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Abstract: The topological derivative is introduced for the ex­
tremal values of cost functionals for control problems. The optimal 
control problem considered in the paper is defined for the elliptic 
equation which models the deflection of an elastic membrane. The 
derivative measures the sensitivity of the optimal value of the cost 
with respect to changes in topology. A change in topology means 
removing a small ball from the interior of the domain of integration. 
The topological derivative can be used for obtaining the numerical 
solutions of the shape optimization problems. 
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1. Introduction 

In Sokolowski, Zochowski (1999a) the so-called topological derivative was in­
troduced for a class of shape function als. Tn the present paper the derivative 
is obtained for the optimal value of the cost functional for an optimal control 
problem. The optimal value of the cost defines a domain functional depending 
on the domain of integration of the elliptic state equation. The results on the 
topological derivative method have been obtained by the authors for the opti­
mal shape design problems, Sokolowski , Zochowski (1999a, b). Tn particular, 
the topological derivative method justifies and generalizes the so called "bubble 
method" used, e.g., in Schumacher (J 995) for numerical methods of topology 
optimization for the compliance funct ional in the context of 2D elasticity. It 
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for the optimal value of the cost functional for some control problems. Such 
approach would allow consideration of the simultaneous structure design and 
control modifications. 

2. Control problem 

Let us consider the domain n in R.2 with piecewise smooth boundary, its subset 
D (also with the piecewise smooth boundary) and the control problem having 
the elliptic state equation, 

-t::..y XD · u in D, 

y 0 on r =an. 
For given u E L 2 (D), y = y(u) represents, e.g., the defl ection of an elastic 
membrane, loaded by the vertical force u concentrated on D. The characteristic 
function of D is denoted XD, and n is the reference domain for the membrane. 
For such a system we define the cost functional 

I(u) = I(y(u), u) = l F(y, u)dD = ~ l [(y- Yo) 2 + au2 ]dD, 

which is minimized over the space of controls u E L2 (D), a > 0, where Yo is 
a given function. Minimizat ion of I (u) with respect to u means approximat ion 
of a given function Yo in the region D by the deflect ion (shape) of an elastic 
membrane, using the smallest possible load u applied in D. The extremal value 
of the cost functional for t his control problem defines the shape functional, 
depending on the geometrical domain n, 

..1(0) = min I(y(u),u) . 
uE£2(D) 

Variation of the state y' ( v ), corresponding to t he vari ation v of the control 

y(u + sv) = y(u) + sy'(v) , 

satisfies the equation 

-t::..y' XD ·v in 0 , 

y' 0 on r, 

and the variation 8I(u; v) of the cost I is given by 

8I(u; v) = l [Fy(y, u) · y'(v) + Fu(y , u) · v] dO . 

Introduction of the adjoint equation 

-t::..p = XD · Fy(y, u) in 0, 
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allows us to express the first term in the cost variation as follows 

l Fy · y' dfl = -l6.p · y' d0. = l Vp · Vy' dfl = 

-l p · 6.y' dfl = l pv dfl. 

Hence 

8/(u;v ) = l[p+ Fu(y,u) ]· v dfl 

and the stationarity condition 

8/(u; v) = 0, Vv E L2 (D) 

takes on the form 

Fu(y(u; x), u(x)) = -p(x) a.e. m D . 

613 

For the specific choice of the cost functional, this results in the equali ty u = -~p 
and gives the extremal value of the cost functional for the control problem in 
the following form 

lj 1 J'(fl) = -
2 

[(y - Yo) 2 + -p2
] d0. , 

D a: 

where y , p are given as a. solution of the coupled system of equations: 

- 6.y 
] 

n, -xD · -p 111 
a: 

-6.p XD · (y - Yo) 111 n, 
y 0 on r, 
p 0 on r. 

3. Topological derivative 

The variation of the geometrical domain 0. resulting in the change of the topo­
logical characteristic consists in removing a small ball centered at the point 
x0 Eint(D, \ D) , such that B(x0 , p) C n \ D for sufficiently small 0 < p < Po· 
Denoting flp = D, \ B(x0 , p), we define th e optimal value of tbe cost functional 
for the control problem defin ed in the domain of integration np as a function 
depending on small parameter p > 0 and the point Xo E fl , 

T f ~ \ _ Tf ~ ·~ \ _ 1 r fl _. 
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The state and adjoint variables Yr, Pr are given by the unique solutions to the 
following optimality system, 

A ] • n -w.yp -XD · -pp 111 3Gp , 
a 

XD · (Yp - Yo) in Dr , 

0 on r , 
0 on r, 
0 on fp , 

0 on 

where r P = oB(xo, p) . Observe that we have imposed the free edge condition 
on the boundaries of holes. 

