the 
pressure in a helicopter's cabin or in reducing the noise in an acoustic cav­
ity which is generated by an exterior field. There is a substantial amount of 
engineering literature dealing with practical aspects of structural acoustic prob­
lems, see Crawley and de Luis (1987), Fuller, Gibbs and Sileox (1990). The 
formulation of structural acoustic models as a wave and plate/beam equation 
coupled at the interface goes back to Morse and Ingard (1968), BeaJe (1 976), 
and references therein. More recently, structural acoustic models have attracted 

1 Research partially supported by a NSF Grant DMS-9504822 and Army Research Grant 
ARO: DAAH04-96-1-0059. 
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considerable attention, particularly in the context of numerical computations 
and experimental studies, Banks, Silcox and Smith (1993), Banks, Smith and 
Wang (1995). The mathematical control theory of these problems has started 
to develop quickly in response to the great degree of interest. 

A structural acoustic interaction is typically modeled by a coupled system of 
equations which describes (i) the acoustic medium in a given three dimensional 
chamber (wave equation), and (ii) the structure (plate equation) representing 
a flexible (vibrating) wall of the chamber. The coupling between the wave 
equation (acoustic chamber) and plate equation (wall) provides the essential 
mechanism for control of the system. The properties of the system depend on the 
type of coupling and of the type of the model used for a wall. For example, if the 
wall is assumed structurally damped (e.g. Kelvin-Voight damping), the equation 
governing its behavior is parabolic in nature, Avalos and Lasiecka (1 996). The 
coupling of the parabolic (wall) and hyperbolic (wave) equations yields a system 
whose dynamics are related to an analytic semigroup, Avalos and Lasiecka (1996, 
1997a). In this case, the plate equation alone is exponentia.lly stable and the 
entire coupled structure is strongly stable, but not uniformly stable, A valos and 
Lasiecka (1998b). In order to secure uniform stability, an additional damping 
mechanism must be introduced on the wave component. In fact, it was shown 
in Avalos (1996) and Fa.hroo and Wang (1 999) that the structm-ally damped 
walls of an acoustic chamber with viscous boundary damping acting on the 
boundary of the acoustic medium yields exponential stability for the overall 
system. This result was later extended to include a nonlinear boundary damping 
by Avalos and Lasiecka (1997a). A much more difficult situation is when there 
is no structural damping on the wall (the situation most often met in practical 
applications). In this case, there is no natural "damping" mechanism either on 
the wa.ll or in the acoustic chamber. In order to obtain uniform decay rates, 
one needs to introduce damping in both components of the structure. The 
most challenging case is that of boundary clamping (rather than the interior 
damping). In Camurdan and Triggia.ni (1997) and Ca.murdan (1 999), it was 
shown that a "hyperbolic" structural acoustic model with boundaTy damping in 
the acoustic medium and boundary damping via full hinged boundary conditions 
applied to the plate model is uniformly stable. In Lasiecka (1999) a similar result 
wa.s shown to hold with nonlineaT' damping applied to an edge of the plate and 
affecting the shears only (rather than shears and moments) . A common feature 
of all these results is that, in the case of absence of structural clamping, a 
damping mechanism in the acoustic medium and on the wall is needed. 

The main novelty of our contribution is that we do not assume any source 
of structural (e.g. Kelvin-Voight type) clamping on the wall nor we require 
any dissipation on the boundary of the wall. Thus, the wall is mechanically 
undamped. Our aim is to show that thermal efTects and boundary dissipation 
affecting the acoustic medium only uniformly stabilize the overall system. To 
accomplish this goal we shall use differential multipliers developed in the context 
of stability ana.lysis for the wave equation, Lasiecka (1999), together with the 
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Figure 1. Cross-section of the domain n. 

operator multiplier method introduced in Avalos and Lasiecka (1997b, l 998a). 
The newly developed "sharp" trace t heory developed for the wave and plat.e 
equations plays a critical role in our arguments. 

1.2. The PDE model 

The structural acoustic interaction considered in th is paper is govern ed by a 
coupled system of equations which describes (i) the acoustic medium in a given 
three dimensional chamber (wave equati on) and (ii ) the th ermal structm e (pl ate 
equation) representing a flexibl e (vibrating) wall of the chamber. Th e interac­
tion between the two media takes pl ace ou the boundary (interface) between the 
acoustic chamber and t he structure (fl exible wall ). T hi s leads t.o a ma thematical 
model of a coupled wave equation with th ermoelas ti c pl ate eqLmtio11. 

Let f2 c R 3 be an open bounded domain with suffi ciently smooth (say C 2) 

boundary f and v denote an outward uni t normal vector to l' . T he boundary 
r consists of three connected regions f 0 , f 1 ,and f 2 - see Fig. (1 ) . The pressme 
in the chamber (acoustic medium ) is deftned on a spatial domain n, while t he 
displacement of the fl exible walls is defin ed on fa . rl represents a "hard" wall , 
which is assumed C 2 and convex (this is Lo say that the corresponding level 
set function is C 2 and convex), whil e f 2 allows for the possibility of having 
"frictional" walls subject to some damping. This damping is represented by 
absorbing Neumann boundary condi tions. \-\'e do not assume any geometri c 
restrictions imposed on r2. 

In addition to cl assical notation used for Sobolev's spaces we shall use the 
following: 
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with inner product 

(wl,w2)H~(I"o) = (wi , w2)£2(fo) +i(Y'wr, V'w2)U (f o) Vw r,w2 E H~. (l'o) (1) 

The PDE model considered consists of the wave equation in tl1e variable z 
(where the quantity pzt is the acoustic pressure, and pis the density of t he Auid) 

Ztt=c26.z in Dx(O,oo) 
0 0 

OV Z = 0 011 f1 X (0, oo); Ol/ Z + dz = - g( zt) on 

0 ov z = -g(zt) + Wt on fo x (0, oo) 

z(O) = zoE H 1(D), 2 Zt(O) = Z[ E L (D ); 

r 2 X (O,oc) ; 

(2) 

and the elastic equation represent ing t he di splacement of the wall w subject to 
thermal effects (see, e.g. , Lagnese, 1989): 

Wtt -16.wu + 6.2w = -t::.B- fJ Zt } ) 
Bt - !::,(} = 6.wt Oil r 0 X (0 , 00 (3) 

We shall consider various boundary condit ious associated wit h t.he pl ate model. 
Let i1 denote an outward unit normal to ol"0 all(l i denote t angential direct ion. 

