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A bstract: We consider a general Schri:idinger equation defined 
on an open bounded domain 0 C Rn with variable coeffi cients in 
both the elliptic principal part and in the first-order terms as well. 
At first, no boundary condit ions (B.C. ) are imposed. Our main 
result (Theorem 3.5) is a reconstruction, or inverse, estimate for 
solutions w: under checkable condi t ions on the coeffi cients of the 
principal part, the H 1 (0)-energy at time t = T , or at t ime t = 0, is 
dominated by the L2(L:)-norms of the boundary traces %v'"A and Wt, 
modulo an interior lower-order term. Once homogeneous B. C. are 
imposed, our results yield - ·under a uniqueness theorem, needed 
to absorb the lower order term - continuous observability estimates 
for both the Dirichlet and Neumann case, with an arbitrarily short 
observability time; hence, by duali ty, exact controllabili ty resul ts . 
Moreover, no artificial geometrical conditions are imposed on the 
controlled part of the boundary in the Neumann case. In contrast 
to existing literature, the fi rs t step of our method employs a Rie­
mann geometry approach to reduce the originq.l variable coeffi cient 
principal part problem in 0 C Rn to a problem on an appropriate 
Riemannian manifold (determined by the coefficients of the princi­
pal part), where the principal part is the Laplacian. Tn our second 
step, we employ expli cit Carlema.n estimates at the differenti al level 
to take care of the variable first-order (energy level) terms. In our 
third step, we employ micro-local analysis yielding a sharp trace es­
timate to remove artificial geometrica.! condit ions on the cont rolled 
part of the boundary in the Neumann case. 

K eywords: Schri:idinger equation, inverse/observabili ty est im a­
tes, exact cont rollabili ty, Riemannian mani fo ld , Carleman estimates. 
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1. Introduction. The dual prob lem: continuous observ­
ability inequalities. Literature 

Standing assumptions. (H.J) : Let D C Rn be a bounded, open domain with 
"boundary r = 8D of class C2 . Let fo and f 1 be open disjoint subsets of r with 
r = r o u r 1 · Let 

x = [x1, ... ,xn] (] ) 

be a second-order differential operator, with real coefficients a;1 = aii of class 
C 1 , satisfying the uniform ellipticity condition: 

n n 

(2) 
i,j=l i = l 

for some positive constant a > 0. Assume further that 

n 

L a;j(x)~i~j > 0, \:1 X E Rn , ~ = (6 ,6, .. . ,~n ) E R" , ~ :f. 0. (3) 
i,j= l 

(H.2) : Let F( w) be a linear, first-order differential operator in all variables 
{ t , XI, ... , Xn} on w with L 00 ( Q)-coeffi cients, thus satisfying the following point­
wise estimate: there exists a constant CT > 0 such that 

(4) 

where Q = (0, T] x D and w(t, x ) E C 1 (Q). Let (0 , T] x f ; = L;.i, i = 0,1; (0, T] x 
r =I;. 

Dirichlet control. We consider the Dirichlet mixed problem for the Scbro­
dinger equation in the unkown w(t,x) and its dual homogeneous problem in 
1/J(t,x): 

iwt + Aw = F1(w ) in Q; 

{ '"<+ A<i_~ P(<i) 
in Q; 

w(O, ·) = wo; in D; 
1/J(T, · ) - 1/Jo, in D; (5) 

w!Eo = 0 in I;o; 
·1/!IE = 0 in I; . 

wiE 1 =u in I;1 ; 

with control function u E L2 (0 , T; L2 (f1 )) in the Dirichlet B.C., where F1 ('lj;) 
is a suitable first-order differential operator, depending on the origin al operator 
F , and satisfying the same pointwise bound such as (4) for F. 

Continuous observabili tv inequality in the Dirichlet case. As om 
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following a-priori inequality for the homogeneous Dirichlet '!,b-problem (5) : for 
all T > 0, there is a constant cy > 0 for which 

(6) 

In (6), aaw = 1:~1.= 1 aij 8
8"' vi is the co-normal derivative, where v = [v t , ... , vn ] 

VA 'l., - X:l 

is the unit outward normal on r. Eqn. (6) is the continuous observab·ility i.neq·aal-
ity for the '!,b-problem (5) in the established terminology of Dolecki aud Russell 
(1977). As is well-known , e.g., Lasiecka and Triggiani (1 991 ), Triggiani (1996), 
inequality (6) for the '!,b-problem (5) is, by duality or transposition , eq·nivalent to 
the exact controllability property of the non-homogeneous w-problem (5) at the 
arbitrary timeT, on the spaceY= s- 1(0.), within the class of L2(0, T; L2(fl))­
controls; in other words, such exact controll abili ty is the property that the map 
Lr: 

{ 
{ u, w0 = 0} -+ Lru. = w(T, · ) is surjective 

from L2(0,T; L2(f1)) onto H - 1 (0.), 
(7) 

with w(T, · ) solution of thew-problem (5) at t = T; while inequality (G) is a 
restatement, Lasiecka and Triggiani (1991 ), Triggiani (1 996), of the following 
standard, Taylor and Lay (1980), p. 235, inequality from below of the corre­
sponding adjoint: 

IID[zii L2(0,T;L2(! 1 )) 2': crllziiH - 1 (!1)> (8) 

which is well known to be equivalent to the surjectivity property (7) . 

Remark 1.1. The converse (trace regularity) of inequali ty (6) always holds 
true, for any T > 0, Lasiecka and Triggia.ni (1991 ), Theorem 1.1 . 

Neumann control. Here we let fo -1= 0, f'o n f1 = 0, and consider the 
Neumann mixed Schrodinger problem in the unknown w(t,x) and its dual ho­
mogeneous version in '!,b(t,x): 

iwt + Aw = F1(w); i'l,bt + A·t/J = F('l,b) in Q; 

w(O, ·) = wo; 'l,b (T, · ) = ·1/Jo, in 0.; 

wiEo = 0; ·1/Jb = 0 in I;o; (9) 

ow I 
01/ A Et 

=v.; [ o'!,b + (h,/;] = 0 
OVA >.:: , 

in I; l, 

with control function u E L2(0, T; L2(fi)) = L2(I;1) in the Neum an B.C., where 
F1 is a suitable first-order differential operator depending on F , aud satisfying 
the same pointwise estimate such as ( 4) for F, and {3 is a sui table fu nct ion . 
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Continuous observability inequality in the N eumann case. As our 
second goal we seek to establish - under a suitable additional assumption - the 
following a-priori inequality for the homogeneous Neumann ·~,!;-problem (9): for 
all T > 0, there is a constant cr > 0 for which 

{T { l-t,i;tl 2 d~1:::: crll-t,i;oll~~ (0)> (10) lo Jr1 ~ 

where Hf.
0 
(0) = {f E H1 (0) : flro = 0}, whenever the left-hand side is 

finite. This is the continuous observability inequality for the 't,/;-problem (9) 
Dolecki and Russell (1977). Again, by duality or transposition, inequality (10) 
is equivalent (see e.g., Triggia.ni , 1996) to the exact controllability property of 
the non-homogeneous w-problem (9) at timeT, on the space Hf.

0
(0), within 

the class of L2(0, T; L2(fl) )-controls; in other words, such exact controllability 
is the property that the map Lr: 

{ 

{u,wo = 0}---+ Lru = w (T, ·) is surjective 
(Jl) 

from L2(0, T; L2(fr)) onto Hf,
0

, 

with w(T, · ) being a solution of the w-problem (9) at t = T, while inequality 
(10) is a restatement, Triggiani (1996), of the following standard, Taylor and 
Lay (1980), p. 235, inequality from below of the corresponding adjoint: 

(12) 

which is well known to be equivalent to the surjectivity property (1 1 ), Lasiecka 
and Triggiani (1991), Triggiani (1996). 

Literature. Our results are more general than just continuous observability 
estimates, or - by duality - exact controllability statements. The latter are 
generally obtained in the literature through the former , Dolecki and Russell 
(1977), on the basis of the standard Functional Analysis result, Taylor and 
Lay (1980), p. 235, quoted before. One exception is t he approach pursued by 
W. Littman, who seeks exact controllability results directly, without passing 
through continuous observability inequalities, Littman (1987 , 1 992), Littman 
and Taylor (1992), Horn and Littman (1996a, b). 

A detailed analysis of the various methods used in the literature to establish 
continuous observability inequalities, particularly with reference to second-order 
hyperbolic equations, along with a description of their virtues and shortcomings 
was already given in our previous works La.siecka, Triggiani, and Yao (1 997, 
1998, 1999). Here we shall focus on the counterpart of these considerations, 
as they apply to the Schrodinger equation (9): iwt + Aw = FJ(w) in Q with 
F1 a first-order differential operator in x1 , ... , :en satisfying (4). The energy 
(multiplier) method, based on the principal multiplier h(x) · \7-w(x), h(x) being 
a suitable coercive vector field over n, permits to establish a number of key 
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(i) the "regularity inequality" in the Dirichlet homogeneous case wiE = 
0 (the L2(:ET)-norm of~: is bounded above by Ew(O), for all T), Lasiecka 
and Triggiani (1991), Theorem l .1, indeed, even in the case of a (symmetric) 
principal part with variable coefficients; 

(ii) the reverse "continuous observability inequalities," such as (6) and (10), 
when coupled with the second multiplier w div h, however, only when F1 is actu­
ally a zero-order operator, Lasiecka and Triggiani (1991 ), Machtyngier (l 990). If 
F1 is a bonafide first-order operator, the method fails. To obtain "continuous ob­
servability" reverse inequalities, more sophisiticated methods were subsequently 
introduced: 

(a) Methods of microlocal analysis , after a rescaling of time, depending on 
the frequency, Lebeau (1992): the final statement, which assumes analytic 
boundary and delivers a control acting on a pair (f, T), which geometri­
cally controls 0, refers, however , to the pure w-Schrodinger equation (9) 
with A = -6:.. and F1 = 0. However, it is not an easy matter to verify 
in applications and examples the (sharp) sufficient conditions that all the 
rays of geometric optics hit the effective controlled part :E1 = (0, T] x r 1 of 
the lateral boundary :E of the cylinder Q at a non-diffractive point. This 
condition was first obtained in Littman (1987) for hyperbolic systems and 
then re-obtained and refined in Bardos, Lebeau and Rauch (1992) for 
second-order hyperbolic equations. Moreover, the method uses coo data 
and r, at least at present. Extension to other models such as general 
plate-like equations, seems a serious issue. 