Our objective is to analyse the behaviour of J(p ) = J(Dp) as p --t 0+ . 
To this end we evaluate the limits of derivat ives J 1(p), J"(p ) for p l 0. Using 
the formulae given in Sokolowski , Zolesio (1992) and Sokolowski , Zochowski 
(1999a), the following form of the shape derivative of J(Dp) is obtained, 

11(p) = lim ~(J(p + s)- J(p)) = J [( yp- Yo)y~ + .!_PrP~ ] dD , 
s-> 0 s D a 

where y~, p~ are strong shape derivatives, Sokolowski, Zolesio (1992), of solutions 
Yr,Pp to the state equation and the adjoint state equation , respect ively. The 
shape derivatives y~ , p~ satisfy the following equations in the weak forms: 

1 [ 1 ) 1 l 1 Oyp 8¢] 
\lyr · \1¢1 + -;xD · Pr¢1 drl = !}; 07 dr 

np rp 

r [\J I 1 l r Opp 8¢2 , Jr Pp · \1¢2- XD · Yp¢2 drl = Jr !}; 87 df 
np rp 

for all test functions ¢1,¢2 E H6(D) n H 2 (D), where 8j8T denotes the derivative 
in the tangential direction to the boundary of the hole. In order to simplify the 
form of the derivative ] 1 (p) , we must introduce the second level adjoint variables 
~P, 7]p, defined by the following system of equations: 

-~~P - XD · 7]p XD · (yp -Yo) in flp , 

1 1 
-~TJr + -;xD · ~r -;xD · Pp in Dp , 

~p 0 on r , 
7]p 0 on r , 

8~p/8n 0 on f p, 

8ryp/8n 0 on r P , 

or, in the weak form , with the test functions ·tjJ1, W2 E H6 (D): 

r rr;r ~-'· _ -'· l.Jt> _ r I .. 
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After substituting 1>1 := ~P' (h := TJp, 'lj;1 := y~, 'I/J2 := p~ these integral identi­
ties take on the forms 

and as a result we get the following expression for the first order shape derivative 
of the functional p--> .J(rlp) = J(p): 

J'(p) = { [8yp8~P + 8pp8T/p]df= { Cdr. 
lr" 87 87 87 87 lr" 

In order to obtain the limit of J' (p) for p 1 0, we use the asymptotic expansions 
for the solutions of elliptic equtions in the neighbourhood of the small circular 
hole with respect to the radius of the hole, see Gohde (1 985), Herwig (1989), 
Sokolowski, Zochowski (1999a), and we refer to Section 4 for the detai ls on 
asymptotic expansions. Observe that in the case of our control problem the 
functions yp , Pp are not solutions to single equations, but to a coupled system of 
equations. However, yp,Pp are harmonic outside of D, and it can be shown that 
the same type of expansions as obtained for the single equation can be derived 
for yP, Pp· This can be expressed in the following way. Let 

'Vy(xo) = [a, b]T , Xo E n \ D . 

The solution Yp as a function of polar coordinates r, e in a neighbourhood of the 
ball B(xo , p) can be expressed for r :2: pas fo llows: 

p2 p2 
Yp = y +a- cose + b- sine + R 

T T 

where 

n = p2 [0(~) + l(p, r) ], 
T 

and l(p, r) may contain finite powers of ln p, ln r . Hence R = O(p2- <) for any 
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y in the neighbourhood of xo and using the Taylor expansion for y, we have the 
following expansion for yp, 

p2 p2 
YP = y(xo) +a(-+ T) cos B + b(- + T) sinB + O(p2

- ' ), 
T T 

where y(xo) denotes the value at x0 of the solution to the ellipti c equat ion in 
the domain n, i.e., in the full domain without hole. 

The above formulae are given in the polar coordinate system with the center 
at xo, which coincides with the center of the ball. In particular, from the 
expansion it follows that, see Sokolowski, Zochowski (l 999a) for a proof, 

ayp 1 ayp I . 1_, 
ar=-peer=p=2(-asmB+bcosB)+O(p ). 