Case 1 - hinged BC 

w = t::.w = O;B = 0; on oro X (O,oo) 

Case 2 - clamped BC 

0 
W = OV W = 0; (} = 0; on oro X (0, 00) 

Case 3- free BC 

6.w+(1 - J..L)B1w + B=0 } 
~t::.w + (1 - J.t)B2w -~tv Wtt + tv(}= 0 
avB+ >.B=O 

( lj) 

(5) 

ou Dr0 x (O,oc) (6) 

The constant >. is assumed posit ive. The boundary con eli t ions gi vcn for a free 
plate involve the following boundary operators B 1, B 2 

B - 2 D 2 2D2 2 D 2 
l = VIV2 x,y- Vl y,y - V2 :r:,x 

_ 0[2 22 2 2 ] B2 = OT (v1 - v2)Dx, y + v1v2(Dy,y - D ,, .. J + lw 

where i/ = (v1 , v2 ). With the model (2), ( ~)) we associate appropriate ini t ial 
conditions 
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where in the clamped and hinged case the initial conditions l'l re subject to ap­
propriate compatibility conditions on the boundary. This is to say that wo = 

0, W ] = 0 on Clf'o . In the cl amped case we also require th at fvwo = 0; on aT' a. 
Here e is the temperature, c2 is the speed of sound as usual and p represents 

back pressure acting upon the wall. The function g, representing a potential 
damping (friction) is assumed continuous, monotone increasing and zero at the 
origin. The constant 1 accounts for rotational forces and here is taken to be 
small and non-negative. 

Jt should be noted that the presence of the parameter 1 in equation (3) 
changes the character of the dynamics. Indeed, the "uncoupled" t hermoelastic 
plate is of hyperbolic type when 1 > 0, Lasiecka and Triggiani (1999) and of 
analytic type when 1 = 0 (Liu and Renardy, 1995, for the clamped-hinged case, 
and Lasiecka and Triggiani , ] 999, for the free case). 

Our goal is to show that the energy of the entire system given by (2), (3) , 
decays to zero at a unifo rm rate. For convenience, and without loss of generali ty, 
we choose c = p = ] . Also, in what foll ows, we assume that the constants l, d 
are positive. This assumption is not essential to mathematical an alysis of the 
problem, but it guarantees that the constants fun ct ions are properly damped. 
In the absence of this restriction, one needs either to formul ate t he result on an 
appropriate quotient space or to account for other (lower order) terms in the 
equation which prevent the value zero from being a member of the spectrum of 
the corresponding linear ellipti c operator. 

1.3. Main r esults 

We begin with a preliminary result stating that the system is well-posed . 

THEOREM 1.1 (W ell-posedness) Let It be a bounded open domain in R 3 w-ith 
boundary r as previously described. For all initial data Yo = [zo, Z ] , wo , WI, Bo] E 

Y , subject to compatibility conditions on the boundary, where 

Y = H 1 (12) x L2 (12) x H2 (T'0 ) x H~1 ( T' 0 ) x L2 (T'o) 

the solution y(t) = [z , zt ,W, Wt, B] of the ·model (2), (3) ex'i8ts 'in C( [O,oo ); Y) 
and is unique. 

Proof. Since the problem under consideration is maxima.\ dissipative, the re­
sult of Theorem l.l follows from the general theory of m-dissipative operators, 
Ba.rbu (1976), and also Lasiecka (1994) where, more specifically, problems with 
nonlinear monotone boundary condi t ions are considered. • 

In order to formul ate our main resul t on stabili ty, we introduce some no­
tation. We define the energy fun ction al associated with the model and given 
by 

v !..L\ v !..L\ I .., I ..L \ r I 12 "' , {' r1 1?. 
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(9) 

where in the clamped or hinged case, a(w , z) = J
1
•
0 

6w.6 zrl fo and for the jTee 
case 

a(w, z) I' [w x,xZx ,x + Wy,yZy,y + PW:r,:cZy ,y + JlWy,yZ:~:, J: Jro 
+ 2(1 - JL )'Wc,yZr,y]dT'o + l f' wzdDfo 

./ fJ I'o 

It is well known that a(w, w) is topologicc-tlly equivalent to H 2 ( f '0 ) nonn, Lnguese 
(I 989) . We also introduce the function h( s) whi ch is ass umed concave, strictl y 
increas ing, zero at the origin aud such t hat the following in eqnnlities are satis­
fied: 

h(sg(s)) :2 s2 + lg(s)l 2 
, for lsi ::; I 

Such a function can be easily constructed in view of the monoLoniciLy assump­
tion imposed on g, Las iecka and Tataru (1993). 

Our main result is the following 

THEOREM 1.2 (Un·iforrn stability) Let D be a bounded open dorn.n:in in R 3 w'ith 
boundary r as pTeviously described. Asstlrne that the nonlinem fu.nction g sa­
tisfies: 

ms2
::; g(s)s::; Ms2

; lsi :2 1 (10) 

Then. with the constant 1 :2 0, every weak solution y(t) = [z ,z1 ,w ,wt.B]'" 
of (2), (3) decays unifonnly. This is to say, the following c.s t-imal.e holds 

E,(t)::; C1 s1 (t / To - 1 )); t :2 To ( II ) 

wheTe the Teal vaTiable function s1. ( t) con:uerges fo zero u.s t - • oo 11T1.d sat-isfies 
the following ordinary diJjeTential equat·ion 

:t s,(t) + q,(s,(t)) = 0, s-1(0) = E., (O) ( 12) 

The ( nonlineaT), monotone incTeasing .f?t.'nctiml. q.y{ s) is dcteTm ·incd enti.tdy fmm 
the behavior at the origin of the nonlinear funct-ion g and d ·is given by the 
following algorithm. 

q, I- (I+ P~t ) - 1 ( 13) 

p, 
1 1 

(I + ho)- ( J() (1 -J) 

ho h(-/mes(O, T ) x fo U !' 2) (15) 