(b) Pseudo-differential methods derived from pseudo-convex fun ctions to ex­
tend Carleman estimates - which were available in the literature, Horman­
der (1985), for solutions with compact support and , generall y, isotropic 
operators - to the case of domains with boundary and to anisotropic op­
erators, as carried out in the general and unifying work of Tataru (1992, 
1994, 1995). However, they require the existence of a pseudo-convex func­
tion, a property which essentially could be verified mostly if not exclusively 
in the case of constant coefficients aij of the principal part A. Moreover, 
at least in Tataru (1992, 1994, 1995), the control is taken to be active in 
the entire boundary r. 

(c) An altogether different approach is proposed and pursued in Littman 
(1987, 1992), Horn and Littman (1996a, b), Littman and Taylor (1992), 
which aims at obtaining steering controls directly through the principle 
of local smoothing + reversibility + nniqueness -> exact controllability. 
This method allows for variable C 00-coefficients of the (strongly elliptic 
and self-adjoint) principal part, but delivers only controls which belong to 
C 00 (80) fort> 0. For many purposes, we would, instead , need a precise 
relationship, in terms of Sobolev spaces, between the space L2(0, T ; L2(r)) 
of controls on [0, T], and the spaceY of exact controllabili ty at t = T ; i.e., 
Y = H-1(0) (Dirichlet case), and Y = H 1 (0) (Neumann r.::l. sP l 
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(much more flexible than the classical differential multipliers in (a ), tuned 
to either the second-order hyperbolic equations, Fursikov and 1manuvilov 
(1996) , Imanuvilov (1990) , Lasiecka and Triggiani (1 994), or else to Schri:i­
dinger equations Triggiani (1996) with A = - !:::.. Tn these cases , the draw­
back of the existence of a pseudo-convex .function remains, of course, for 
general A, while now a more detailed analysis - this time a t t he differ­
ential rather than pseudo-differentia.! level - allows the cont rol to act on 
a suitable part of the boundary. These differential Carl eman multipliers 
can be viewed as a non-trivial generalization of the original mul t ipliers 
h · \lw, w div h in (a), over which they possess an added fl exibility via 
the parameter T below, which allows to handle also those first-order terms 
F 1 as in (4) that the original multipliers could not deal with. See also 
Remark 4.2.1 further on. 

(e) Differential geometric methods, originally introduced in Yao ( J 996) in the 
case of second-order hyperbolic equations, which could handle a t first only 
the case of variable coefficient principal part, bu t no genuiue first-order 
energy level terms. They were the generalization of (a) from t he Euclidean 
to a suitable Riemannian metri c. Subsequentl y, in Lasiecka , Triggia.ni 
and Yao (1997, 1998, 1999), these Riemanni an geometri c methods have 
been extended to the counterpart of (c), thereby handling both vari able 
coeffi cient principal part and first-order energy level terms. 

Contribution of the present paper. T he present paper genera li zes Trig­
giani ( 1996) from the constant coefficient A = - !:::,. and general first -order energy 
level terms to genera.\ A , iu the case of Schri:idinger equa tions, by using a Rie­
mann metric, Yao (1996), in the same way as Las iecka, Triggiani and Yao (1997, 
1998, 1999) generalized the case of second-order hyperbolic equations from con­
stant coefficients to variable coefficients in A , and first-order energy level terms. 
More precisely, in this paper we present a. succe sful combination of t hree key 
ingredients which allow to establish the validity of the continuous observabili ty 
inequalit ies (6) and (10) in the case of (a) variable coeffi cients ai1(x) of t he 
principal part A, subject to verifiable cond itions, and (b) genuine first-order , 
energy level terms F, and (c) with no artificial geometric condi t ions i11 the Neu­
mann case. These three ingredients are: (1 ) the Riemann geometric approach 
of Yao (1996) for variable ai1(x) as improved in Lasiecka. , Triggiani and Yao 
(1997, 1998, 1999) for the addition of genuine .Arst-order energy level terms; 
(2) the Carleman differential multipliers used in Triggiani (1 996) , whi ch now 
replace the original classical differential mult ipli ers of Lasiecka and Triggiani 
(1991), though in the Riemann metric; (3) the pseudo-different ial approach in 
Lasiecka and Triggi a.ni (1994), Triggiani (1996), which led to an L2-estimate of 
the tangential derivative (gradient) of the solution w in terms of L2-boundary 
estimates of Wt and aau· , modulo lower-order terms; see Lemma 6.2 fmther 0 1.1. 

VA 

It is ingredients (1) and (2) that permit to consider variable coefficients aij 
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ometrical conditions present in the literature in the Neumann case, lVl achtyngier 
(1990), on the controlled part of the boundary. 

The present approach provides an arbitrarily small time for the validity of 
the continuous observability inequalities (G) a.ud (J 0), as is the case with pseudo­
convex functions. 

Our new main differential multipliers are (see statements (82) and (91 )): 

(13) 

in the Riemann metric (Rn, g) , where¢ is the pseudo-convex fun et iou defined 
in (50). 

2. Riemannian metric generated by the principal part A 

Recalling the coefficients a;j = aji of A, let A(x) and C(:r:) be, respectively, the 
coefficient matrix and its inverse 

A(x) = (a;j(x)); G(x) = [A(x) r 1 = (g;J( :r )), i,j = 1, . . . ,n; :c E R". (14) 

Both A(x) and G(x) are n x n matrices. A(:r) is positive definite for any x ERn 
by assumption (3). 

Riemannian metric. Let R 11 have the usual topology and x = [:r 1, x2, ... , J;n] 

be the natura l coordinate system. For each x E R n, define the inuer product 
and the norm on the tangent space R~ = Rn by 

n 

g(X, Y) =(X, Y) 9 = I: 9iJ(x)o;{J_i, 
ij= l 

1 

IXIg = (X, X )J' 
n f) 

\f X="" a; - , 
L fJx · 
i=l 1

' 

( 15) 

( J G) 

It is easily checked from (3) that (R",g) is a Riemannian Tlli:lllifold with t be 
Riemanni an metric g. We shall denote g = 2::::)=

1 
.(j;jd:r:idxi . (If A(.1:) = I, i.e., 

A= -6., then G(x) = I , and g is the Encliclean Rn-metric.) 

Euclidean metric. For eacb x E Rn , denote by 

n 
1 

n f) n f) . 
X·Y = I: o:;/3;, IXIo = (X ·Y)2, \i X = I:n; ~' Y = L Ji; ~ E R;~,(17 ) 

ux ., . . u.J: ., 
i= l ·i ~ l · z= I 

the Euclidean metric on Rn. For :r: E R 11
, and with reference to ( 14) , se t 

n ( n \ f) 
A(x)X =I: Laij(x)ai ) -;:c-, 

n 

\f X = ), n1 "'~- E R~ . (18) 
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Thus, recalling the co-normal derivat ive defined in (6), we have 

[) n (n f)) [)~ = L L_ a;j(x) 0: v; = (A.(::r)Y'ow) · v. 
t=l j = l J 

( 19) 

In (l 7), and hereafter, we denote by a. sub "0" entities in the Euclidean metri c. 
Thus, for f E C 1 (0) and X = I:~= l o:.i(x)a~; a vector field on Rn, 

~ of 8 . ( ) ~ Do:.i( :.r) 
Y'of = L..- 8 8' and dtv0 X = L..- - 0 -. -

i=l X; X; i = l X; 

(20) 

denote gradient off and divergence of X in the Eucli dean meLric. 

Further relationships. Tf f E C 1 (D), we define the gradi ent v 9 f off in 
the Riemannian metric g, via the R.iesz representation theorem, by 

(21) 

where X is any vector field on the manifold (Rn ,g). The following lemm a 
provides further relationships, Yao (1996), Lemma 2.1. 

Lemma 2.1. Let x = [x1, Xz, . .. , Xn] be the natuml coordinate system in 
Rn. Let f,h E C1(D). Finally, let H,X be vector fi elds. Then. wdh reference 
to the above notation, we have 

{a) 

(H(x), A(x)X(x)) 9 = H( x) · X( x) , :r ERn; 

{b) 

n ( n fJ j) f) 
\79 f(x) = L L_ a;j (x) fu. ox; = A(x )V'oJ, 

t=l J=l J 

(c) If X= I:~=l ~i a~ ; , then by {21) and {2S}, 

. n [) j 
X(J) = (\79 j,X)9 = (A\7of,X) 9 = Y'o f ·X = L(i Dx · ; 

{d) By {19) and {23), 

fJw 
~ = (A(x)\70 w) · v = \79 w · v ; 
UVA 

(e) by {21), {23) , {22), 

i= l /. 

