Control and Cybernetics
vol.28 (1999) No. 3

Topological derivative for optimal control problems

by
Jan Sokolowski'? and Antoni Zochowski?

! Institut Elie Cartan, Laboratoire de Mathématiques,
Université Henri Poincaré Nancy 1, B.P. 239,
54506 Vandoeuvre les Nancy, France,
e-mail: sokolows@iecn.u-nancy.fr

2 Systems Research Institute of the Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warszawa, Poland,
e-mail: zochowsk@ibspan.waw.pl

Abstract: The topological derivative is introduced for the ex-
tremal values of cost functionals for control problems. The optimal
control problem considered in the paper is defined for the elliptic
equation which models the deflection of an elastic membrane. The
derivative measures the sensitivity of the optimal value of the cost
with respect to changes in topology. A change in topology means
removing a small ball from the interior of the domain of integration.
The topological derivative can be used for obtaining the numerical
solutions of the shape optimization problems.
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1. Introduction

In Sokotowski, Zochowski (1999a) the so-called topological derivative was in-
troduced for a class of shape functionals. In the present paper the derivative
is obtained for the optimal value of the cost functional for an optimal control
problem. The optimal value of the cost defines a domain functional depending
on the domain of integration of the elliptic state equation. The results on the
topological derivative method have been obtained by the authors for the opti-
mal shape design problems, Sokolowski, Zochowski (1999a, b). In particular,
the topological derivative method justifies and generalizes the so called “bubble
method” used, e.g., in Schumacher (1995) for numerical methods of topology
optimization for the compliance functional in the context of 2D elasticity. It
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for the optimal value of the cost functional for some control problems. Such
approach would allow consideration of the simultaneous structure design and
control modifications.

2. Control problem

Let us consider the domain € in R? with piecewise smooth boundary, its subset
D (also with the piecewise smooth boundary) and the control problem having
the elliptic state equation,

-Ay = xp-u in 0,
y = 0 on I'=00.

For given uw € L?(D), y = y(u) represents, e.g., the deflection of an elastic
membrane, loaded by the vertical force u concentrated on D. The characteristic
function of D is denoted yp, and Q is the reference domain for the membrane.
For such a system we define the cost functional

I(u) = I(y(u),u) = j;; F(y,u)dQ2 = %_/;) ((y —v0)? + au?]d,

which is minimized over the space of controls u € L?(D), a > 0, where yy is
a given function. Minimization of I(u) with respect to u means approximation
of a given function g in the region D by the deflection (shape) of an elastic
membrane, using the smallest possible load « applied in D. The extremal value
of the cost functional for this control problem defines the shape functional,
depending on the geometrical domain €2,

JQ) = t‘g%l(‘i I(y(u),u).

Variation of the state y'(v), corresponding to the variation v of the control
y(u+sv) = y(u) +sy'(v)
satisfies the equation

-Ay = xp-v in Q

!

y = 0 on T,

and the variation 61(w;v) of the cost I is given by

I(u;v) /[F (y,u) ¥ (v) + Fuly,u) - v] d.

Introduction of the adjoint equation

-Ap = xp-Fy(y,u) in Q,
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allows us to express the first term in the cost variation as follows

[Foviae = - [ spydo= [ vp-vydo-
D Q 14

—]pwﬁy'dﬂ:] pu d§d.
(4] D

$1us0) = [ [p+ Fulysu)]- v
D

Hence

and the stationarity condition
6I(u;v) =0, Y€ L*(D)
takes on the form
Fu(y(u;x),u(z)) = —p(z) ae. in D.

For the specific choice of the cost functional, this results in the equality « = —-%p
and gives the extremal value of the cost functional for the control problem in
the following form

7@ =3 [ (6-w + 357l

where y, p are given as a solution of the coupled system of equations:

1

—-Ay = —xp-—p in §,
[ 4
-Ap = xp-(y—wo) in £,
y = 0 on T,
p = 0 on T.