MoTeoveT, in the clamped and hinged case the quant-ities descrihing the decay 
rnfP.~ rnn hP. m.n.rlP. i.nrlenendent oh' > 0. PoT the free case. the con:>tm1.f:s (hence 
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REMARK 1.1 Note that the decay Tates es tablished 'i:n Theorem. l. 2 w :n. he com­
puted explicitly by solvin9 the nonl'incar ODE system ( Z2), once th e behavio-r 
of g(s) at the origin is specified. If the nonl-ineu:r fu,nction y L~ ho·u:nderl from 
below by a linear j1mct·ion. then it wn lie shown that the decay rates predicted by 
Theorem 1. 2 are exponential. This is to say that there e:cis t posdi.uc crm.strmts 
C, w, possibly depending on E(O) and su.ch that 

If instead, this functio n has a polynomial ,!JIOWt.h (rcsp . c:qwnc"ntio.ll:tJ rLcw.y·inq) 
at the origin, than the decay m tes aTe alqclrmic {resp . logn:··iJhm·ir:} . Th:is can 

be verified by solving the ODE pTOblem {12) c:rplicdly {see Lasi,:cl.:o. and Tatu:rv., 
1 V93), In the clamped and hinged case, the dew.y mtes do not dqH: nd on T 

REMARK 1.2 Both clamped and fring ed IJ011.ndu.ry wnditions imposed on the 
plate model lead to decay mtes whi.ch aTe ·u:n'ijorm. in I · In the wse of free 
bmmdary cond·itions, the analysis ·is more comple:I; and it ·relics crit-i.cally on the 
hyperbolicity pmpcTty of the related Kirchoff opemtor. This fnc!. JITC'I'Cnts from 
having the decay mtes independent of~,. . HrYwever, the decay rates IJ.H~ shll val-id 
in the limit case / ' = 0. but the·ir der·i:on.firm res/;s on the annlytinf:tJ Jlnlpcrty of 
the thermal component of the plate. 

REMARK 1.3 OtheT types of boundary conddions can be imposed on !'' 1. In fact , 
one can rep lace the Neumann boundary conditions by the Dirichlet hou'/l.daTy 
conditions, in which case the required gemndric condition. lwcmncs (:t: - .ro) · v S 
0 on r 1 . Note that we do not assume any gcometTic conditions l.!lt]JOscd on 

d·issipative portion of the bou.ndary 1'0 U 1'2 . This ·is in contrast; utdh nwst of 
the l-itera ture on boundary stalrilizat-ion of (u:ncoupled) ·wa·ue liT Jllnl.e errual.ions, 
Kornornik {1994), Lagnese {198.9). 

The remai nder of this paper is clevoLl'cl to th e proor of Tlteorc r11 1. 2. Here, 
we note that the main techni c<J l difficulti es of the proi..Jkn1 nnder slwly de;d 
with the following featu res: 

1. The pla.Le equat ion has neither s tructural damping nor ''' nchrlnical clmllp­
ing, which would have induced strong stabi li l.y propcrli es for the plate. 
This is in contrast with all other works ava il ab le in the li tcr<lture. 

2. The PDE equation describing the pla te model docs no t salis l'v the LopaLin­
ski condition in the case of free boundary condi t ions. /\ sa cu nscquenc:c, 
the natural regulari Ly of bound ary tmc:cs (cri t ical to i.IH ~ ;111<1 h· sis) arc 
much weaker and require more deli cate arguments . 

3. The value of')' in the plate rnodel under consideration ci ~<IL ,, es i. he clwr­
aeter of dynamics (from analytic Lo hyperboli c). This forces n ('Oll lpldt' ly 
different treatment of the probicn1 (mainly at the level ol' t.n-~ati11g tlte 
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4. The coupling between the medium and the wall, represented by a "trace 
operator" , induces a "strong" coupling (rather than "weak" coupling) in 
the structure. This effect produces uncontrolled "energy level" terms in 
the estimates - a notoriously difficult problem in the context of control­
lability and stabilization. Handling of this requires a speci<1l rescaling 
argument. 

2. Preliminaries 

We shall adopt the following notation: 

lwls,!l = lwiH·(n); (u , v)n = fo uvdD 

The same notation will be used with D, replaced by r, etc. For s < 0, the 
negative Sobolev's spaces are defined as duals (pivotals) to H-s (n) wi t h respect 
to L2 ( D,) topology. 

Our goal is to show the uniform stability of the coupled PDE system (2) , 
(3). We begin with a preliminary energy identity whi ch .illustrates the fact that 
the system is dissipative. 

PROPOSITION 2.1 With respect to the system of equations {2), {3) , the following 
energy equality holds for all T > 0, s < T: 

E"'(s) = E"'(T) + 21T (g( zt), Zt)r0 dt + 21T I'VBIG,r
0
dt + 2,\ 1T IBI6,ar

0
dt (16) 

where, we recall, the 'energy ' E"' (t) is defined by 

E"'(t) I'Vzl6,n + dlzl6,r2 + lztl6,n + lwtl6,ro + I'I 'Vwt16,ro 
+ a(w(t),w(t)) + IBI6,ro (17) 

Proof. By applying the multipliers Zt on the wave equation, Wt on the elastic 
equation, e on the thermal equation , and then integrating by parts, we obtain 
the above equality for smooth solutions. A density argument allows us to extend 
this inequality to all solutions of finite energy. • 

Our basic strategy is to obtain first the estimates for the thermoelastic equa­
tions on fo and then, for the wave equa tion defined on n. A subtle point of 
the analysis is the treatment of the coupling and appropriate combina tion of 
the two estimates. Notice that the coupling introduces terms of the order of the 
energy. 

We also note that our analysis different iates the cases I' > 0 and I' = 0. 
When I' = 0 then the thermoelastic system represents an analytic semigroup, 
Liu and R.enardy (1995), Lasiecka and Triggiani (1 998). Instead , if I' > 0, 
the dynamics of the thermoelastic plate are hyperbolic-like with finite speed 
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of the overall system are very different for the cases of "Y = 0 and 1 > 0. The 
difference between the two types of dynamics will play a. crit ical rol e throughout 
the analysis, particularly at the level of treating trace regulari ty alld the coupling 
between the two systems. Since several estimates presented in the course of 
the proof will require "sharp" information on the traces of solu tions to plate 
equation, we find it convenient to collect these results below. 