(\79 j, \79 h)9 = \79 j(h) = (A(x) \i'of, Y' 9 h)9 = Y'of · Y' yh 

(22) 

(23) 

(24) 

(25) 
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(f) If His a vector field in (Rn,g) (see, e.g., (29) below), 

1 . . •) 
('V 9 f, 'V9 (H(J)) )9 = DH('V9 f, \19 !) + 2chvo(I'V9 fi;H)(:r) 

- ~ I 'V9 fl;(:r)divo(H) (.7:), x E R 0
, (27) 

where D H is the covariant differential discussed below; 
(g) by (1), {20) , {23), 

n f) ( n Dw) 
Aw =- L D:ri L aij(x) ox = - divo (A(x)'Vow) = -divo('V 9 w), 

i=l J=l J 

wE C2 (D). (28) 

Covariant differential. Denote the Levi-Civita c:onnectiott in the Rieman­
nian metric g by D. Let 

(29) 

be vector fields on (Rn, g). The covariant differential DH of H determines a 
bilinear form on R~ x R~, for each x E Rn, defi ned by 

DH(Y,X) = (DxH, Y )9 , V X, Y E R~, (30) 

where Dx His the covari ant derivative of H with respect. t.o X. T his is computed 
a.s follows, in the notation of (29), (2tJ), by using the ax ioms of a. connection , 

(3 1) 

where by definition , see (24), 
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rfk being the connection coefficients (Christoffel symbols) of the connection D, 

re _ ~ ~ (ogkp ogip _ ogik) 1 ik-
2 
~aep 

0 
+ 

0 0 
, (gij) = (aij)- . (33) 

p=l Xi Xk Xp 

Inserting (33) into (32), and then (32) into (31) yields 

n 0 n(n )O 
DxH = L:x(hk) oxk + L L hk~irfk oxe = 

k=l £=1 k,t=l 

n [ n l 0 
~ X(he) + k~l hk~irfk oxe. (34) 

Finally, inserting (34) into (30), we obtain by (15), (29), and (32) for X(he) : 

DH(X,X) ~, (DxH,X), ~ '~' [x(h,)+ '~'h,,;rf,] <;9!; (35) 

(by (32)) (36) 

(37) 

Hessian in the Riemannian metric g. Let f E C2 (Rn) . By definition, 
the Hessian of f with respect to the metric g is 

(38) 

n ( ofe n e ) i~l ~i ~ oxi 9ej + k~l !k9ejrik ~j , (39) 

where, by (23), fe = (\19 f)e is the £-th coordinate of \19 f: 

n of 
(\1 9 f)e = fe = L aep ox , £ = 1, 2, . .. , n. 

p=l p 

( 40) 

To prove (39), we recall (34) with H = \19 f, hence with coordinates he= 
(\19 f)e = fe as in (40), and obtain by (32): 

n [ n f) fe n £ l f) 
Dx(\19 !) = ~ t;~i oxi + k~1 fk~irik oxe. (41) 
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Thus, (15), (29) for X and (41) yield 

n [ n of n l e~t 9eq ~ ~i ox: + "~1 fk~irfk ~q ( 42) 

(43) 

n ( n ofe) n ( n e) i~l~i Egeq oxi ~q+ i~l~i e~J geq /k[ik ~q,(44) 

and (44) proves (39), as desired with q = j. 
Thus, by (39), we have that 

D 2 f is positive on R~ x R~ if and only if the 

( 

n of n ) 
n x n matrix mij = L ox: 9ej + L fkgejrf~c , 

£=1 k,£= 1 

(45) 

i, j = 1, ... , n, is positive, with fe given by (40). 

3. Main results. Preliminaries 

Let the domain n and the elliptic operator A in (1) be given satisfying the stand­
ing assumption (H.l)=(2). The additional hypothesis which we shall need to 
establish the continuous observability inequalities (6) and (1 0) is the following: 

Main assumption (H.3). ·v..re assume that there exists a function V : n-) 
R of class C 2 which is strictly convex on D, with respect to the R.iema.nnia.n 
metric g defined in Section 2 modulo a. translation, we may assume without loss 
of genera.lity that v(x) ~ 0. This assumption means that the Hessian of v in 
the R.iemannian metric g is positive on n, as defined by (38), (45): 

D 2v(X,X)(x) > 0, 1:/ x E D, X ER~ . (4G) 

Since S1 is compact, it follows from ( 4G) that there exists a positive cousta.nt 
p > 0 such that 

( 47) 

Under assumption (H.3), we then take the vector field 

( 48) 
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defined as the gradien t of v(:z:) with respec t to t he R iemannian metri c g, see 
(23). 

Section 9 b elow will provide some non-trivi al illustra t ions where t he standing 
assumption (H .l) as well as the main assumption (H. 3) are guaranteed to bold. 

Main results. Continu ous observability in equalities. \iVe are now in 
the position to state our main resu lts concerning t he validity of t he cont inuous 
observability inequalities (6) and (10) for t he Diri chle t and th e Nemnann case, 
respectively. 

Remark 3.1. Both T heorems 3.1 and 3.2, whi ch follow, require a uniqueness 
cont inuation result for the Schrodinger ?/;-problem (5) , respectively (9), with 
over-determined B.C.: 

~?/; I = 0 for Theorem 3.1; ·l/J IE = 0 for Theorem ~U, 
UliA E l 

( 49) 

which asserts that , then , ?/; = 0 in Q, for T as given. This uniqueness contin­
uation result is needed t o absorb the lower order term from est imates ( 146) , 
respectively (1 56) , through a (by now st andard) compactness/uni queness argu­
ment . The known uniqueness continua tion results include the fo llowing cases: 

(a) Analyticity in time, or analyticity in space, subject to additional con­
ditions Tataru (1995), Section 5.2, Horm auder (1997). The sub-case of t·ime­
independent coeffici ents in A and F (as in (1) - (4)) can be reduced to unique­
ness results for the corresponding stati c problem , Hor rnancler (1 985), Theorem 
17.2.6, p . 14. 

(b) A result in Isakov (1 998), Theorem 3.4.8, which has L00 (Q )-firs t order 
possibly time dependent terms F , a nd, for inst ance, A = - !;, (see also La.s iecka., 
Triggiani, Zha ng, to appear). 

(c) The case of (real) analyti c data covered by Homgren-Jolm's t heorem, 
Isakov (1998) , p. 52, Hormancler (1 985). 

T heorem 3.1. (Dirichlet case) Let n, A, and F satisfy the standing as­
sumptions {H.1 )={2), {H. 2)=(4) . Let assumption {H. 3)={47) hold and define 
h (x) by {48). LetT > 0 be arbitmTy. A ssume that h (x ) . v(a:) ::::: 0 for X E ro , 
where we recall that v(x ) = [v1 (x) , . .. , vn(x )] is the unit outward norm al vector 
tor, and where h(x) · v(x) = =~=1 hi(x) vi (x) is the dot product in R n. A ssum e 
the uniqueness continuation property of the over-determined ·lj; -pm blcm {5) with 

:v: I = 0, as described in Remark 3.1. Then, the obsen}(L/ri lity ·inequality {6) 
~ I 

for the Dirichlet ?/; -problem {5) holds. 
. .1 : ___ _ 
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continuation property of the over-detem!ined ·lj; -problem. (9) with ·t/J h~ = 0, as de­
scribed in Remark 3. 1. Then, the observabildy ineqv.ality ( 10) for the N eurnann 
'1/J-pro blem. (9) holds. 

Carleman estimates. The results of Theorems 3.1 and 3.2 can be shown 
as a consequence of suitable Carleman estimates for Eqn. (5) with no boundary 
conditions imposed, which we now describe. 

Let v : (2 __. R + be the strictly convex function, with respect to the Rie­
mannian metric g, provided by assumption (H.3) = (47). Define t.he function 
¢: n x R __. R by 

¢(x,t)=:v(x)-c1t- ~~
2

, T>O. (50) 

For any T > 0, the constant c > 0 can be taken sufficiently large so that such 
function ¢(x, t) has then the following properties: 

(i) 

cj;(x, 0) < -6 and ¢(x , T) < - 6 uniformly in :r E n, (5 1) 

for a suitable constant 6 > 0; 
(ii) there are t0 and t 1 with 0 < t0 < ~ < t1 < T such that 

. 6 
mm ¢(x, t) 2 - - , 

xE!1,tE[to,t!] 2 
(52) 

since¢ (x, ~) = v(x) 2 0 for all x En; see statement above (46) (in fact, only 
the weaker property: min ¢(x, t) 2 a > -6 is actually needed). 

(iii) recalling (48), 

\19 ¢ = \19v = h; ¢ 1(x, t) = - 2c (t - ~), ¢u = - 2c; rp1(a:, 0) = cT; 

¢(x, T) = -cT. (53) 

Remark 3.2. (Optimal choice ofT) We have already noted that by choosing 
c large enough, we may obtain any T > 0 small. Henceforth, in a ll results to 
follow, T > 0 may be taken arbitrarily small, since the proofs put no further 
constraint on c. 

The important property (51) will be invoked in the proof of (J 0 I) of T!Ieorem 
4.2.2 (sa.me as Theorem 3.3). The important property (52) (in fact., on ly the 
weaker property: min¢(x, t) 2 a > -6 is actually needed) will be invoked in 
going from Eqn. (56) to Eqn. (57) in the statement of Theorem ::U (Carleman 
estimates, first version), but not before (56). 
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Theorem 3.3. (Carleman estimates, first version) Assmne (H.l ) = (2), 
(H.2) = (4), and (H.3) = (47). Let f E L2 (Q). Let w be a solution of the 
Schrodinger equation 

iwt+Aw=F(w)+f inQ (54) 

(with no boundary conditions imposed), within the followiny class: 

{ 

wEC([O,T];H1 (0)) 

wt, :~ E L2(0, T; L2(r)). 
(55) 

Let ¢( x, t) be the function defined by (50), p > 0 being the constant in ( 4 7), 
0 > 0 the constant in (51), and CT a generic constant. 