Now, using these expansions for yP, pp, ~P' 'T/p , it can be shown that 

lim J'(p) = 0, 
p--+0+ 

and therefore we evaluate the second derivative J"(p). It should be noted , that 
the existence of asymptotic expansions for func tions ~P , 'T/p requires a. separate 
proof which is given in Sokolowski, Zochowski ( L999a), si nce in the system of 
equations for ~P' 'T/p not only the geometri cal domains of integration , but also 
right- hand sides depend on the parameter p. The use of appropri ate formulae 
given, e.g., in Sokolowski, Zolesio (1992) and Sokolowski, Zochowski (1999a) , 
leads to the following form of the second order derivative 

J" (p) = 1 [ dd G - : G] df + ~ 1 G df. 
r ,, P n P r,, 

Again, it follows that the first integral vanishes as p __, 0+ and we obtain 

J"(O) = lim J"(p) = 
p--+0+ 

Jim ~1 [8yp8~p + 8pp8'T/p]df. 
p--+O+ p r ,, 8r 8r 8r 8r 

Using once more the asymptotic expansions and the explicit form of the above 
integral allows us to perform the passage to the limit which results in the fin al 
formula for the second order derivative at p = o+. 

THEOREM 3.1 The topological deTivative 

T(xo ) = Jim :J(D \ B(xo, p)) - :J(D) 
p--+O+ IB(xo, P)l 

is given by the following joTmula 

T(xo) = 2/rrJ"(O; xo) = 8 · [V'y(xo) · V'~(xo) + V'p(xo) · V'ry(xo) ] , 
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The formula gives the map of the second derivative of the functiona l J(p) at 
p = o+ as a function of the point xo E n. The negative value of J" (0; x0 ) 

indicates that removing from n a suffi ciently small ball around xo would re­
sult in decreasing of the optimal value J(rl) of the cost functional for control 
problem, giving rise to the new , improved design , but with different topological 
characteristics. 

4. The asymptotic expansion 

For the convenience of the reader we provide a proof of the asymptotic expan­
sions which are used in the present paper as well as in Sokolowski, Zochowski 
(J 999a). We consider a scalar equation. 

Let us recall that in the polar coordinate system 

] 1 
.0-w = Wrr + -Wr + -2· Wq,q,, 

T T 

and, if w is radially symmetri c, 

1 
.0-w = Wrr + -Wr. 

T 

Let Ro < R1 and P(Ro , R1) be a rin g 

P(Ro , RJ) = {x E IR2 I Ro < k l < R1 }. 

Define also the circle C(R) 

C(R) = {x E 1R2 
I lxl = R }. 

(]) 

(2) 

Assume that 0 < p < ~ Ro and Ro < R. We define the boundary va I ue problems, 
parametrized by p: 

.0-wp 0 in P(p, R), 

Wp 0 on C(R), (3) 
OWp 

-p. hp on C(p). on 
Furthermore, we assume that the function hp is continuous on C(p) and bounded, 

llhAL2(C(p)) :S A1 , 

uniformly with respect to p. 

LEMMA 4.1 The function Wp satisfies the following cond'it·ions: 
i) on any CUTVe r c P(Ro, R) it may be expressed as 

- 2. Wp- p gp, 

where lgp l :S Az(Al) on f ; 
ii) on C(p) it satisfies inequality 

I ~ • I 1 \ ') I • 
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Proof. The function hp has the Fourier series expansion 

00 

hp = Cp + l:)ap,k sink¢+ bp,k cos k¢), 
k=l 

and in addition 
00 

c~ + l:)a;,k + b;,k) :::; AI. (4) 
k=l 

We determine the solution 'Wp of (3) also in the form of a series. 
The first term, corresponding to cp, is radially symmetric, and taking into 

account (2), has the following representation 

w~ =A+ BIn r. 

From the boundary condition 

awp an = -p. Cp on C(p) , 

it follows that 

hence 

A+BlnR 

B~ 
p 

where lcP I :::; A1. 
Finally, 

0, 

w~ = p2
cP In r- p2

cp ln R. 