We consider the Kirchoff plate 

Wtt - -y/::;wtt + !::,2w = f on ro X (0, T) 

/::;w + (1- J..L)BJw = g1 

8 8 
01/ /::;w + (1 - J..L)B2w- "Y 01/Wtt = g 2 on oro X (0, T) (18) 

LEMMA 2.1 Lasiecka and Triggiani (J 999). With reference to {18) . 1 > 0 and 
taking f = 0, g2 = 0 the following reg1darity holds: 

lw( t) ll,r, + lw, ( t) ll,r, $ C,,T [lw(D)Il,c" + lw, (D) IJ,r, + for lg, 11 /2.ar, dt l (J 9) 

We note that standard regularity results for Kirchoff plate require g1 E 

H 112 ((0, T) x 8f0 ), rather than the I /2 derivative in space only. Th e proof of 
Lemma 2.1 , based on microlocal analysis arguments, is given in Lasiecka and 
Triggia.ni ( 1999). 

LEMMA 2.2 With reference to {18} with / ' > 0 and taking g1 = 92 = 0. the 
following regularity holds: there exists a posd·ive constant p > 0 S'll.ch that 

loT lwll/2+o,ar,dt <; Cr,, [lw(Dlll,r, + lw,(O) Il.r, +loT IJ I' ,+o, ro dt] (20) 

The value of p depends on the geometry fo . However, 'it is always positive. 

We note that the standard regulari ty result gives the above inequality with 
p = 0. 
Proof. The result of Lemma 2.2 with f = 0 was proved in Avalos and La.siecka. 
(1997b) (see formula. (2 .70)) . The estimate due to the additional forcing term f 
is obtained by a standard semigroup argument applied to the Kirchoff' plate. • 

Our next result deals with the case of "Y = 0, where the linear thermoelastic 
system represents an analytic semigroup. Tn Lhis case, we have higher interior 
regularity of the solutions 

LEMMA 2. 3 With reference to ( 18) with f = !::,() + h , "Y = 0 and taking g1 = 

- B,g2 = -tv()' where () is the solution to the heat equation in (S), we obtain 
the following regularity: 

loT [lw(t) l~,ro + lwt( t)li,roJ dt :S CrEw(O) + Cr loT lf1 l:_ 1 ,r0 dt (2 1) 



566 1. L\S.li':CI<A o. nd C:. LE I31EDZ l l< 

Proof. It was shown in Lasiecka and Triggia.ni ( 1998) t ha t. t he tlH-·nrwelast ic 
system with free boundary con ditions generates an analy ti c semigroup c At on 
the space 

The domain of t he generator A is given by 

D(A) = {(w ,wt,e) E II'1(D) x Il2 (n ) x H 2 (D); 

subject to the boundary conditions in(3)} 

By a standard interpolat ion result 

(22) 

Since it is also known, see Lasiecka and Triggiani ( 1998). t ha t A is di ssi pa tivc 
and invertible, analyticity of eA t implies , Bensoussan, Da Prato , Dclfour and 
Mitter (1992) the following estimates 

iT IA 1 1 2 eA 1xl~dt :S Crlxl~ 
T t 2 ·7' r lA r CA(t - s ) f(s)dsl dt :S C:r I lfli-dt 

Jo Jo x .fo 

Writing the solution to thermoelast ic system as: 

Al /2 Wt(t) = eAt Al / 2 'Wt(O ) + I AcA(t-s }A-· 1/ 2 fr(s) ds 
[ 

w(t) l [ w(O) l ·1. [ 0 l 
B(t) 8(0) ./o 0 

we obtain 
2 

(23) 

Application of the inclusion in (22) completes the proof. • 
F inally, we recall another trace resul t va lid for the Kirchoff plate with 

clam Ded boundary condit ions which takes advantage of the fact that the cl amped 



Uni form stabi lity in s t ruct.ural acous tic sys t.cms 5(i7 

LEMMA 2.4 Let w be a solution of (3) w·ith clanlpcrl boundaTy crmrl'ihons and 
1 2: 0. Then, the following tmcc re.!J1daTdy tu.kes place: 

·T 

fa l .6.w l ~,ar0 dt :S 

j·T [ 2 ? ·) ·) 'J ] 

C lw l2 ,l'o + lwtlo, r0 +llwt l1,r·" + IBI1,ro + lz~, l::_ l , l'o cU 
0 

+C[Ew,-y (O) + E w,,.(T) ] 

where the constants C do not depend on ''( . 

The proof of this Lemma is given in Ava los a.ncl Lasiecka ( 1997b, 19DX<l) for the 
equat ion without a Zt term. However, a11 identical argl1mcnL Ca l l lw applied to 
account for the z1 term. 

3. Plate equation 

Let the plate energy Eu., -y (t) be defined n.s 

Eu,,-y(t) = lwt(t) li2 (ro) + 1·1Vwt(t)lt2( l'o ) + u.(w(t) , w(t)) + I O (t)f~, l 'o (2,1) 

LEMMA 3.1 With respect to the thcTnwclo.sti.r: co·mponenl of the m.orld (.'J ). wdh 
1 2: 0, the following inequality holds: I;J E > 0, 3 C-y,T,E such Uw.t 

j·T 

0 
[a(w ,w ) + lwtl~,ro +1•IY.wtl6.roJ dt :S EC1. [Eu ,-y(O) + E" ,1 (T)] (25) 

+Or,-y,c 1T [IBI~.ro + lzt. l~ 1,r 0 ] dt + CT, 1·,clot(w, 0) 

where lot(w, e) = SllPtE[O,TJ[ Iw(t)IT,rodt + I B(t)l~ l/ cl , ral· The r:onsta:n./,,s c, do 
not depend on 1 in the case of h·int;ed and clu:mpc1 bov.ndn:ry conrld'ioll .. >. In the 
case of free bo1J.ndary conditions, however. the constants C1. rnny hlo'lll 'liP 'IIIith 
1-> 0. However, if/' = 0, then the constant Co = C~1=o is ·well defined. 

