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Abstract: We consider a general Schrodinger equation defined
on an open bounded domain Q C R™ with variable coefficients in
both the elliptic principal part and in the first-order terms as well.
At first, no boundary conditions (B.C.) are imposed. Our main
result (Theorem 3.5) is a reconstruction, or inverse, estimate for
solutions w: under checkable conditions on the coeflicients of the
principal part, the H'(Q)-energy at time t = T, or at time t = 0, is

dominated by the Ly(X)-norms of the boundary traces 5);"4 and wy,

modulo an interior lower-order term. Once homogeneous B.C. are
imposed, our results yield — under a uniqueness theorem, needed
to absorb the lower order term - continuous observability estimates
for both the Dirichlet and Neumann case, with an arbitrarily short
observability time; hence, by duality, exact controllability results.
Moreover, no artificial geometrical conditions are imposed on the
controlled part of the boundary in the Neumann case. In contrast
to existing literature, the first step of our method employs a Rie-
mann geometry approach to reduce the original variable coefficient
principal part problem in Q C R™ to a problem on an appropriate
Riemannian manifold (determined by the coefficients of the princi-
pal part), where the principal part is the Laplacian. In our second
step, we employ explicit Carleman estimates at the differential level
to take care of the variable first-order (energy level) terms. In our
third step, we employ micro-local analysis yielding a sharp trace es-
timate to remove artificial geometrical conditions on the controlled
part of the boundary in the Neumann case.
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1. Introduction. The dual problem: continuous observ-
ability inequalities. Literature

Standing assumptions. (H.1): Let 2 C R" be a bounded, open domain with
*boundary I' = 99 of class C2. Let I'g and I'; be open disjoint subsets of T" with
I'=ToUT;. Let

n a a
Av==3 o (@) g ). 2= lorneea (1)
A=l -

be a second-order differential operator, with real coefficients a;; = a;; of class
C', satisfying the uniform ellipticity condition:

Y aii@)g; 2a) &, zeq, 2)
1,y=1 i=1

for some positive constant @ > 0. Assume further that

mn
Z ﬂ.gj(l‘)éifj > 0, Y a (= Rn, f = (£l~£‘2-'--s£n) (3 R". £ ?5 0. (3]
1,j=1
(H.2): Let F(w) be a linear, first-order differential operator in all variables
{tyz1,...,2n} on w with Lo, (Q)-coefficients, thus satisfying the following point-
Wise estimate: there exists a constant C'p > 0 such that

. |F‘(w)|2 < c"l"[|vf""':]|2 L w?], v t,z € Qa (I)
where Q = (0, T]xQ and w(t,z) € CY(Q). Let (0.T|xT; =%;, i =0,1;(0,T] x
r=x,

Dirichlet control. We consider the Dirichlet mixed problem for the Schro-
dinger equation in the unkown w(t,z) and its dual homogeneous problem in

U(t, z):

wy + Aw = Fi(w) in Q;
wy + Ay = F() in @;

w(0, - ) = wp; in Q;

(T, - ) = o, in €; (5)
wly, =0 in Lo;

'!,"')|E =0 in E._
wlp, =u in ¥y;

with control function w € Lo(0,T; Ly(T)) in the Dirichlet B.C., where Fj(3)
is a suitable first-order differential operator, depending on the original operator
F, and satisfying the same pointwise bound such as (4) for F.

Continuous observability inequality in the Dirichlet case. As our
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following a-prioeri inequality for the homogeneous Dirichlet ¥-problem (5): for
all T > 0, there is a constant ¢z > 0 for which

2 g
/; ‘/[.1 ‘E dy 2 CT”TJ{’U”H(HQ)' (6)
In (6), ;%‘-‘j = Z?;‘:l aﬂ-%'%ui is the co-normal derivative, where v = [y, ..., vy

is the unit outward normal on I'. Eqn. (6) is the continuous observability inequal-
ity for the 1-problem (5) in the established terminology of Dolecki and Russell
(1977). As is well-known, e.g., Lasiecka and Triggiani (1991), Triggiani (1996),
inequality (6) for the ¥-problem (5) is, by duality or transposition, equivalent to
the exact controllability property of the non-homogeneous w-problem (5) at the
arbitrary time 7', on the space Y = H~!(2), within the class of Ly(0,7"; Lo(T"y))-
controls; in other words, such exact controllability is the property that the map
Ly:

{u,wop =0} — Lyu = w(T, - ) is surjective ™)

from Ly(0,T; Ly(T'y)) onto H™'(Q),
with w(T, - ) solution of the w-problem (5) at ¢ = T'; while inequality (6) is a
restatement, Lasiecka and Triggiani (1991), Triggiani (1996), of the following
standard, Taylor and Lay (1980), p. 235, inequality from below of the corre-
sponding adjoint:

L7zl 20,73 2010y 2 erllzll -1 (o) (8)

which is well known to be equivalent to the surjectivity property (7).