Then, forT > 0, the following one-pammeteT family of estimates holds tme: 

( I 21 T</> 2 2 BTw) E +-; Q e lfl dQ + CT,</>,rllwllc([O,T);L 2 (n)) 

~ (p- C:) k er<f> l\7 ywl;dQ- e~or [E(T) + E(O)] (56) 

~ (p- CT) e- :rf ;·t 1 

E(t)dt - e-JT [E(T) + E(O)], 
T to T 

(57) 

where the boundary terms (BT,.)I E over L; = [0, T] X r O.Te yiven by 

(BTw)IE = Re (h. er<f> :~ h(fiJ)dL:) - ~ j~ eT<f>I Vvwl;h · vdL: 

+~ IJ~ :~ iu div0 (e
7
<Ph)d'E,- i JE·ww1e

7
<1>h · vd'f,l· (58) 

Moreover, we have set for convenience 

(59) 

and we recall that h(w) = (h, 'Vyw) 9 = ('Vy1 ', 'Vyw )0 = Vow· h by (21), and 
(24), with h the vector .field defined by (48). 

Remark 3.3. By (26), (2), we have 

ai'Vow(t, x) l2 :S I'Vvw(t , :r)l; = 'Vow(t , x) · A(:~:)\7ow(t, x) :S a 1I'Vow(t , 1:)!2, 

X E 0, (60) 

where a> 0 is the constant in (2) . Thus, by (59) and (60) we have t hat 

f r-< 1 \ 
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We shall henceforth use (61) freely, particularly for t = 0 and t = T. 

Remark 3.4. Property (51) is 1tsed to obtain (56). Property (52) is used 
to obtain (57). 

Remark 3.5. The presence of the !'actor ~ in front of t.he integral term 
containing f in (56) is critical to extend Theorem 3.3 to a system of coupled 
Schrodinger equations as in Triggiani ( 1996), Theorem 1.1. 

The proof of Theorem 3.3 is given in Section 4. The coun terpart. of Triggiani 
(1996), Theorem 2.1.2 is given next. To this end, we speciali ze the first-order 
operator F( w) to have real first-order coefficients; i. e., we assume that: 

(H.4) the first-order term F( w) is of t.he form 

{
F(w) = R(w)+rw, R(w) = R- 'Vow by (24) where R is a real vector (G

2
) 

field on Rn-fields; and r: Rn ___, cis a fuuction, which is Loo Oil n. 

Theorem 3.4. (Carleman estimates, second version) Assume the hypotheses 
(H.l) = (2) , (H.2) = (4) , (H.3) = (41), and (H.4) = {62). Let f = 0. Then, 
for all T > 0 Sltjficiently large , there exists a constant k¢,r > 0 s·nch that the 
following one-parameter family of estimates holds true: 

> , - 'f { G- C:) ,-;T (t, - t0) --,-T'f } [E(T) + E(O)[ (63) 

~ kq,,r[E(T) + E(O)], (64) 

CT a generic constant, where the boundary terms (BTl ,u )IE over L; = (0, T] X r 
are given by 

(BTl,w) IE = (BTu.)IE + constq,,r,p j~ I :v: I [jwtl + jW(w)j + jrwj]dL; , (65) 

with (BTu.)IE defined by (58) , where W(w) = W ·'Vow, and T+'(:r) is a vector 
fi eld on the submanifold r such that H' ( 1_:) E r X joT :c E r (the tangent space to 
r at x); see (108) below. 

(b) Assume, furth er, that the solution w of (54 ) satisfies 

wb = 0, L;o = (0, T] X fo , and that h(.x)' v( x ) :::: 0, 1.: E ro , (G6) 

with h = \79 ¢ = 'V9 v by (53) , and v(1.:) the u:nd ou.twa:rd nomwl vector at x E r. 
Then, estimate (64) holds trv.e forT > 0 sufficiently large. with the uo'Lindary 

terms(BTl ,w) /E replacedby(BTl ,u· )b, i.e. , evalv.atedonlyonL- 1 = (O, T]x f 1 • 

wh'ile the boundary terms (BTl ,u· )i n evaluated on "Eo = (0 , Tl X rn {LT'(~ ncrtal:'ive: 
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The proof of Theorem 3.4 is given in Section 5. Estimate (64) of Theorem 
3.4 then readily yields Theorem 3.1 on the continuous observab ility inequali ty 
(6) in the Dirichlet case for '1/J = w with f = 0, '1/JIE = 0 and h · v ~ 0 on r 0 . 

This is done in Section 6. However , to prove T heorem 3.2 on the continuous 
observability inequality in the Neumann case for '1/J = w with f = 0, ·t,U IEo = 0, 
fo 'I 0, and h · v ~ 0 on r 0 , an additional non-trivial step is needed. This 
is provided by a result of Triggiani (1996) which will be quoted in Lemma 7.2 
below. Combined with Theorem 3.4, this resul t will permit us to obtain the 
following theorem, which may be viewed as the main estimate (at the energy 
level) of the present paper, the counterpart of Triggiani (1 996), Theorem 2.1 .5. 

Theorem 3.5. Assume (H.l) , (H.2), (H. 3), (H. 4) and that f = 0. Let w 
be a solution of Eqn. (54) ·in the class (55). 

(a) Then, the following estimate holds true. There ex·ists a constant k</J ,r > 0 
for T sufficiently large such that, for any co > 0: 

(b) Assume, furth er, that the solution w of (54) satifies hypothesis {66) . 
Then, estimate {66) holds true with j~ replaced by j~ 1 • 

Estimate (67) implies the continuous obscrvabili ty inequali ty (1 0) for '1/J = w, 
f = 0, under the required assumption (66) : 

'!jJJEo = 0, ro 'I 0, h · v ~ 0 on fo; and !') '1/J = 0, EJ . I 
ULI A EJ 

(68) 

by dropping E(T) in (67) and by absorbing the lower-order interior term by 
compactness/ uniqueness, see Section 8. 

Remark 3.6. (Uniform Stabilization) Consider the well -posed (in the sem i­
group sense, Lasiecka and Triggiani, 1992) Neuma1111 feedback probl em with 
ro 'I 0: 

iwt + Aw = 0 in Q; 

w(O, ·) = wo inn; 
(69) 

in I;;. 

Then, inequality (67) permits to obtain a uniform stabilization (on H 1 (rl)) resul t 
for the Neumann feedback problem (69) in the case of variable coefficients in 
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there exist constants M 2:: 1, {l > 0, such t hat the energy (see (59)) of problem 
(69) satisfies 

E(t) :::; M e-'Lt E(O), t 2:: 0. (70) 

The case of A = -.0. with geometrical conditions on f 1 is given ill Machtyngier 
(1990). 

By contrast, the uniform stabilizat·ion (on H - 1 (D)) of the Sc:hri:idinger equa­
tion under Dirichlet feedback is much more demanding. The case of A = -,0. is 
given in Lasiecka and Triggia.ni (1 991 ). The general case A will require the coun­
terpart of the energy estimate for second-order hyperbolic equations obtained 
in La.siecka., Triggiani and Ya.o (1998). 

4. Proof of Theorem 3.3: Carleman estimate (first ver­
sion) 

4.1. Preliminaries 

We collect here below a few formulas to be invoked in the sequel. 

Green's formula. Jn the proof of Theorem 4.2.1, Eqn. (85), as well as 
Eqn. (91) and (103), we shall make use of t he fo llowing Green 's formu la. Let 
z(x) E C 1 (!1). Then, the following identi ty holds true: 

1 (Aw)zdD = 1 (\l 9 w, \l9 z) 9 dn - / z ~w dr, 
0 0 lr UVA 

(71) 

see also (26). In fact, to prove (71 ), we write by recalling (28) for Aw, and the 
usual divergence formula (La.siecka and Triggiani, 1992, (A. 1), or (88) below): 

in (Aw)zdD = - j~ z div0(\l9w)dn (72) 

in \l9 w · \l0 zdn - J z \l9 w · vdl'. (73) 

Then, recalling identity (24), and (25) for%:~, we see that (n) leads to (71), 
as desired. 

An identity. Let ¢ be the funct ion in (50). Let H = e7 <!J h, wilh h = \79 ¢ 
by (53). Finally, let X = \7 9 w. Then, with reference to (30), the following 
identity to be invoked in the proof of Theorem 4.2.1 , (87) , holds true: 
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Proof of {75). We preliminarily compute, by using the ax ioms of the con­
nection D , 

(76) 

Thus, (76) yields by (24), 

(DxH, X) 9 = Ter</J X (¢)(h, X) 9 + er<P(Dxh, X). (77) 

As to the second term in (77), wit h h = \19 ¢ by (5~~), we have, recalling definition 
(38) of Hessian of¢: 

(78) 

As to the first term in (77), we have with X= \19 w, h = \i9 ~?, rec:a.Jling (21) or 
(24): 

X(¢)= (\19 ¢,X) 9 = (h,X) 9 = (h, \19 w)9 = h(w). (79) 

Thus, (78) and (79), used on the R.H.S. of (77) yield for X = V 9 w , h = V 9 ¢: 

(80) 

which, in turn, proves (75). 

4.2. Energy methods in the Riemann metric: F irst Carleman esti­
mate 

We will complete the proof of T heorem 3.3 through several propositions. The 
strategy follows closely the proof of Triggiaui (1996) , Section 2, for const ant 
coefficient principal part (A = -6.), except that it is carried out in the Rie­
mann metric g defined by (15) , rather than in the Euclidean metri c as in Trig­
giani (1996). The close parallelism between the present treatment and that of 
Triggiani (1996) will be emphasized in the intermediate results as well. The 
counterpart of Triggiani (1 996) , Theorem 2.2.1, is 

Step 1. Theorem 4.2.1. Let w be a solution of Eqn. {54) 111ithin the class 
{55). Then the following one-parameter family of identities holds true forT > 0, 
where L: = [O,T] X r; Q = [O,T] X n: 

Re (h er<f> :~ h(w)dL:)- ~ h er¢ l \1 9w l ~ h ·veiL: 

1 r aw _ .. 
I .,-f'/l l ' n-, ·i r _ 
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-~ k [F(w) + f]w divo(eT<i>h)dQ 

ij' d(eT</J) i [1 ]T + - W -d- h(w)dQ - - WeT<i>h(w)dfl . 
2 Q t 2 n 0 

(8 1) 

In {81), we have h(x) = \79 ¢ = \l9 v(x). see (48), (53) , while D2¢(-, ·) 
is the Hessian (as defined in (38)) of the fu.nction ¢ in (50) ; finally , h(w) = 

(h, \l9 w)9 = (\l 9v, \l9 w)9 = \l0 w · h by (21), and (24) , w-ith the vector field h 
defined by (48). 