Proof. We introduce some notat ion. Let. AD·u. = - .6.'ll; D(AD) = H 2 (f0 ) x 
HJ (f0 ). Let the Dirich let map D be cldinecl as follows: 

and let lo denote a restri ction (trace) operator to 8f0 . With t.he above notat ion 
one can wri te 

.6.0 = .6.0 - .6.D1·oO = 6(fJ - D-yotJ) = - Ao(O - D1·o8); 

in H6 (0)', 0 E H 1 (0) 
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We apply the technique introduced in Avalos and Lasiecka ( 1 997b, 1 998a), 
that is, we multiply the first equation in (3) by A[/B and integrate from 0 toT 
to obtain 

lT (wu- {!:::.Wtt + !:::. 2w + !:::.(:) + Zt, A[/B)P(ro) dt = 0. (27) 

We deal with each part separately: 
(1) Using integration by parts, substitution of boundary conditions, these­

cond equation of (3), formulas in (26) give (detailed computations are in Avalos 
and Lasiecka, l998a, pp. 171-172). 

'V E, E1, E2 > 0, 3CE, C€ 1 ,€ 2 such that 

II: (wtt- { !:::.wa , A[/B) £2( r o) dt- I~r [lwt l6,ro + !I Y'wt16,rJ dtl 

:S lwtlo,ro IA£/ Bio,ro 16 + ! IY'wt lo,ro IV' A[/ Bio,ro ~~ 
+I: [lwtlo,ra 1Bio,r0 + 'Y IV'wtlo,roiV'Bio,r 0 ] dt + E I;· lwl~ ,n 
+ IoT[CEIB ii,n + Ca(D!oW, w)]dta + Irr foztD{oW dfodt (28) 

:S E1C [Ew,')'(O) + Eu. ,")' (T)] a+ C J: lzt l:_ 1 r0
dt 

+ c IoT [lwtl~,ro + 'Y IV'wtl~ , ro J dt + CE .f~f IBII,ro 

+E I: lwl§ ,ndt + C I: a(D!o'W, w)dt + CE 1 ,E 2 sup tE[O,T]IB(t) I:_ ,12+E 2 ,l' o 

In the last step we used 

lwtlo,roiA[/Bio,ro +!IY'wtlo,roiV'AL)1Bio,r0 :S 
cl[lwtl~,ro + !IY'wtl~,r0 ] + CEJIV' AL)

1 

Bl6,ro 

:S E1[iwtl~,r0 +!I Y'wt l~,r 0 ] + Cc,,c2 IBI:_ I/2 t<2,r0 

Note that neither of the constants C and CE depend on T or ~/-
(2) Another integration by parts and application of boundary conditions 

gives that in the case of clamped or hinged boundary conditions 

(29) 

and in the case of free boundary conditions 

lT (!:::.2w, AL)lB) L2(fo) dt = 

[T (" 8 ' - 1 "\ [T - I . A - ltl\ .l.L 
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By applying the estimate in Lemma 2.4 in order to elimi nate the trace of 
.6.w for the clamped case, we obtain the fo ll ow ing inequality valid in tbe clamped 
and hinged case 

(31) 

Instead , in the free case we simply have 

(3) Application of tbe standard Green 's formu la gives: 

T ·T 1 (.6.8 , A[/ B) L 2 (ro) dt:::; C 1 IBIT,ndt (33) 

(4) F inally, for the last term in (27) : 

I T I T 1 (zt,AJ]
1

8) L2(T'o) dt:::; 1 1ztl-l,roiAJ)111 Il,fo rit:::; 

T T 

C 1 !zt !:_ 1,r0 dt + C 1 1Bitro rit (34) 

Combining equations (28) - (34) results in t he fo llowin g: 

PROPOSITION 3.1 For any T > 0 and E, Ei, i = .1,2 small cnov.gh. there e:cist 
positive constants C > 0, C", CE;, independent of/' S'U.ch that 

(1- 2E) 1T [1wt l2o,ro + rJV'wt!\ro ] dt:::; 

f. J C [Ew,-y(O) + Eu·, -y(T)] + CE 1T JBJT,r
0 

dt 

iT j'T 
+C lzt 1:_ 1 ,ro dt + E JwJ~ , 1- 0 dt 

. 0 0 

+C {T a( Drow,w)dt+C,,. E, sup lfJ(t) l:_, ," ''- r (35) 
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The main technical issue to be tackled now is the estimate for the term J: a(D"(oW, w )dt in (35) in the case of free bO'It.ndary condi.tion,s. Notice that 
this term disappears in the hinged or clamped case. ln the case of free bound­
ary conditions, this estimate will introduce dependence of the constants on the 
parameter "'· Moreover, the cases"/ > 0 and 1 = 0 need to be treated separ ately. 

P ROPOSITION 3.2 

• Let"( > 0. VE, Eo > 0, there exist constants C,, r ,1 , Cc0,, ,T,, S'/I,Ch that the 
following estimates are valid in the case of free bo·u.ndary conditions 

T T ·T r a(D"(ow,w)dt:::; E r lw lhodt + Cr,, ,£ I [[ztl~ l , f'o + [B lf,rol dt 
lo lo .fo 
+coCr,1 E1 ,w (0) + Cr,Nolot( w, 11) 

• Let "/ = 0. VE > 0 3Cr, , such that 
T ·T 

fa a(D"foW, w)dt:::; c.CrEu.(O) + Cr 1[zt [ ~ 1 • 10 dt + Or,,,lot(w,(j) (36) 

Proof. Follows through several steps. We wri te w = w1 + w2, where w1 

corresponds to the plate equation (3) with the zero initial data and no forcing 
team. The basic semigroup estimates and "sharp" regul ari ty resul t in Lemma 
2.1 applied to the Kirchoff plate give: 

2 2 r[ 2 ? ·) J [wi(t)[2,f'o + [WJ tkro < Cr, , Jo [L)./1[ - l ,ro + [zt.[::..l,ro + [11 [];2 ,810 dt 

< CT,1 fa T [[11[i_r0 + [zt l ~ t , r·0 ] dt (37) 

where in the last step we use t he boun dary condi t ions satisfied by the e vari able 
as well as the trace theorem. 