Consider now the term corresponding to the boundary condition 

awk 
_P = -p ·a k ·sin k¢ on C(p) , an p , 

(5) 

for k 2: 1 (the cosine term can be treated in the same way) . We seek the solution 
in the form 

w; = v(r) ·sink¢, 

and, considering (1), get the representation 
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Again, from the boundary conditions it follows that 

k ] 
AR +B Rk 0, 

kA k-l - kB-1-p pk+l 

Hence 

pk+2 0 ap,k k R2k 0 

w~ = k(R2k + pk-l) (r - 7) sm k¢, (6) 

where lap,k I ::::; A1o 
Now, substituting r := p in (5),(6) we get 

lw~(p)l < A2(At)p2llnpl, 

lw~(P)I ::::; A3(Al)p2
o 

The convergence of the series for the solution wp for small p follows immediately 
from (4)0 • 

4.1. Derivation of the asymptotic expansions 

The solution up to the equation 

flup f in Op, 

Up g on r, 
aup 

0 on rp = C(p)o 
an 

can be represented in the form 

where 

and [a, b] = V'uo(O)o 
In OP the function vP satisfies the boundary value problem: 

!lvp 0 in OP, 

Vp -Sp on r, 
avp 

-po hp on rp = C(p)o 
an 

(7) 

(8) 

(9) 

We consider only Dirichlet conditions on r, but mixed conditions are treated in 
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The function hp = - ~~~satisfies the inequality 

(I 0) 

for any x E C(p). This follows from the fact that there exist 0 < Ro < R such 
that 

B(Ro) c 0 c B(R), 

and we consider only p < ~ Ro. 
Next, we express vp in the form of t he series 

Vp = p~ + q! + p . (p~ + q~) + ... 
where the functions p~, q~ satisfy the BVP's 

and 

0 in P(p,R), 

on C(R), 

-p · hp on C(p ), 

.6.q! = 0 in 0 , 
1 1 r qP = -sP - Pp on . 

Observe that ispi :S: Ao · p2 on r . 
From the Lemma, 

IP~I < A3(At)p2 jln Pi on C(p), 

I P~ i :S: A2(At)p2 on r. 
Similarly, from the form of sp it follows that 

oq~ 2 
I on I ::::; A4(A1)P 

on C(p), since both sP and p~ are uniformly bounded by p2 on r. 
The next term in the series satisfies the BVPs: 

.6.p~ 0 in P(p, R) , 

p~ 0 on C(R) , 

op~ - oq~ on C(p), 
on on 

and 

.6.q~ 0 in 0 , 

(11) 

(12) 

(13) 

(14) 

(15) 

(1 6) 
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It is obvious from (14) and the Lemma that it constitutes a higher order cor­
rection. 

In general, the idea is as follows: p; satisfies the condition on C(p) a.nd 
simultaneously disturbs the condition on r. Then, q; corrects th e condition on 
r, but changes again the condition on C(p). However, this new disturbance is 
by an order of magnitude smaller. 

The fact that all the constants Ai are uniform with respect to p guarantees 
the convergence of the series (ll) . 

The final conclusion results from (8) and the internal regularity of u0 . In 
B(Ro) its value in P(p, 2p) may be expressed as 

uo = uo(O) + ar cos¢+ br sin¢+ O(p2
), (17) 

where O(p2 ) is uniform with respect to p. Substitution into (8) gives 

p2 
uo = uo(O) + (r + -)(acos¢+ bsin¢) + O(p2

) +vp, 
r 

( 18) 

where 

5. Numerical example 

We consider the domain D = [-3, 3] x [-3, 3] and its subset D = [-1, 1] x [-1, 1]. 
The boundary conditions are the same as in the previous sections, and the 
reference solution is 

The control penalty parameter is a = 0.2. Jn Fig.l we see the solution, which 
should on the central square approximate YO· Indeed, the graph of the difference 
y-y0 in Fig.2 confirms this. Fig.4 shows the contour map of J"(O ; x). The darker 
the shade, the smaller the value of the function. Noting the dark patches, we 
locate the places where the material should be weakened in order to decrease the 
extremal value of the goal functional (better accuracy at smaller cost). Observe 
that they coincide with the regions of high control value, see Fig.3, as should 
be expected. 

6. Conclusions 

The methodology described in this paper works well in these examples, where 
we can get the asymptotic expansions of the solution to the state eauation. 
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Figure l. The solution y . 

functions yP, pp cease to be harmonic around holes, since they satisfy the system 
of equations 

-f:::.y 
1 

in n, --p 
a 

-!:::.p (y- Yo) in n, 
y 0 on r , 
p 0 on r, 

which may be transformed for the single variable to 

The asymptotic expansions are in this case much more complicated . We have 
presented the simpler case in order not to obscure the idea of application of the 
topological derivative in control problems. 
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Figure 2. The difference between solu tion y and YO· 
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Figure 4. The contour map of J" ( 0; x) . 
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