3. Topological derivative

The variation of the geometrical domain Q resulting in the change of the topo-
logical characteristic consists in removing a small ball centered at the point
xg €int(Q \ D), such that B(zg,p) C Q\ D for sufficiently small 0 < p < pq.
Denoting 2, = Q \ B(xg, p), we define the optimal value of the cost functional
for the control problem defined in the domain of integration (2, as a function
depending on small parameter p > 0 and the point xg € (2,

1

TN oo Thasa Noo 1 rl’r.. . 21 a9
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The state and adjoint variables y,, p, are given by the unique solutions to the
following optimality system,

1 .
-Ay, = —XD-app in Q,,

~Ap, = Xxp-(%—%) in Qp,
Yy = 0 on T,
pp = 0 on T,

dyp/On = 0 on T,,

Opp/n = 0 on TI,,

where I', = 0B(zg,p). Observe that we have imposed the free edge condition
on the boundaries of holes.

Our objective is to analyse the behaviour of J(p) = J(2,) as p — 0+.
To this end we evaluate the limits of derivatives J'(p), J”(p) for p | 0. Using
the formulae given in Sokotowski, Zolesio (1992) and Sokolowski, Zochowski
(1999a), the following form of the shape derivative of J(Q,) is obtained,

J'(p) = lim ~

1 gl g
lim <o +5) = J(6) = [ [0y~ )y, + Z19,

where y, p/, are strong shape derivatives, Sokolowski, Zolesio (1992), of solutions
Yps Pp to the state equation and the adjoint state equation, respectively. The
shape derivatives y, pL satisfy the following equations in the weak forms:

/ [Vy, - V¢;+ ~XD " P$1]d2 = / aipa@'dl“

apﬂ a¢2
B or 87

for all test functions ¢y, ¢o € HE (Q)NH?(Q), where 8/87 denotes the derivative
in the tangential direction to the boundary of the hole. In order to simplify the
form of the derivative J'(p), we must introduce the second level adjoint variables
&, Mp, defined by the following system of equations:

/ﬂ [0 b =k =

—AL—xp M = Xxp'(Yp—%) in Qp,
1 1 )
Bt —xp & = —Xxppp 0
& = 0 on T,
N, = 0 on T,
dpfon = 0 on T,,

on/on = 0 on T,,
or, in the weak form, with the test functions ¥,y € HJ(Q):

f [ 7L . oS JO 5 | oo YIRS rf‘. e Xati: A0
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1 1
/ Vit il & st Sl = / L
(6% D (6%

P

After substituting ¢1 := &,, ¢2 := 7, ¥1 = y,, Y2 := p,, these integral identi-
ties take on the forms

8yp agp
rl 0 37’ d]—‘

Op, O
/ (VD - Vo — XD - Y,mp)d = / o npdl“

1
/ (V4 Ve, + =xp - héld0 =

/Q V€, - V), — XD - 19l = /D i ) 46,
1 , 1

/ [y Vi e s~ Bt = / 2 otk i,
(6] D «

and as a result we get the following expression for the first order shape derivative
of the functional p — J(Q,) = J(p):

/ 8yp 35;7 8pp 877p /
e /[ar Fe = - Ll

In order to obtain the limit of J'(p) for p | 0, we use the asymptotic expansions
for the solutions of elliptic equtions in the neighbourhood of the small circular
hole with respect to the radius of the hole, see Géhde (1985), Herwig (1989),
Sokotowski, Zochowski (1999a), and we refer to Section 4 for the details on
asymptotic expansions. Observe that in the case of our control problem the
functions y,, p, are not solutions to single equations, but to a coupled system of
equations. However, y,, p, are harmonic outside of D, and it can be shown that
the same type of expansions as obtained for the single equation can be derived
for y,,p,. This can be expressed in the following way. Let

Vy(zo) = [a,b]T , e €eN\D.

The solution y,, as a function of polar coordinates r, 8 in a neighbourhood of the
ball B(zg,p) can be expressed for r > p as follows:

P’ P’
yp=y+a7c050+b7sin0+72

where
R = p*[0(5) +1(p,1),

and [(p,7) may contain finite powers of Inp,Inr. Hence R = O(p*>~¢) for any
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y in the neighbourhood of z¢ and using the Taylor expansion for y, we have the
following expansion for y,,,

02 o .
Yp = y(x0) +a{? + 1) cosb + b(:r_‘ +71)sind + O(p*™*),

where y(zg) denotes the value at 2 of the solution to the elliptic equation in
the domain €2, i.e., in the full domain without hole,

The above formulae are given in the polar coordinate system with the center
at zg, which coincides with the center of the ball. In particular, from the
expansion it follows that, see Sokolowski, Zochowski (1999a) for a proof,

—L|,=, = 2(—asin 0 + beos B) + O(p' ).