Proof. We first set 

a= k WteT<i>h(w)dQ. (82) 

(a) We multiply both sides of Eqn. (1) by the multiplier eT<i>h( ·w) , see (13). 
We shall show that 

(i) 

(83) 

(ii) 

, : r _- -"-- I T dJ I \ OW '" 
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+ i k [F(w) + f]w div0 (eTI/>h)clQ- [l eTI/>·wh(w)clr:l] ~. (84) 

Proof of (i). Once the Schrodinger equation (54) is multiplied by eT1>h(w), 
we obtain by invoking (82) and Green's identi ty (71), 

ia = - kAweT<Ph(iD)clQ + k [F(w) + f ]eT<Ph(w)dQ 

+ k [F(w) + f] eT<i>h(w)clQ. (85) 

By the identity (27) with H = eT¢h, we have 

(\l9 w, \l9 (eT¢h(w))) 9 = D( eT¢h)(\l9 w, \l9w) + ~ divo( /\l9w/; eT 11 h) 

-~ /\l9w/~ divo(eT <I> h) , (86) 

where, by identity (75), the first term on the RHS of (86) is given by 

D(eT<i>h)(\l9w, \l9w) = TeT</> /h(w)/ 2 + eTI/> D 2¢(\l9 w, \7 9 ·w). (87) 

Inserting first (87) into (86) and then the resulting (86) into the second inte­
gral term on the right of (85), we thus obtain (83) , as desired , usi ng also the 
divergence theorem. 

Proof of (ii). Using the standard divergence identity 

l '1/J k · v df = k ·t/J divok dr:l + j~ k · 'V 0 ·~; dr:l (88) 

with k = [eT<i>h ], h = \79¢, see (53) , and 't/J = WtW , we compute, since h(w) = 

\low· h by (24): 

k WtW divo(eT <i> h)dQ 

r r ~ - 1 I Td>7 \ /r\ 
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(by (24)) = k 'Wt'W div0 (er<l> h)dQ +a+ k er<l> wh(wt)dQ, (89) 

recalling again (82) for a in the last step. As to the last term in (89), we 
integrate by parts in time and obtain via (82) 

h 'W(WeT</>h · l/ d"f, =a - a+ k W(W divo( erq'h)dQ 

1 d(eT</>) [l ]T 
- Q wh(w) ~ dQ + ln er<~>wh(w)dn 

0 
. (90) 

We next rewrite the firs t integral term over Q in (90). To this end , if m = m(x, t) 
is a real function in C 1(Q), we may verify the identity 

i k 'Wtii!mdQ = h wm :~ d'E + k [F(w) + f ]wmdQ 

This is done by multiplying the Schrodinger equation (54) by wm and iu te­
grating by parts using t he Green's identity (71 ). Specializing (9 1) with m = 
divo(er <l> h) , we obtain 

1 WtW divo( er<l> h)dQ = - i / w di vo(er<l> h) ~w d"f, 
Q h u~ 

-i k [F(w) + f] w divo(er1' h)dQ , (92) 

which is the desired identity, to be substituted into the RHS of (90) . Upon 
doing this, one obtains identity (84), as desired. So (ii) is proved a.s well. 

Finally, we use the identity Re(ia) =~(a -a), with (ia) given by the expres­
sion in (83) and (a- a) given by the expression in (84): after cancellation of the 
term~ JQ IY'gw l~ div0 (er<l> h)dQ , we finall y obtain identity (81). Theorem 4.2 .1 
is proved. • 

Step 2. (Carleman estimates, first version) This is Theorem 3.3, restated. 

Theorem 4.2.2. Assume (H.l ) = (2), (H. 2) = (4), (H. 3) = (47). Let w be 
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the following estimates hold true: 

)I 211 12 T</> , 2 (BTw E +-;. Q f e dQ + C¢,r,rll wll c ([O,T];L 2 (!1)) 

(93) 

( Cr) .sr ;·t1 
e-rc5 2:: p- - e-T E(t)dt- -[E(O) + E(T)], 

T . t.o T 
(94) 

where p > 0 and 0 > 0 are the constants in (47) and (50), respec tively. E(t) 
is defined in (59) , and finally, the boundary terms ( Bl~,.) IE aTe defined (in 
agreement with (58)) by 

(BTu.)IE = Re (h er<l> :~: h('w)dL, )- ~ h e7 <1> [\7 9 wl~h ·vdl:, 

Proof The passage from (93) to (94) simply invokes property (52) for the 
pseudo-convex function¢. Thus, we prove (93). First, by (4) on F , given c > 0, 
we have the following est imate 

I [ ( ) l "· ( t: I ·1 ? ,, .1 'I I? F w + f e7 "h w) > - -
2 

F(w) +j -eT'' - ? eT'~' h('i'D )-
~E 

(96) 

Thus, invoking (96) and t he key assumption of coercivity in (47), we est imate 
the first three terms on the right-hand side of identity (81 ) . 

l.fo eT</> D 2¢(\7 9 w, \7 9 w)dQ + T k eT</>Ih(w)l2dQ - R.e (.JQ [F(w) + f ]eT9h('tu)dQ) I 

It n ?: ( 071 
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Again, using (4) on F and (60), and the inequality 2ab ~ w2 + f h2
, where a 

denotes "energy level" terms: \10 w, F(w), as vvell as f , while b deuotes lower­
order terms, i. e., w , we obtain the foll owing estimate for the last three J~-term s 

in identity (81 ): for any E > 0, 

I~ k w(Y'gw, Y'g(divo(er<l>h)))gdQ- ~ JQ[F(w) + f ]·tu di vo(cr';'h)dQ 

+~ k w d(::<l>) h(w)dQI 

~ - ~ k er<I> IY' 9wl;dQ- Cr,T,e JQ cr'!' lw l2dQ - E JQ lfl 2err/JdQ. (98) 

Combining (97) with (98) we obtaill the following es timate for the RI-JS of 
identity (81) 

RHS of (81) ~ 

(P- cCr- ~) JQ er<PI Y'uw l;dQ + (r- ~J fo er91h(w)l
2
rlQ 

- cC<t>,TIIwll ~clo,T];L 2 (o)) - c JQ er1'1 fl
2
dQ + ,3o,:r, (!-J9) 

where, using property (51) for ¢(.1:,0) and ¢(:r,T) aud h(w) = (\1 11 w,h)11 via 
(24): 

(100) 

( I 01 ) 

Tn the last step we have reca lled (59) for EC). 
We now select T = 1. so that (r - ,}) = l > 0, drop th e: secoucl in tegral 

E ...,(: (. 

term on the right-hand side of (99), combine the result ing estima te with (101 ), 
and fin all y obtain t he desired estima te (93). • 

Remark 4.2.1. In the third integral over Q on the left-hand side of (97), 
both factors F(w) and h('w) are energy level, v,r it, h F a general first-order op­
era.tor. The virtue of the free parameter T is seen in the second term on the 
right-hand side of (99) , in making t he coeffici ent T- ;}; > 0, after E has been 
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5. Proof of Theorem 3.4: Carleman estimates, second ver­
sion; f = 0 

Assumptions (H.l )-(H.3) are in force throughout . 

Step 1. Lemma 5.1. Let w be a sol'Ution of the Schrod'inger cq'nat'ion (54) 
in the class (55). Then, with reference to (59) fo r E(t), we have for all t, s: 

E(t) = E(s) 

+2Re (it l Wt :~ df deY) + 2Re (1·t k [F(w) + flwt.dD deY). (102) 

Proof. We multiply (54) by ·wt and integrate over (s , t) x D, obtaining by 
virtue of Green's first identity, (71 ): 

!tl !t1 ow i lwtl 2dD deY= Wt B df deY 
s n s r VA 

(1 03) 

(1 04) 

since 

E(t)- E(s) =kit :CY (I'V9 wl~)dCYdD = 2 (1t k (\79 w, \79wt )9 dDclCY ) .(105) 

Thus, (103) yields (102), as desired. • 

Step 2. We next estimate the second integral term on the right-hand side 
of (102) by using 

Wt = -iAw + i[F(w) + / ]. (106) 

Proposition 5.2. Let f = 0. Let w be a solution of Eqn. (54) within the 
class (55). Assume further (H.4) = (62); i.e., that the first-order term F(w) is 
given by 

F(w) = R(w) + rw, R(w) = R ·'Vow by (24), (107) 

where R is a real vector field on R n fields and r : R n ___... C a function . Decom­
poseR as 

R·v(x) 1 \, Tr r / __ \ ( 1 (\Q \ 
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where, by (18), v A ( x) is defined by 

(1 09) 

to be normal of the Sttbmanifold r in the Riemann metTiC g. Moreover. w is a 
vector field on the submanifold r such that vv (X) E r X for X E r. 

Then the following inequalities hold tTue: for T 2:: t 2:: s 2:: 0. 

E(t) ::; E(s) + 1\(T) + k lt E(a)da; (11 0) 

E(s) < E(t) + 1\(T) + k 11 

E(a)da, (Ill) 

where 

1\(T) = 2 h [lwtf + IW(w)l + ITIIwl] l :~:I d~ + C JQ lwl 2
dQ , (112) 

C, k are constants and W(w) = W · 'Vo w, see (24). 