Therefore, by regularity of the Diri chl et map D E L(H312 (8f0 )----> H 2 (T'0)) 

and trace theory 

T T T 
fa a(D"(oWJ,wi)dt :::; C fa lwl lhodt:::; Cr,-y fa [l 11 IT ,r 0 + [ zt[~ 1 ,rJ dt (38) 

which gives the right estimate for the first component w1 . As for the second 
component w2, we notice that w2 satisfies the homogeneous Kirchoff plate equa­
tion with nonzero initial data and no forcing term. Thus, the "sharp" regularity 
result of Lemma 2.2 applies and gives 

fa T [w2l5;2+p,ar0 dt :::; CT,1 [ [ w(O) [ ~,ro + [wt.(O)[i,roJ (39) 

Hence, by using trace theory and regularity of the Dirichlet map, mo.ment 
inequality and the est imate in (39) we obtain: 

rT rT 
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But, by (38), 

l-Ienee 

1T a(D1ow2, w2)dt :S E 1T lw2l§ ,ro dt + coCT,"YE,,".(O) 

T 

+Cr,c,Eolot( w, e) + Cr,,,E,EQ 1 [IBiho + lzt I~ l,roldt 
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(40) 

Combining (38) and ( 42) and taking c2 < I /4 gives the desired resu lt iu Propo­
sition 3.2 for 1 > 0. 

The argument for 1 = 0 is as follows. We apply the result of Lemma 2.3 and 
the interpolation inequality 

T 1 a(D1ow, w)dt < 
T ·T ·T 

c r lwl~,rodt::; E j lwl~,lodt + cf. I lwli,lodt 
Jo o .fo 

·T 

< cCrE" (0) +cOr lo lztl~ 1 , 10 + C,lot(w, B) ( 42) 

This gives the desired inequality for the case of/' = 0. • 
From Propositions 3.1 and 3.2 after taking Eo, E small enough so that coCr,"Y, 

tOr ::; C] c"Y we obtain 

PROPOSITION 3.3 Let I;:::: 0. 1::/ E, tJ :J C1 ,T,c,c 1 such that 

Moreover, the constants C"Y do not depend on 1 in the hinged and clamped cases. 

Continuation of the proof of Lemma 3.1. Next, we multiply the same equation 
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we obtain 

( w,, w )r, 16 + ~ ('Vw,, 'Vw) r, ~~ - [t [lwd6,r, + -y('Vw, 16,r,] dt: 

{T {T j·T 9 j·T 
= - Jo a(w, w) dt + Jo (Ve, Vw)r0 dt-

0 
(e, ;vw) 0r0 cif -

0 
(zt, w)r0 dt 

In the case of clamped or hinged boundary conditions, the only difference in the 

expression is that the boundary integral J: (e, %v w )oro does not appear. Taking 
norms and using the trace theorem gives 

loT a(w,w)dt:::; 

l(w,, w)r, lif + 1 ('Vw,, 'Vw)r, ~ ~ -{ [lwd}, + o(Vw,(f.] dtl 

+It (VB, 'Vw)r, dt l +It (8, :v w)ar,dtl-ll (z,, w)r, dt 

Noticing that 

i(wt, w)L2(r0 ) I if+ I (Vwt, Vw)L2(ro) 1:·1 :S E [lwtl6,ro + '"YIVwtl6,r0 ) ~~· 
[ 2 2 ] IT +C, lwlo,ro +iiVwlo,ro 0 :::; c[Eu,-y(O) + Eu,~1 (T)] +C,lot(w,e) 

we obtain 

loT a(w,w)dt:::; Eo [Eu.,-y(O) + Eu,-y(T)] + clloT [lwtl6,ro + --yiVwtl6,roJ cit 

( j'T +c: Jo lwl~,ro dt + Ct 
0 

[lel i,ro + lzt l:_ 1,roJ cit+ Cc0 lot(w, e) 

Thus, we have that \:1 E, c1 > 0 there exist suitable constants C,,c 1 > 0 such that 

(1- c:) loT a(w, w) dt:::; E1 C [E1l',1 (0) + E11 ,-y(T)] + 

C1loT [lwtl6,ro + i iVwtl6_ro ) dt 

+C, loT [l8li_ro + lztl:_ 1,r
0

) dt + Ce 1 lot(w, 8) (43) 

If theE of equations (43) and the one of Proposition 3.3 is srnall enough, 
these equations can be combined to produce the inequality 

i? 1 ,, ...... 
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+CT,,,€ 1T (IBII. ra + l ztl~ 1 .r0 ) dt] + CT,1 ,e1 lot(w,B) 

which is the desired resul t in Lemma 3. 1 for 1 2: 0. 

4. Wave equation 

Let Ez( t) be the energy defined by 

Ez(t) = lzt(t) l6,n + I'Vz(t) l6 ,n + dl z(t)l6,r2 

LEMMA 4. 1 Consider the wave equat·ion with boundary cond-itions 

{ 

Ztt = ~Z in il 
: z = 0 on rl, :1/z + dz = - g( zt) on r2 
fvz = -g(zt) + W t on fo; 
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(44) 

• 

( 45) 

( 46) 

Th en, for any a < T /2 there exist suitable constants C, possibly depending on 
a , such that 

iT-a Ez(t) dt :S C [Ez(et) + Ez (T- a)] 

+Cy 1T [lztl6,r0 ur2 + lg(zt )l6,r0 ur 2 + lwt. 16,ra l dt + CTlot( z) ( 47) 

T 

where lot( z ):::; C 1 [lz1Lo,!1 + lztl~s.nJdt; o > 0. 

Proof. The following trace regularity valid for the wave equation is necessary 
for the proof. 

Consider the wave equat ion 

Ztt = ~z in n X (0, T) } 
:1/ z = 0 on r , X (O ,T) 

LEMMA 4 .2 Let z be a solution to {48) wdh the interior regular·'ity 

z E C(O, T; H 1 (il)) n C 1 (0, T; L2(il)); 

and the following boundary regularity 

a av z, Zt E L2((0, T) X fo u r2) 

( 48) 

Let T > 0 be arbitrary and let a be an arbitrary small constant such that 
a < ~. Then we have that: 
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We note that the above inequali ty does not follow from t he standard trace t he­
ory and the assumed interior regulari ty. This is an independent t race regularity 
result . The proof of this Lemma. foUows from Lemma 7.1 in Lasiecka and Trig­
giani (1992) . 