Now, using these expansions for y,, py,§,.17,. it can be shown that
lim J'(p) =
Jim J(e)

and therefore we evaluate the second derivative J"(p). It should be noted, that
the existence of asymptotic expansions for functions &,,7, requires a separate
proof which is given in Sokolowski, Zochowski (1999a), since in the system of
equations for &,,7, not only the geometrical domains of integration, but also
right-hand sides depend on the parameter p. The use of appropriate formulae
given, e.g., in Sokolowski, Zolesio (1992) and Sokolowski, Zochowski (1999a),
leads to the following form of the second order derivative

d a 1
J" =/ —G——Gdl“+—] Gdr.
(p) r,,[ T ] N

Again, it follows that the first integral vanishes as p — 0+ and we obtain

" s 1" o
JUD) = 9111(1;1+J (p) =
L 8yp 3£p Bp,, Onp
- pl—lor([l]+ pf ar ar ' Or @ Id[

Using once more the asymptotic expansions and the explicit form of the above
integral allows us to perform the passage to the limit which results in the final
formula for the second order derivative at p = 07

THEOREM 3.1 The topological derivative

_ o J@\B(zop) - I(@)
Tleol = o, = {B0, )]

is given by the following formula

T (xo) = 2/7J"(0;20) = 8- [Vy(xo) - VE&(20) + Vp(20) - Vn(0)]
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The formula gives the map of the second derivative of the functional J(p) at
p = 0% as a function of the point g € 2. The negative value of J"(0;z0)
indicates that removing from Q a sufficiently small ball around 2y would re-
sult in decreasing of the optimal value J(£2) of the cost functional for control
problem, giving rise to the new, improved design, but with different topological
characteristics.

4. The asymptotic expansion

For the convenience of the reader we provide a proof of the asymptotic expan-
sions which are used in the present paper as well as in Sokotowski, Zochowski
(1999a). We consider a scalar equation.

Let us recall that in the polar coordinate system
1 1
Aw = w,, + ~Wr - 3 Wos: (1)

and, if w is radially symmetric,
1 ;
Aw = w,p + ;wr. (2)

Let Ry < Ry and P(Rg, ;) be a ring
P(Ro,R)) ={z€R? | Ry <|z| <Ry }.
Define also the circle C(R)
C(R)={z€R? | |z|=R}.
Assume that 0 < p < -13-}?9 and Ry < R. We define the boundary value problems,
parametrized by p:
Aw, = 0 in P(p,R),
w, = 0 on C(R), (3)
U
an
Furthermore, we assume that the function h, is continuous on C'(p) and bounded,

= —p-h, on C(p).

ol L2coyy < Mo
uniformly with respect to p.

LEMMA 4.1 The function w, satisfies the following conditions:
i) on any curve I' C P(Ry, R) it may be expressed as
Wy = pz * Gps
where |gp| < Ag(Ay) on T;
i) on C(p) it satisfies inequalily

L N
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Proof. The function h, has the Fourier series expansion

oo

ho =c, + Z(GP"‘ sin k¢ + b, i cos k),
k=1

and in addition
(= s}
A+ (alp+b2,) <AL (4)
k=1

We determine the solution w, of (3) also in the form of a series.
The first term, corresponding to c,, is radially symmetric, and taking into
account (2), has the following representation

w2=A+B]nr.

From the boundary condition

o0,
on
it follows that

A+BlhR = 0,

=—p-c, on Clp),

1
BE = PCpy

hence
B= pch, A= —pch InR,
where |c,| < A;.
Finally,
wg = p%c,Inr — pc,In R. (5)
Consider now the term corresponding to the boundary condition

k

dwy

on

for k > 1 (the cosine term can be treated in the same way). We seek the solution
in the form

=—p-a,k-sinkg¢ on C(p),

w’: = v(r) - sin ko,

and, considering (1), get the representation
1
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Again, from the boundary conditions it follows that

1
k s
AR* +B= = 0,
kAp*~! — kB# = PGpk:
Hence
k42, 4 o R2k
wh = Lok ok _ —)sinko, (6)