Proof. We initially take f f=. 0, and refer to Remark 5.1 below. According 

to (102) we seek a bound for Re(J: J0 F(w)·wtd0.da). Using ( JOG) for fiit, we 

compute 

/ F(w)wtd0. = -i / AwF(w)d0. + i / IF(w) l2d0. + i. / F(w)j' clO. (113) 
ln ln ln ln 
Applying Green's first theorem in (71 ) and (1 07), we obtain 

l F(w)wtd0. = 

i / F(w) ~w df- i / (\79 w, \79 (R(w)) )9d0.- ·i / T I 'V9w l ~rln 
lr uvA ln ln 

- i l w(\7 9w, \7 9 r) 9 d0. + i fn 1F(w) l2 cl0. + ·i )~ F(w)]' d0.. (114) 

On the other hand, invoking identity (27), we compute for the second term in 
(114), 

l (\79 w, \79 (R(w)) )9 d0. 

r n n i t/ . - . r7 
\ '" ' 1 t ,. /I '""' 12 Tl \ 11"\ ] t ,....., 1'1 1 " 



652 R. T RJ GG II\N I and P.- P. Yt\0 

1 - 11 ? . 1 /' ') = DR(V 9 w, V 9 w)dD - - IV 9 wl; d1 v0 R dD + :- IV y <u i .~ R · v dr , (116) 
11 2 11 2 . r 

using the divergence (Gauss) theorem on the secoud term in ( 11 5). Since the 
vector field R is real, we obtain by (116), 

R.e ( -i fo (V9w, V 9 (R(w)) )9 dD + i L IF(w)l 2dfl) = 0. (117) 

By (107) and the decomposition (108), (109), we compute 

( 
R·v( :1:) _ 

F w) = R · Vwo + rw = l vA(x) l~ A(x)v(.1: ) · V w0 + Tl (w ) + I "W . (11 8) 

Thus, by (19), since ;;: = A(x)Vow · v( ::r) = V01D · A.(1:)v(J:), t he matrix A. 
being symmetric, (118) yields 

i F(w)!C:J w df = 1 a-
r uvA 

i r IR·t~~ 1Vow·A.(x)v(x)l2dl'+i r[TV(w)+rw]~w dJ'. (119) lr VA X g lr UVA 

Then, taking the real part in (119), the first term drops out since R is real and 
we get 

Finally, integrating (114) in time over [s, t], t aking the real part in the resulting 
expression, and invoking ( 117) and (1 20) , yields 

Re (lt fo F(w)wtdfldO") = R.e (1 lt J, [W(w) + nu] ~v: dr da) 

-R.e (i lt fo riV9 wl~dfldO" + i .t L w(V 9 tu, V 9 r) 9 dfldO" 

-iltLF(w)tdndO") , (121 ) 

since vector field R is real. Estimating the right-hand side of ( 121), we obtain 
via. (59) on E(t) and (4) on F, 

2 IR.e (lt fo F(w)wtdfldO") I ~ 2 JE[I IV(w)l + lrl lwl] l :~:I rl~ 
2 r I rl ?: I /"\ 
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where 

C = -
2
1 

max IV' 9 rl 9 + c and k = 2 max lr l +max IV' 9rl9 +f. (1 23) 
xen xen xen 

Eqn. (122) gives the sought-after estim ate. Inserting (122) into the right-hand 
side of identity (102) yields 

(i t / ow ) / I ow I E(t)- E (s) :S 2R.e s J rWtovAdfda +2 J E[I lF(w)l+lrwl] o vA d'L, 

(124) 

We now set f = 0, as assumed, and then (124) yields the desired inequality 
(11 0) via definition (112). Similarly for ( 1 11 ). The proof of Proposition 5.2 is 
complete. • 

R emark 5.1. If f i=- 0, we use again (: IJ6) in the last integral term con­
taining (fwt) in (124), and proceed as in ( .' 14) under the assumption that 
f E L2 (0 ,T; H 1 (D) ), see Triggiani (1996), Eqn. (2.3 .1 6) and fl. for details. 

Step 3. Corollary 5.3. Under the ass1lrnptions of Proposition 5. 2, we 
have forT :2: t :2: s > 0, 

E(t) :S [E( s) + i\(T)] ek(t- s); E(s) :S [E(t) + A(T) ]ek(t-•l; (1 25) 

E(t) :2: E (O) ~ E(T) e-kT- A(T), 0 :S t :S T, (126) 

where i\(T ) and k aTe defined in (112) and (124), respectively. 

Proof. To show (1 25), we apply the cl assical argument of the Gronwall 's 
inequality to (110) and (111 ), where we note that the terms in the brackets are 
independent of t in (1'10), and of s in (1 11 ), respectively. Next , the inequali ty 
on the right of (125) with .s = 0, and that on the left with t = T and s = t, 
yield then 

E(O) :S [E(t) + A(T )]ekT; E (T) :S [E( t ) + A(T)]ekT. (127) 

Summing up these two inequalities in (127), we arrive at (126), as desired. • 

Step 4. (Carl em an est imates, second version) This is Theorem 3.4 restated 
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Theorem 5.4. Let f = 0. Assume (H.l) = (2), (H.2) = (4), (H.S) = (47) , 
and (H.4) = {62). Let w be a solution of the Schrodinger equat·ion (54) w-ithin 
the class (55). Then the following one-parameter fam·ily of estimates holds true 
for all T > 0 sufficiently large: 

~ kef>,.,. [E(O) + E(T)], for some constant k¢ > 0, (128) 

where in agreement with (65), via (58) 

(130) 

Proof. We return to inequality (94 ): on its right hand side, we use inequali ty 
(126), thus obtaining 

l tl E(t)dt ~ E(O) + E(T) e-kT (tl -to) 
to 2 

r 1 ow 1 -2(tl- to) JE[iwt l + IW(w) l + lrwl] ovA d~ 

(131) 

oftor ro,.,Jlinrr II (T' frnm (11 ?' TnsPrtin g (1 ~1) into the right side of (94) yields 
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6. Proof of Theorem 3.1: Continuous observability in­
equality (Dirichlet case) 

Let 7/J be a. solution of the 7/J-problem in (5) (including the B.C. '0IB = 0). We 
want to apply Theorem 3.4 (same as Theorem 5.4) to it. 

Step 1. First, we deal with the values of IV' 9 '01~ and h( 7/J) on tbe boundary 

r, respectively, as required by (BT, .. )IB in (58). 

Lemma 6.1. Let 7/J be the sol11.tion of problem (5) (inr:l11.ding the B. C. '01B = 
OJ. Then, in this case, the boundary term (BT1,,p )IB defined by {65) nnd (58) 
red11.ces to 

(BTl,,p)IB = (BT,p )I B = ~ h erq, I:~ 1
2 

(~~~ d~ , (132) 

where, via (18), we defin e vA(x) , as in {109): 

n ( n ) f) VA(x) = L. L. aij( x )vj(x ) ox = A(x)v(x) . 
i=J j = J I 

(133) 

to be the normal of the S11.bmanifold r in the Riemannian rnetr·ic g. 

Proof. Given x ERn , the vector \79 7/J(x) has the decomposition in to direc t 
product in (R~,g(x)) as 

\797/J(x) = ( \79 7/J(x) , ,:;,
9

) 

9 

, :~9 + Y( x) = Cv~l~ :~)VA + ~~ s. (134) 

Here, by (133), (22), (25) , 

0'~) 
(\79 1jJ(x),vA(x)) 9 = (\7 9'lj;(x),A(x)v(x)) 9 = \79 'l/;(x) ·v(J;) = ~· (135) 

UIJA 

Moreover, Y(x) E R~ satisfies (Y(.1:), vA)g = 0; consequently, by (22) and (133), 
Y(x) 0 v(x ) = (Y(x ), IJA (x))g = 0, that is, Y( x ) E r X> the tangent space of r at 
x . Therefore, if s denotes a unit tangent vector, then, by (24): 

(136) 

is the tangential gradient. Thus, (135), (136) show the RHS of (134). By (134), 
(24), we have 

2 1 2 IY'g'l/.!1 9 = (\7 9 7/J, Y'9 7/J) 9 = \79 7/J('l/J ) = I ( ·)12 (\797/J(x ), vA(.1:))9 + Y(1,b ) (1 37) 
VA X 9 

_1_. _18'0 12 ( 1 •)0\ 
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since ,PIE = 0, hence \10 ,P j_ r and hence Y(¢.> ) = \10·¢;· Y = 0 by (24 ). Simila.rly, 
h(x) has the decomposition into direct product 

( / vA(:r) ) vA(:r:) 
h x) = \ h(x), lvA(x) lg 9 lvA( :r)lg + Z(:r:) , ( 139) 

where Z(x) E f x . Moreover, by ( 13~} ), (25 ), (24), we have 

since the matrix A(x) is symmetric. Hence, by (24), (133), ( 139), ( 140), (22), 

h(,P )(x) = 

(\lg,P, h)g = \h(x) , l::(~i~ ~ ) 
9 

( \19 ·~; , vA(x)) 9 + ( Vr/~J , Z(1:))!1 (14 1) 

h(,P)(x) = (h(x), VA(x))9 ( fJ-0 ) = (h(:r) , A(1:)v( a: ))9 (}(!; 

lvA(x) l ~ OVA l vA(x ) l~ ovA 

(by (22)) (142) 

since, as before, ,P IE = 0, hence, Vo'I/J j_ r , and (\10 ·tb, Z )9 = \lo ·~IJ · Z = 0, via 
(24). 