As the first st ep in proving Lemma 4.1, we use t he mul t ipliers method with 
the multipliers h · \.1 z and z div h, where h(x) is an appropri ately constructed 
vector field. In the special case when f 1 is flat, oue takes a. classical radi al 
vector field h(x ) = (x - x0 ) wit h xo E f 1 • However , in a more general convex 
case, a more complicat ed construction is necessary. T hi s constructi on is based 
on Lemma 4.13 in Tataru (1 999). Indeed , following Tata ru (1999) , we define 
a C2 convex function l( x), which is supported in t he neighborhood of r l and 
enjoys the following properties: 

8 
or/ = 1 on rl 

Due to the convexity and regul ari ty of f 1 , such a function l(x ) can be always 
constructed. Let xo be a point in R3 such tha t (x - x0 ) · v :::; 0 on f 1. Since f 1 

is convex, such a point (outside D) can always be found. Next , defin e 

h(x) = (x- xo)- \l[l (x )(x - xo) · ve(l:)] + Al (:r)\ll (:r: ); A > 0 

where Ve denotes an extension of normal derivat ive v into a. coll ar neighborh ood 
of the boundary f 1 . One easily verifi es t ha t due to the relations %) = 1; l = 
0; on f 1 , we have that h · v = 0 on f 1 . Moreover , select ing a n appropriately 
large constant >. , an appropri ately sm a ll neighborhood of t he boun dary r 1, and 
recalling the convexity of l, we obtain that J( h) > 0, where J (h) denotes the 
J acobian of the vector fi eld h. Indeed , to est ablish thi s it is enough to show 
tha t J(h) > 0 on f 1 . Straightforward comp utat ions yield 

J(h) =I - J(\ll)(x- xo ) · Ve + lJ (\l((x - xo) · ve))- \ll\JT(( x - xo) · ve) 

[\ll\Jl.'((x - xo) · ve)]T +A \ll\lTl + AlJ(\ll ) (49) 

T he a bove formula. , when restri cted to f 1 gives 

J(h) = I- J(\ll)(x- xo) · v- \ll\JT((x- xo) · ve)- [\ll\JT((x- xo) · ve)f 
+A\Jl\JTl (50) 

Hence, for all poin ts on f 1 and vector ·u E R3 we have 

(J(h)u ,u)R3 = [u[2 - (J(\ll)u ,u) R3(X - xo) · v - 2\ll· ·u\l ((x- xo) · ve) ·1L 

+>-(Vl · u) 2 (51) 

Due to convexity of l and the condi t ion (x - x0 ) · v :::; 0 on f 1 , we obtain 

2 2 ? ] ') ? 
(J(h)u,u) R3 2: [u[ + A(\ll · v.) - E[u [-- - (\ll· u)-[ \l (( x- xo) · ve)I-

4E 
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where in the last step we have selected>.> =f-EIY'((x- xo) · veW· This proves 
the strict positivity of the Jacobian J(h) and leads to the construction of a field 
h such that h. v = 0 on rl and J(h) > 0 inn. 

With the above construction, we apply standard, by now, multipli er calcu­
lations which lead to: 

1T Ez(t)dt ~ C[Ez(s) + E=(T)] + 

C JT { [zz + g2(zt) + z2] d(fo U f 2) (53) 
s J rouf2 

T T 2 

+C j . lwtl6,r0 dt+C j 1:
7
zl , clt+CTlot(z) 

s s o,roul 2 

The term which needs to be further est im ated is the last bounda ry term in 
(53), which involves tangential derivatives not controlled by the energy norms. 
To accomplish this we shall use the resul t of Lemma 4 .2. This gives 

1T-o. I () 12 - z cit < 
o. 07 o,rour2 -

( 2 () 2 
Cr Jo [lztlo,r2uro + I av zl o,r2urol clt + Crlot(z) 

~ Cr loT [lzt l6 ,r2uro + jg(zt )l6,r 2uro + lwtl6,ro ] dt + C lot(z) (54) 

Next we apply (53) with s replaced by o and T replaced by T- o, and use 
classical trace theory to absorb frour2 z

2 dx 

1T-o. Ez(t) dt ~ C [Ez(o) + Ez(T - o)] 

T 

~ Cr fa [lzt l6,r2ur 0 + lg(zt)l6,r2 ur 0 + lwt l6, r 0 ] dt + Cr lot( z) (55) 

which provides the desired concl usion in Lemma 4.1. • 

5. Coupled system 

For the final analysis, we will combine the energy estimates obtained for the plate 
and wave equations, and then absorb the lower terms by means of a standard 
compactness/uniqueness argument. 

PROPOSITION 5.1 Let T > 0 be sufficiently larg e. The following estimate holds 
fo r the solution to (2) and (3). 

T ·T 

fa E-y (t)dt + E-y(T) ~ C-y,T 1 [IBIT,r0 + lzt16,r0 ur 2 + lg(zt) l6,r0 ur2 ] dt 
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where the constants C-y,T do not depend on 1 fo r the hinged and clamped bo'Un­
dary conditions. 