? = k(R% + pF1)

where |a, x| < Ay.
Now, substituting r := p in (5),(6) we get

[w)(p)l < Aa(A1)p*|Inpl,

lwp(p)l < As(A1)p”.
The convergence of the series for the solution w, for small p follows immediately
from (4). O
4.1. Derivation of the asymptotic expansions

The solution u, to the equation

Au, = f in Q,,

iy = g ‘on T (7)
du
8_7: = 0 on T,=Clp).
can be represented in the form
Up =Ug + Sp +Vp (8)
where

2
sp= f—z(acosqﬁ-l-bsin o)

and [a,b] = Vug(0).
In 2, the function v, satisfies the boundary value problem:
Av, = 0 in 9,
v, = —sp, on I, (9)
v,
on

We consider only Dirichlet conditions on I', but mixed conditions are treated in

= —p-h, on T,=C(p).
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The function h, = —lp%f%ﬁ satisfies the inequality

lhol < Ay (10)

for any z € C(p). This follows from the fact that there exist 0 < Ry < R such
that

B(Ro) C Q C B(R),

and we consider only p < %Ru.
Next, we express v, in the form of the series

vo=ppt+a+p-(PE+ad)+... (11)
where the functions p}, ¢} satisfy the BVP’s

Apy = 0 in P(p,R)

p:, = on C(R), (12)
apl
2o = ek, v Clp)

and
Agh = 0 in Q (13)
q}, = —sp—p}, on T.

Observe that |s,| < Ag - p? on T
From the Lemma,
lpyl < As(A1)p*[Inp| on C(p),
|PL[ < Ag(A)p® on T

Similarly, from the form of s, it follows that

9 1
521 < As(An)e? (14)

on C(p), since both s, and p}, are uniformly bounded by p* on T.
The next term in the series satisfies the BV Ps:

Ap? = 0 in P(p,R),

pf, = 0 on C(R), (15)
op? dq)

n = on ™ 0

and
A¢2 = 0 in Q (16)
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It is obvious from (14) and the Lemma that it constitutes a higher order cor-
rection.

In general, the idea is as follows: p:'; satisfies the condition on C(p) and
simultaneously disturbs the condition on I'. Then, q",f corrects the condition on
I', but changes again the condition on C(p). However, this new disturbance is
by an order of magnitude smaller.

The fact that all the constants A; are uniform with respect to p guarantees
the convergence of the series (11).

The final conclusion results from (8) and the internal regularity of ug. In
B(Ry) its value in P(p,2p) may be expressed as

up = ug(0) + ar cos ¢ + brsin ¢ + O(p?), (17)

where O(p?) is uniform with respect to p. Substitution into (8) gives

2
up = up(0) + (r + p?)(acosqﬁ-i- bsin ¢) +O(p2)+'up., (18)
where

[vpl < Ap?|Inpl.

5. Numerical example

We consider the domain Q = [—3, 3] x [-3,3] and its subset D = [—1,1]x[-1,1].
The boundary conditions are the same as in the previous sections, and the
reference solution is
Yo =9—r2

The control penalty parameter is a = 0.2. In Fig.1 we see the solution, which
should on the central square approximate yg. Indeed, the graph of the difference
y—yo in Fig.2 confirms this. Fig.4 shows the contour map of J”(0; ). The darker
the shade, the smaller the value of the function. Noting the dark patches, we
locate the places where the material should be weakened in order to decrease the
extremal value of the goal functional (better accuracy at smaller cost). Observe
that they coincide with the regions of high control value, see Fig.3, as should
be expected.

6. Conclusions

The methodology described in this paper works well in these examples, where
we can get the asymptotic expansions of the solution to the state eauation.
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Figure 1. The solution y.

functions y,, p, cease to be harmonic around holes, since they satisfy the system
of equations
-Ay = . in £
y = ap ]
-Ap = (y-w) in Q
y = 0 on T,
p = 0 on T,
which may be transformed for the single variable to
A’p+k*p=0.

The asymptotic expansions are in this case much more complicated. We have
presented the simpler case in order not to obscure the idea of application of the
topological derivative in control problems.
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Figure 2. The difference between solution y and .
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Figure 4. The contour map of J”(0;z).
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