Finally, we return to definition (58) for BTI:s (written for ·~~ ) and (65) for 
BT1,..p ; use here ,P IE= 0, hence ,PL = 0 and lV ('¢;) = 0 since lF is tniigent ial, as 
well as (137) and (1 42), to obtain 

= r eTc/; I o,P 12 h .~ dL. - ~ r eT1J I o¢.>12 h. ~ d'E,. 
}E ovA lvA I9 2 .JE ov.4 lvAI;i 

(144) 

Then, (144) yields ( 132) , as desired. • 
Step 2. Completion of the proof of T h eorem 3.1. Tn the Dirichlet 

case, to obtain the continuous observability inequali ty (6) from iuequality (64) 
of Theorem 3.4 already proved, it suffices to return to (132) ; since h(:r) ·v(1:) ~ 0 
for X E ro by assumption , we readily have from (132 ), 

1 f 1 d. I:\ 1 
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Then (145) used on the left-hand side of inequ ality (64) yields (when the pa­
rameter T > 0 is large enough) and f = 0: 

(146) 

where k1 , k2 > 0 are constants. 
To get the sought-after inequa.lity (6) from (146), we only need to drop the 

low order term k2II7/JII~([O,T];L 2 (o)) in (146). This may be done, as usual , by 
a compactness/uniqueness argument, Lions ( 1988), Lasiecka, Triggiani (1987, 
1991), see Rem ark 3.1. • 

7. Proof of Theorem 3.5: Main inverse inequality 

We prove the specialized version of Theorem 3.5 for w being a solution of (54) 
within the class (55), which moreover satisfies hypothesis (66) . 

Step 1. Lemma 7.1. Let w solve (54) and satisfiJ (66): wiL:o = 0 and 
h 0 1/ ::; 0 on r 0 0 

(a) Then, in this case, the boundary terms (BT1 ,u )IL: defined by (65), (58) 
reduce to 

(147) 

(BT .)J = (BT .)J = ~ j·T l T</J h(.c:) . v(.c:) I ow 12 ell', < 0· (148) l ,u Eo u. Eo 2 e ( ·) j:)VA - ' 
0 . fo 1/ A :1~ v 

J(BTl ,u• )lEt I ::; 

c{ { l, [I ::I'+ I;: I'+ lwd'] dE + llwll~,(or,ul +<o rnll } (149) 

for any Eo > 0, where ~~· denotes , as before, the tangential gradient (derivative) 
') 

of w on r, so that I~~·~~ = IY'tangentia!'WI6. 
(b) Moreover, if in addition, w satisfies also %:~ b = 0, then 

Proof. Vle return to (65), (58): we then see that BT,. and BT1 ·" coin cide 
on 'f,o = (0, T] x fo, since wiEo = 'Wtll.; o = 0 by assumpt ion. '"'c may d ivide 
BT,.IE as in identity (147), where BTu lEo is given by ( 1118) by virtue of t he 
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this t ime on I:0 ). Similarly, from (65), (58), where h(w ) = (\19 ·1' , \l9 w)9 , we 
readily obtain 

( 151) 

since W(w) = (V 9w, W) 9 , by use also of trace t heory appli ed t o w E f 1 • Next , 
the decomposition (I 34) of V 9 w in normal a ncl t.nngentia l cornponcnt.s y ields by 
virt ue of (137) 

when ~w I = 0; 
UIJA ~l 

(152) 

1 ~~2 + IEJ2w l2 
fJv A fJs 

s ince, from (134), Y( x) E r X l the ta ngent space of r a t x, we have Y(w) 

'Vow·Y = ~ ~~' j 2 by (24), (136). T hen, (152) and (152), used in ( 151) a nd (151), 
yield (150) and (149), respectively. Lemma 7.1 is proved. • 

Step 2. The following resul t is taken frorn Triggiani ( 1996) , 'T'hcorem 2. 1.4. 
Tt is proved by micro-local analysis. Tt is critical in eli minat ing arti.!] cial ge­
ometrical condi tions of t be earlier literature ou the cont roll ed pa rt f 1 of the 
boundary in the Neuma nn case. 

Lemma 7.2. Let f E L2(Q) and let w be a solution of EIJn. {54) ·in the 
class {55). 

{a) Then, for any<: > 0, Eo> 0, and T > 0. there cxi8ts a con.sta:n.t C E,co,T > 
0 such that 

( 153) 

( h) Mrmo.over. ifw satisfies in addition !wooth esis (v6): wl;;., = 0 n:nd h·v :::; 
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Step 4. We next use Lemma 7.2, ("153), to elimin ate the L;l.ngcJJ t ial deriva­
tive from the estimate (149) [or identity (!50)] of the boundary tc·rrns (BT1 , 11 ) 

evaluated over [c, T - c] X rl. 

Proposition 7.3. Let f E L2(Q) and let w be a sohttion of (54) i.n the class 
(55). Moreover, let w satisfy hypothesis ( 66). Then, for all T > 0 sufficiently 
larg e, there exists a constant kq,,T > 0 such that 

. vw T I • ? ') f T - c 1 [I >=1 1
2 l C I 

. 
-;:;---- + lwtl 2 d'E + - cT9 I.f 1-dQ + CT!Iwll~ . 1 1. , 

c r
1 

VVA T . Q L~ (OJ;I/c 0 (D)) 

:?: k,;,,T[E(T) + E(O)]. (154) 

Proof. We apply Theorem 3.4, estimate (64), over [E, T- E] x r rather than 
[0, T] x r ='E . In so doing, we use hypothesis (66) to invoke (148) a nd conclude 

that (BTt,u·)I[,,T-E]xro ::; 0. Moreover, we invoke (1 LJ9) for (BT1.u )lrc,T-c]xr1 

and use the key estimate (153). Finally, the right-hand side of (64) becomes 
kq,,T[E(E) + E(T- c)]. But 

E(E) + E(T- E)~ [E(O) + E(T)]e- kc- 2,\(T). (155) 

This can be proved as in the case of (12G): by using the inequality on the right­
hand side of (I 25) with s = 0 a nd t = E, and t he inequality on the left-ha nd side 
of (1 25) with t = T and s = T- E, and summing up the resulting inequaliti es . 
Thi s yields (155). Then (154) is obtained. • 

Step 5. Completion of the proof of Theorem 3.5. The sought-after inequal­
ity (67) of Theorem 3.5 now follows at once from (154) of Proposition 7.3, by 
further majorizing its left-hand side. Theorem 3.5 is proved. • 

8. Proof of Theorem 3.2: Neumann case 

vVc return to inequality (67) of Theorem 3.5(b), \vritten for the so lution ·w = ·1/J 

of problem (9), with the boundary integral over f 1 , since, by assumption, (66) 
holds true: '1/JIEo :::::: 0 and h · v :::; 0 on ro. Moreover, on 'E 1, it suffices to take 
(3 = 0 in (9), i.e., gv~ IE 1 = 0. Th en, as f = 0, (67) becomes the following 
inequality: 

( '2d'E + /c 11 ·1112 > 1- E(O) })~ '1./)t 'I 1./) C( [O,T]; ff~ + · o(n )) - ' 2 ' 
•. .J j 

(156) 

where k1 , k2 > 0 are constants. F in all y, by a compac:tnessjuniqueuess argument 
aga in, see Remark 3.1, we obtu i11 the desired ill equality in (10). 

Remark 8.1. Given the 1/J-problem (9), say with (3 = 0, the proof of 
Theorem 3.5 uses (135), (137) ami the firs t part. of (n9) rather Llwn (134), 
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9. Some illustrations where Assumpt ions (H.l) and (H.3) 
on A hold true 

Example 9.1. Let n c R 2 be a bounded domain. Assume that A is defined 
by 

Au 

{) ( xy
3 O'U) {) ( 1 + x 2 ov.) +- - + - -

oy l + x2 + y6 ox oy 1 + x2 + y6 oy ' 
(157) 

Set 

A(x,y) ~(a;;)~ ( 

1 +y6 :x;y3 

) 
1 + x2 + y6 1 + x2 + y6 

xy3 1 + x2 

1 + x2 + y6 1 + x2 + y6 

(1 58) 

Then, det A(x,y) = 1/(1 +x2 +y6) > 0, V (x,y ) E R 2 , and A(:z.:,y) is strictly 
positive definite on the bounded domain n. T hus, assumption (HJ) is veri fi ed. 

The inverse of A(x, y) is 

( 

1 + x2 

G (X, y) = (9ij) = A - l (X, y) = ' 
-:ry3 

(1 59) 

Consider the Riemannian manifold (R2 , g) , where the Rieman ni an metric g 
is defined in t he natural coordinate system (x,y) via (159) by 

g = (1 + x 2 )dx dx- xy3dx dy- xy3dyd.x + (1 + y6 )dy dy. (160) 

Consider the surface in R3 given by 

{ 
1 2 1 4} M = (x ,y,z)iz = f(x,y) = 2x - 4Y , 

with the induced Riemannian metric 9M· Then the (projection) map <P(:r , y, z) = 
(x,y), for any (x,y,z) EM, determines an isometry from M to (R2 ,g). The 
Gaussian curvature of (R 2 , g) at ( x:, y) is t herefore 

k(x, y) =the Gaussian curvature of M at (:r, y, z) 

(~) (!fl.) - (li)2 ax 8y2 8x8y 

l. fAr\ 2 f Ar \ 212 
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Since, by (161 ), the Gaussian curvature is non-positive, the function defi ned by 

v(x) = d~(x, xo), xo fixed E R 2
, ( 162) 

i.e., as the square of the distance d9 (x, .ro), in the Riemann metric of (I GO), from 
x to a. given fixed point xo E R 2 , is in fact strictly convex on (R 2 , 9), V/ u, Shen 
and Yu (1989), p. 108. Thus, assumption (1-1 .3) also holds true in thi s case. 