Remark 1.1. The converse (trace regularity) of inequality (6) always holds
true, for any T' > 0, Lasiecka and Triggiani (1991), Theorem 1.1.

Neumann control. Here we let Ty # 0, ToNT; = 0, and consider the
Neumann mixed Schrédinger problem in the unknown w(t, z) and its dual ho-
mogeneous version in (¢, x):

(dwy + Aw = Fy(w); (b + AP = F(y) in Q;
w(0, - ) = wp; (T, - ) = 1o, in £2;
\ wls, =0; Yls, =0 in Xo; (9)
i
o =u; [a—“ +Hw] =0 in¥y,
 Oualys L L 0va o

with control function u € La(0,T; Lo(T'y)) = L2(¥,) in the Neuman B.C., where
F) is a suitable first-order differential operator depending on F', and satisfying
the same pointwise estimate such as (4) for F, and 3 is a suitable function.
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Continuous observability inequality in the Neumann case. As our
second goal we seek to establish — under a suitable additional assumption - the
following a-priori inequality for the homogeneous Neumann ¢-problem (9): for
all T' > 0, there is a constant ¢y > 0 for which

T
/ |¢t12 ¥y 2 CTHT«;)DH.?;[{ () (10)
0 I o

where HE (?) = {f € H'(Q) : flr, = 0}, whenever the left-hand side is
finite. This is the continuous observability inequality for the «-problem (9)
Dolecki and Russell (1977). Again, by duality or transposition, inequality (10)
is equivalent (see e.g., Triggiani, 1996) to the exact controllability property of
the non-homogeneous w-problem (9) at time 7', on the space H} (€2), within
the class of Ly(0,T’; Lo(I'y))-controls; in other words, such exact controllability
is the property that the map Lp:

{ {u,wp =0} = Lru =w(T, - ) is surjective

11
from Lo(0,T; Lo(T'1)) onto Hllo, ()

with w(T, - ) being a solution of the w-problem (9) at t = T', while inequality
(10) is a restatement, Triggiani (1996), of the following standard, Taylor and
Lay (1980), p. 235, inequality from below of the corresponding adjoint:

I1Z72l 2 0.7522(r0)) 2 exllzllag » (12)

which is well known to be equivalent to the surjectivity property (11), Lasiecka
and Triggiani (1991), Triggiani (1996).

Literature. Our results are more general than just continuous observability
estimates, or — by duality —~ exact controllability statements. The latter are
generally obtained in the literature through the former, Dolecki and Russell
(1977), on the basis of the standard Functional Analysis result, Taylor and
Lay (1980), p. 235, quoted before. One exception is the approach pursued by
W. Littman, who seeks exact controllability results directly, without passing
through continuous observability inequalities, Littman (1987, 1992), Littman
and Taylor (1992), Horn and Littman (1996a, b).

A detailed analysis of the various methods used in the literature to establish
continuous observability inequalities, particularly with reference to second-order
hyperbolic equations, along with a description of their virtues and shortcomings
was already given in our previous works Lasiecka, Triggiani, and Yao (1997,
1998, 1999). Here we shall focus on the counterpart of these considerations,
as they apply to the Schridinger equation (9): iwy + Aw = Fy(w) in @ with
F, a first-order differential operator in zy,...,x, satisfying (4). The energy
(multiplier) method, based on the principal multiplier h(z) - Vio(z), h(z) being
a suitable coercive vector field over {2, permits to establish a number of key
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(i) the “regularity inequality” in the Dirichlet homogeneous case w|y =
0 (the Lo(Xr)-norm of %% is bounded above by E,(0), for all T), Lasiecka
and Triggiani (1991), Theorem 1.1, indeed, even in the case of a (symmetric)
principal part with variable coefficients; '

(ii) the reverse “continuous observability inequalities,” such as (6) and (10),
when coupled with the second multiplier @ div h, however, only when F is actu-
ally a zero-order operator, Lasiecka and Triggiani (1991), Machtyngier (1990). If
F} is a bonafide first-order operator, the method fails. To obtain “continuous ob-
servability” reverse inequalities, more sophisiticated methods were subsequently
introduced:

(a) Methods of microlocal analysis, after a rescaling of time, depending on
the frequency, Lebeau (1992): the final statement, which assumes analytic
boundary and delivers a control acting on a pair (', T'), which geometri-
cally controls (2, refers, however, to the pure w-Schrédinger equation (9)
with 4 = —A and F; = 0. However, it is not an easy matter to verify
in applications and examples the (sharp) sufficient conditions that all the
rays of geometric optics hit the effective controlled part ¥; = (0, 7] xT'y of
the lateral boundary ¥ of the cylinder @ at a non-diffractive point. This
condition was first obtained in Littman (1987) for hyperbolic systems and
then re-obtained and refined in Bardos, Lebeau and Rauch (1992) for
second-order hyperbolic equations. Moreover, the method uses C*° data
and T', at least at present. Extension to other models such as general
plate-like equations, seems a serious issue.