Proof. We shall combine equations (25) and ( 47) . We mul t ipl.Y (25) by a 
suitably large constant Ar (possibly depending on T) am! add the result to 
(47). This gives: 

Ar 1T Eu.,-y (t)dt + lT-a Ez(t)dt 5. 

cC-yAr[Ew,-r(O) + Ew,-r (T)] + C[Eza + Ez(T - a)] 

+Ar Cr,-y ,e 1T [l&l i,ro + l zt l~l,roJ dt 

+Cr 1 T [l ztl6,r0 ur2 + Jg(zt)l6,raur2 + lwtl6,r0 ] dt 

+ArCr,"'f,,lot(w,(;I) + Crlot(z ) (57) 

We take Ar > 2Cr , which allows us to eliminate the term with lwtl6,ra from 
the right hand side of inequality in (57) . We abo select small c = c(T) , so that 
EC-yAT 5. C. This gives: 

1 T Ew,"'{ (t)dt + lT-a Ez(t) dt 5_ 

C-y [Ew, -y (O) + Ew,-r (T) + Ez(a ) + Ez(T - a)] 

+C-y,T 1 T (J&Ji,ro + lztl6,raui' 2 + l zt. l~ l , l'o + Jg( zt)J6,raur2 ) dt 

+Cr,-y[lot(w, &) + lot(z)] (58) 

Hence 

lT-o: E-r (t) dt 5. C-y [E-r(O) + E-r(T) + E-y(a) + E-r(T- o:) ] 

+C"Y,T 1T (J&Ji,ro + lztl6,raur2 + Jg(zt)l6,r0 ur2 ) dt 

+Cr,"'f[lot(w, &) + lot (z )] (59) 

Here, we recall, the energy E-y (t) is defined as in (17). Our next step is to 
use dissipativity of the energy to eliminate terms invol ving o:. By using the 
energy identity in Proposition 2.1 and the simple inequality 

(f +f.) E,(t)dt,; 2aE,(D) 

we obtain 

rr ~ 
' · ' ' ' .- ,......, r r1 tr.\ , r1 /r,-, \1 , 
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T 

CT,, 1 (IBIT,r0 + lztl6.r0 ur2 + lg(zt)l6.r0 ur 2 ) dt 

+CT,1 [l ot(w, B)+ lot(z)] 

Once more using the energy rela tion gives lha t for t ::; T 

T 

E-y(t) ~ E-y(T) - Cr,-y 1 (IB ii.r·o + lzd6,r0 ur2 + lg(zt)l ~our 2 ) dt 

Hence 
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(60) 

TE,(T)::; C,E, (T) + Cr,-y 1T (IBi ho + lztl6,r0 ur2 + lg(zt)lf0 ur2 ) dt 

+Cr,1 [lot(w, B)+ lot(z)] (61) 

Combining (61), (60), and taking T > C,. leads to the desired conclusion in 
Proposition 5.1. • 

Our next step is to eliminate the lower order terms from the inequality 
in Proposition 5.1. Tbis is done via the usual compactness and uniqueness 
argument. 

PROPOSITION 5.2 LetT be sufficiently large. With respect to the C07Lpled PDE 
system (2), (3) there e:cists a constant Or > 0 such that 

CT is independent of 1 in the hinged and clamped cases. 

Proof. T he conclusion follows by a contradiction from the usual compactness 
a nd uniqueness argument . Since this argument is standanJ, we shall 110t report 
all the detail s. We shall only poin t out the main steps. T he com pactness of 
lot(w , B)+ lot( z ), with respect to topology indu ced by the energy E-y, 1 > 0, 
follows from the compact embeddings 

H 2-'(f0 ) x H 1-' (fo) x H 1-c(n) x H - c(D) 

c H 2 (f 0 ) x H 1 (f 0 ) x H 1 (D) x L2 (D); E > 0 

As for the uniqueness part , we deal with the fo ll owing overdetermined sys­
tem: 

on [O,T] X n 
on[O ,T]xf0 U T'2 
on [O,T] X rl 

on [0, T1 X ro 
( G3) 
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wu- "(b.wu + b.2w = 0 
0 = 0; b.wt = 0 
b.w + (1- J..L)Blw = o 
%

11
b.w + (1- J..L)B2w- 'Y tv wu = 0 

on [0, T] x fo 
on [O,T] x fo 
on [0, T] x ofo 
on [0, T] x ofo 

Our aim is to show that the above overdetermined system admits only the zero 
solution. Since we also have 

Wttt = "(b.Wttt- b.2wt = O,on [0, T] x fo 

we obtain 

b.2wt = 0 
0::::::0 
b.wt + (1- J..L)Blwt = 0 
:

11
b.Wt + (1 - J..L)B2wt = 0 

on [O,T] x fo 
on [O,T] x fo 
on [0, T] X oro 
on [0, T] x ofo 

Therefore, by the uniqueness of solutions to elliptic equations, Wt = 0, and 
by going back to the wave equat ion we obtain 

on [0, T] x rl 
on [O, T] X rour2 
on [O ,T] X rl 

on [O, T] x fo 
on [O ,T] X r2 

(64) 

Holmgren 's T heorem implies Zt = 0. This reduces the entire problem to the 
following static equations 

jj.27]J = 0 

0::::::0 
b.w + (1- J..L)Blw = o 
:

11
b.w + (1- J..L)B2ii1 = 0 

on [0, T] x I'o 
on [0, T] x fo 
on [0, T] X oro 
on [0, T] x oro 

b.i = 0 on [0, T] x rl 
: i = 0 on [0, T] X rl u fo 
lz + di = 0 on [0, T] X r2 

(65) 

(66) 

By the uniqueness of ellipt ic equations (note that l, d > 0) we conclude that 
i = w = 0 = 0 as desired. • 

Completion of the proof of Theorem 1.2 
Combining the results of Propositions 5.1 and Proposition 5.2, we obtain 
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where the constants Cr,-y do not depend on I' in the clamped and hinged case. 
By using the assumptions imposed on the nonlinear function g and splitting 

the region of integration into two: Zt ~ ] and Zt > 1 we also obtain: 

loT [l ztl6,rour2 + Jg(zt) l6,r0 ur2 + IBII,ro] dt ~ 

Cr,m,M [I + ho]1T r [g( zt)Zt dx + IBf ,rol cit] 
o Jrour2 

(68) 

where we have used Jensen 's inequality. Combining (67) and (68) and recalling 
monotonicity of h0 we obtain: 

E"Y(T) ~ Cr,-y,m,M [I + ho] t { [g(zt)Zt dx + IBI?,r
0

] dt Jo 1rour2 
= Cr,"'(,m,M[I + ho][E"'~ (O)- E"Y (T)] (69) 

where in the last step we have used the energy relation . Since [I+ ho] is invert­
ible, this gives 

(70) 

and 

with p defined by the Theorem 1.2. The final conclusion of Theorem 1 .2 follows 
now from application of Lemma 3.1 in Lasiecka and Tataru (1993). 
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