Example 9.2. Let !1 c Rn be a. bounded domain and a; > 0 constants, 
i = 1 , 2, ... , n. Consider the operator on R n, 

Set 

A(x) = (aij) = 

n 

1 + La~x~ 
k = l 

n 

1 + L a7x7 -a1a2 x 1x2 

i = 2 

- a2a1x2x1 1 + L a;x; 
if-2 

Then, the inverse of A(x) is 

G(x) = (9ij) = A-1(x) = 

(163) 

(I 64) 

i= l 

(165) 

Consider the Riemannian manifold (Rn,g), where the Riemannian metric g 
is determined in the natural coordinate system x = (:1: 1 , 1:2, ... , .r11 ) via (1611) by 

n 

.Q = ) Q;;dx;dx; = ) (b.;;+ a;a; :r;X; )dx; dx, . (HiG) 
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where c5ij is 1 if i = j , and 0 if i -:F j. I t follows that 

n 

L 9ij~i~j = L (c5ij + a;ajXiXj )~i~j;::: IE!6 , 
i,j= l i ,j= l 

(167) 

It is easily checked from the above inequality that (R't, g) is a coJTipl eLe non ­
compact Riemannian manifold. 

Let M be the hypcrsurface in R"+ 1 give tt by 

{ 

n } NI = [xJ 'X2, ... 'Xn, :l:n+ l ]j:r;n+ l = ~ L a ; :r~ ' 
··=1 

(168) 

with the induced Riemanni an metric in R" . Then, by Yao (Hl99), Lemma :3.1, 
M is of everywhere positive sectiona l curvature . lt is easi ly verified from (166) 
that the map <P : M ----* (R n, g), defined by 

<P(p) =X = [x1, . .. , XnJ, 'rJ p = [.T J, ... , :r:n : :l:n-t-1] E iV.f, 

is an isometry between A1 and (R",g). Thus, (Rn,g) itself is of everywhere 
positive sectional curvature. Siuce (Rn. ,g) is a non-compaet, comple t.e Ri eman­
nian manifold of everywehre positive sectional curvatme, Lheu there exists a c oo 
strictly convex function v(x) on (Rn, g) by Greene and vVu (1976). i\ ssuwpt.ions 
(H.J) and (H.3) are verified. 

References 

BARDOS, C., LEBEAU, G. and RAUCH, .] . (1992) Sharp efficient. conditions 
for the observation, control, and stabi li zat ion of wave from the bound­
ary. SIAM J. Contro l and Optirn., 30, 5, (SC'ptcmber), 102 '1-10Ci5. 

DoLECKI, S. and RuSSELL, D . (1977) A general th eory of observation nnd 
control. SIAM J. Contml, 15 , 185 .. ·220. 

FURSIKOV, A.V. and lMA NU VILOV , O.Yu. (1996) ContTOllabildy of Evolv,­
tion Equations, Lecture Notes N. :34, Resea rch In stitute of lvi ~Jtl wrnat i cs, 

Seoul National University, Seoul , 1Sl- 7LI2. 
GREENE , R.E. and \Vu , H. (1976) coo convex fuJJctions and manifolds of 

positive curvature. Acta Math. , 137, 209-2,15. 
Ho , F.L. (1986) Observab ilite frontiere de !'equation des a ndes. C. fl. Awd. 

Sci. Paris, Ser. I Math, 302, tl4 3-- 4~16. 

HoRMANDER, L. (1985) The analysis of l-inea'!' partial diffci·enb.al ope·mtoTs. 
III, Springer-Verlag. 

HoRMANDER, L. (1997) On the uniqncness of the Cauchy problem nnder par­
t.ial analvticitv assum otions. Tn: Geom.etTical optics and related. tovics, 



l.nvcrse/observability csLimates for Schrod ing;e r equa tions 

HoRN, M.A. and LITTMAN, \ iV. (1996a) Boundary control of a SchrCiclinger 
equation with non-constant principal part. In: Conl:ro l of Pm'f'ia.l D4feT­
ential Equations and Applicat·ions. E . Casas, eel. Lecture No t.es in Pure 
and Applied Mathemat ics, 174, 10"1 - 106. 

HORN, M.A. and LITTMAN , vV. (1996b)Local smoothingproperti esofaS chro­
dinger 's equation with non-constant principal part. ln : Modelling and Op­
timization of Distributed Parameter· Syst em:>, K. Mal anowski , Z. N ahorski, 
and M. Peszy1'iska, eels ., Chapman and Hall , 104- 110. 

l:tv!ANUVILOV , O.Yu. (1990) Exact cont rollabili ty of hyperboli c equa tions, Part 
I & II. Automatika, 3, 10- 13; and 4 , 31--39 (in Russian). 

ISAKOV, V. (1998) Inverse Problems for Part-ial Differential Equations. Springer­
Verlag, Applied Mathematical Sciences, 127. 

IsAKOV, V. (1993) Ca rl ema.n type estimates in au anisotropic case and appli ­
cations. J. Diff. Eqns., 105, 2, 217- 238. 

LASIECKA, I. a nd TRIGGIANI , R. ( 1989) Exact controlla.bi liLy of t he wave equa­
tion with Neumann boundary control. Appl. Math. Optim. , 19 , 243- 290. 
Preliminary version in Springer-Verlag LNCTS n. 100 ( 1987) , :3 16- :371. 

LASIECKA, I. a nd TRIGGIANI , R. (1991) Optim a l regul arity, exact. controll a­
bility a nd uniform stabilization of t he Schrodinger equation. Diff. f3 
Int. Eqns., 5, 521 - 535 . 

LASIECI<A, I. and TRIGGIANI, R. (1992) Uniform st a bili zat ion of th e wave 
equation with Dirichlet or Neumaun feedback control without. geometr ica l 
conditions, Appl. Math. Optim. , 25 , 189- 244. 

LAS IECKA, I. and TRIGGIANI, R. (1994) Carleman es timates and exact bound­
ary controllability for a system of eoupled , non-conservative second order 
hyperbolic equations. Marcel Dekker , Lect-ure Notes in Pnre and Applied 
Mathematics, 188, 215- 243 . 

LASIECKA, I. , TIUGGIANI , R . and YAO , P .F. (199 7) Exact cont roll abi li ty for 
second-order hyperbolic equations with varia ble coefilcicnt-principa l par t 
and first-order terms. Nonl-inear Analysis TheoTy, Methods t1 Applicn­
tions, 30, 1, 111 - 122. 

L ASIECKA, I., TRIGGIANI, R. a nd YAO , P.F. (1999) Tnversc/ observability es­
timates for second-order hyperboli c. equations wit b vari a bl e codfic:ienLs . 
J. Math. Anal. f3 Appl., 235, 13-57. 

L ASIECKA , I. , TRIGGIANJ, R. and YAO , P.F. (1998 ) An observc1bili ty C'stima­
te in L2 (D) x H-1 (D) for second order hyperbolic equat ions wit h vari able 
coefficients. Contm l of distrilnded parameter and stochast-ic s:v.sterns, Proc: . 
of JFIP Conf., Hangzbou. Kluwer , 71 -78. 

LASIECKA , I., TRIGGIANI, R .. a nd ZHANG, X. ( 1990) Non-conserva ti ve wave 
equations with unobserved Neum ann B.C.: global uniqueness a nd observ­
abiliLy in one shot . AlviS Conternpom.ry Mnthematics, to ilppe;tr . 

LEBEAU, J . (1992) Controle de ]'equation de Schrodinger . J. Moth. Pu:res f3 
Appl. , 71, 267- 291. 



664 R. TRI GG IAN I and P.- F. YAO 

LIONS , J .L. (1988) Controlabilite exacte, stabilisation et pertur·bations des sys­
temes distribues. Masson, Paris, 1, Controlabilite exac te. 

LITTMAN, W. (1987) Near optimal time boundary controllabi li ty for a class of 
hyperbolic equations. Springer-Verlag LNCIS, 97, 307- :3 12. 

LITTMAN, W. (1992) Boundary controllabi li ty for polyhedral dom ains. Springer­
Verlag LNCIS, 178, 272- 284. 

LITTMAN, W . and TAYLOR, S. (1992) Smoothing evolu tion equations and 
boundary control theory. Journal d'analyse Mathematique, 59, I 17- 1:31 . 

MACHTYNGIER, E . (1990) Contr6la bilite exacte et stabili sat ion fronti ere de 
]'equation de Schrodinger, C. R . Acad. Sc. Par·is, 310, J, 801 - 806. 

TATARU , D. (1992) A-priori pseudo-convexity energy estimates in domains 
with boundary and exact boundary controllability for conservative P.D.E. 's, 
Ph.D. thesis, University of Virginia, May. 

TATARU, D. (1994) A-priori estimates ofCarleman type in domains with bound­
ary. J. Math. Pure et Appl. , 73, 355-387. 

TATARU, D. (1995A) Boundary controll ability of conservative PDEs. Appl. 
Math. Optim., 31, 257- 295. 

TATARU, D. (1995B) Unique continua tion for solutions to P.D.E.'s, between 
Hormander 's theorem and Holmgren 's theorem. C'omm. Part. Diff. 
Eqns., 20, 5&6, 855--884. 

TAYLOR, A .E. and LAY, D.C . (1980) Introdv.ction to Fnnction.al Analysis. 
John Wiley, second edition. 

TRIGGIANI, R. (1996) Carleman estimates and exact boundary controllability 
for a system of coupled non-conservat ive Schrodinger equations. Special 
issue Rendiconti dell ' Istitnto de·i Matemat·ica dell ' Universita di Trieste, 
XXVIII, 453- 504, Supplement, Dedicated to the memory of Pierre Gris­
vard. 

YAo, P.F. (1996) On the observabilily inequalities for exact controllability of 
wave equations with variable coefficients. Prepri nt , and SIA M J. Control, 
to appear. 

Wu, H., SHEN, C .L . and Yu , Y.L. (1989) An introd1tction to R-iemann ge­
ometry (in Chinese), University of Beijing, Beiji ng. 