(b) Pseudo-differential methods derived from pseudo-convex functions to ex-
tend Carleman estimates — which were available in the literature, Horman-
der (1985), for solutions with compact support and, generally, isotropic
operators — to the case of domains with boundary and to anisotropic op-
erators, as carried out in the general and unifying work of Tataru (1992,
1994, 1995). However, they require the existence of a pseudo-convex func-
tion, a property which essentially could be verified mostly if not exclusively
in the case of constant coefficients a;; of the principal part A. Moreover,
at least in Tataru (1992, 1994, 1995), the control is taken to be active in
the entire boundary T

(c) An altogether different approach is proposed and pursued in Littman
(1987, 1992), Horn and Littman (1996a, b), Littman and Taylor (1992),
which aims at obtaining steering controls directly through the principle
of local smoothing + reversibility + uniqueness — ezact controllability.
This method allows for variable C*-coefficients of the (strongly elliptic
and self-adjoint) principal part, but delivers only controls which belong to
C*°(0Q) for t > 0. For many purposes, we would, instead, need a precise
relationship, in terms of Sobolev spaces, between the space Lo (0,7T'; Lo ("))
of controls on [0, 77, and the space Y of exact controllability at t = T i.e.,
Y = H~1(Q) (Dirichlet case). and Y = HY(Q) (Nenmann case)
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(much more flexible than the classical differential multipliers in (a), tuned
to either the second-order hyperbolic equations, Fursikov and Imanuvilov
(1996), Imanuvilov (1990), Lasiecka and Triggiani (1994), or else to Schré-
dinger equations Triggiani (1996) with A = —A. In these cases, the draw-
back of the existence of a pseudo-convex function remains, of course, for
general A, while now a more detailed analysis — this time at the differ-
ential rather than pseudo-differential level - allows the control to act on
a suitable part of the boundary. These differential Carleman multipliers
can be viewed as a non-trivial generalization of the original multipliers
h - V@, @ div h in (a), over which they possess an added flexibility via
the parameter 7 below, which allows to handle also those first-order terms
Fy as in (4) that the original multipliers could not deal with. See also
Remark 4.2.1 further on.

(e) Differential geometric methods, originally introduced in Yao (1996) in the
case of second-order hyperbolic equations, which could handle at first only
the case of variable coefficient principal part, but no genuine first-order
energy level terms. They were the generalization of (a) from the Euclidean
to a suitable Riemannian metric. Subsequently, in Lasiecka, Triggiani
and Yao (1997, 1998, 1999), these Riemannian geometric methods have
been extended to the counterpart of (c¢), thereby handling both variable
coefficient principal part and first-order energy level terms.

Contribution of the present paper. The present paper generalizes Trig-
giani (1996) from the constant coefficient A = —A and general first-order energy
level terms to general A, in the case of Schridinger equations, by using a Rie-
mann metric, Yao (1996), in the same way as Lasiecka, Triggiani and Yao (1997,
1998, 1999) generalized the case of second-order hyperbolic equations from con-
stant coefficients to variable coefficients in A, and first-order energy level terms.
More precisely, in this paper we present a successiul combination of three key
ingredients which allow to establish the validity of the continuous observability
inequalities (6) and (10) in the case of (a) variable coeflicients a;;(x) of the
principal part A, subject to verifiable conditions, and (b) genuine first-order,
energy level terms F', and (c) with no artificial geometric conditions in the Neu-
mann case. These three ingredients are: (1) the Riemann geometric approach
of Yao (1996) for variable a;;(z) as improved in Lasiecka, Triggiani and Yao
(1997, 1998, 1999) for the addition of genuine first-order energy level terms;
(2) the Carleman differential multipliers used in Triggiani (1996), which now
replace the original classical differential multipliers of Lasiecka and Triggiani
(1991), though in the Riemann metric; (3) the pseudo-differential approach in
Lasiecka and Triggiani (1994), Triggiani (1996), which led to an La-estimate of
the tangential derivative (gradient) of the solution w in terms of Ly-boundary
estimates of w; and %, modulo lower-order terms; see Lemma 6.2 further on.

It is ingredients (1) and (2) that permit to consider variable coefficients a;;
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ometrical conditions present in the literature in the Neumann case, Machtyngier
(1990), on the controlled part of the boundary.

The present approach provides an arbitrarily small time for the validity of
the continuous observability inequalities (6) and (10), as is the case with pseudo-
convex functions.

Our new main differential multipliers are (see statements (82) and (91)):

e™EN(V 6,V ,b), and @ divo(e™*V,0) (13)

in the Riemann metric (R", g), where ¢ is the pseudo-convex function defined
in (50).

2. Riemannian metric generated by the principal part A

Recalling the coefficients a;; = aj; of A. let A(z) and G(zx) be, respectively, the
coefficient matrix and its inverse

A(z) = (ai5(z)); G(z) = [A(2)]” = (gs5(2)), d,j=1,....n; € R". (14)

Both A(z) and G(z) are n xn matrices. A(x) is positive definite for any x € R"
by assumption (3).

Riemannian metric. Let R™ have the usual topology and x = [y, 29, ..., 2]
be the natural coordinate system. For each x € R", define the inner product
and the norm on the tangent space R = R" by

9X.Y)=(X,Y)g = gij(a)ai3;. (15)
ij=1
X, =X, X8, ¥vxX= Zn Y = 3 52 R (16)
(+ R gg 1 ‘_‘.9 A 7 = op e

[t is easily checked from (3) that (R", g) is a Riemannian manifold with the
Riemannian metric g. We shall denote g = 3_7_, gi;daidr;. (If A(x) = 1, e,
A = —A, then G(z) = I, and g is the Euclidean R™-metric.)

Euclidean metric. For each 2 € R", denote by

XY —Za,,ﬁ';. IX[o=(X-V)} VX = o 5 Z aie S g
=1

=1 g=1

the Euclidean metric on R™. For « € R", and with reference to (141), set

z)X = Z(Y% aJ\ & v,\':ffm-;;‘leRf;. (18)
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Thus, recalling the co-normal derivative defined in (6), we have

31},4 2. (Z a;j(a ) = (A(2)Vow) « . (19)

In (17), and hereafter, we denote by a sub ‘U’ entities in the Euclidean metric.
Thus, for f € C}(Q) and X = Y7, ai(z) 5= a vector field on R”,

Vol = Z o a 2 and dive(X) Z aZLJ) (20)

denote gradient of f and divergence of X in the Euclidean metric.

Further relationships. If f € C'(Q), we define the gradient Vofof fin
the Riemannian metric g, via the Riesz representation theorem, by

X(f) =(Vof, X)g, (1)

where X is any vector field on the manifold (R™,g). The following lemma
provides further relationships, Yao (1996), Lemma 2.1.

Lemma 2.1. Letz = [z1,22,....2,] be the natural coordinate system in
R". Let f,h € C*(Q). Finally, let H, X be vector fields. Then. with reference
to the above notation, we have

(a)
(H(z), A(z)X (x))g = H(z) - X(2), xz€R" (22)

(b)
Z(Z% " ) = A@®)Vof, z€RY (23)

i=1

() IFX=Y,:& 5‘3— then by (21) and (23).

XT)m (¥, Xy = (AT 5y = Vo % = Zs, s (24)
(d) By (19) and (23),
% = (A(z)Vow) - v = Vw - y; (25)

(e) by (21), (23), (22),
(Vof, Voh)g = V,f(h) = (A(@)Vof,V4h), = Vof - V,h
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(f) If H is a vector field in (R",g) (see, e.g.. (29) below).

(Vof . Vo(H(f)))y = DH(ng‘ng)+%(lng(Wﬂ'EHJ(:ﬁ)

- ;;-]Vgﬂi(ar)divo(H)(ar), xz € R", (27)

where DH 1is the covariant differential discussed below;

(9) by (1), (20), (23),

n 8 n a :
Aw = Z a (Z a-{j (-L) 5‘1—!:(") = "‘di\-’u(“q_(:ﬂ)vl]ﬂ!) = __di\"[}(vg'ﬂ‘).

w € C¥(Q). (28)

Covariant differential. Denote the Levi-Civita connection in the Rieman-
nian metric g by D. Let

n a n 0
— e S = | — pAS
H ; hu Az’ X ; & duy. ! (ZJ)

be vector fields on (R", g). The covariant differential DH ol H determines a
bilinear form on RZ x R, for each 2z € R™, defined by

DH(Y,X) = (DxH,Y),, VX.Y€RZ, (30)

where Dy H is the covariant derivative of H with respect to X. This is computed
as follows, in the notation of (29), (24), by using the axioms of a conmection,

. 0 < 0
DxH = ZD,\ (m ) Z X (he) 5= +;§h;\.D,\» (ﬂ)
n B n a .
= ZXU“‘)E - Z he&i Doy, (O_M) (31)
k=1 kyi=1
where by definition, see (24),
X(hi) = (Vohe, X)y = X - Vohy = > & g"”“

=1

(_8_\ = %\I“f i 29
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I'Y, being the connection coefficients (Christoffel symbols) of the connection D,

1« Agkp , 09ip  Ogik o .
T =5 > ag ( 5 TEx bm )¢ Gmd=lmg ™ (33)

— azk p

Inserting (33) into (32), and then (32) into (31) yields

DxH = ZX th—+Z (Z ik ‘k) B

=1 \ ki=1

Z [ hf) i Z hk£1 zk] 88 (34)

£=1 k=1
Finally, inserting (34) into (30), we obtain by (15), (29), and (32) for X (h¢):

DH(X,X) = (DxH,X);= + > h&Th | Goes  (35)
£,j=1 k=1
- 5hg
(by 32) = > + 3 heasTh | 665 (36)
i=1 | €= k,b=1
Thus, in R} x RZ, DH( - ) is equivalent to the n x n matrix

n ah mn o

(m*s‘ = '55‘923- + > hkgfji‘ik) . Li=1...,n (37)
=g =8 k=1

Hessian in the Riemannian metric g. Let f € C?(R"). By definition,
the Hessian of f with respect to the metric g is

D’f(X,X) = (Dx(Vyf):X)q (38)
= Z 3 (Z afg j Z frges m) (39)
=1 k=1

where, by (23), f¢ = (V4f)e is the £-th coordinate of V, f:
(Vofle=fe= praa,p’ £=1,2,...,7M (40)

To prove (39), we recall (34) with H = V,f, hence with coordinates hy =
(Vgf)e = fe as in (40), and obtain by (32):

Dx(Vyf) = Z lz& ot + Z fréil m“ e (41)

=1 |i=1 % k,i=1
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Thus, (15), (29) for X and (41) yield

) n
(Dx(Vyf), X)y = ng Zea ey narh g (42
,q— ki=1
= Z gfq&t aff gq Z gquk{irfkgq (‘13)
£,q,i=1 £,q,k,i=1

= Z & (deq 5 )fq i Z & (Z gef;fkrfk) £,{44)

i,q=1 i,q=1 £,k=1

and (44) proves (39), as desired with ¢ = 3.
Thus, by (39), we have that

D2f is positive on R7Z x RZ if and only if the

%
n X n matrix (m” - Z afj gej + Hzl frge; m) (45)
tg =100, 18 p051t1ve, with f; given by (40).

3. Main results. Preliminaries

Let the domain € and the elliptic operator A in (1) be given satisfying the stand-
ing assumption (H.1)=(2). The additional hypothesis which we shall need to
establish the continuous observability inequalities (6) and (10) is the following:

Main assumption (H.3). We assume that there exists a function v : Q —
R of class C? which is strictly convex on Q, with respect to the Riemannian
metric g defined in Section 2 modulo a translation, we may assume without loss
of generality that v(z) > 0. This assumption means that the Hessian of v in
the Riemannian metric g is positive on €2, as defined by (38), (45):

D%y(X,X)(x) >0, Vze€, X €R. (46)

Since Q is compact, it follows from (46) that there exists a positive constant
p > 0 such that

D*(X,X) > plX2, VzeQ, X €R]. (47)
Under assumption (H.3), we then take the vector field

h(z) = Vg u(z) = Z (Z a”(s':} ) (48)

i=1
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defined as the gradient of v(x) with respect to the Riemannian metric g, see
(23).

Section 9 below will provide some non-trivial illustrations where the standing
assumption (H.1) as well as the main assumption (H.3) are guaranteed to hold.

Main results. Continuous observability inequalities. We are now in
the position to state our main results concerning the validity of the continuous
observability inequalities (6) and (10) for the Dirichlet and the Neumann case,
respectively.

Remark 3.1. Both Theorems 3.1 and 3.2, which follow, require a uniqueness
continuation result for the Schriodinger -problem (5), respectively (9), with
over-determined B.C.;

sz

= 0 for Theorem 3.1; |y, =0 for Theorem 3.2, (49)
aVA 21

which asserts that, then, v» = 0 in Q, for T" as given. This uniqueness contin-
uation result is needed to absorb the lower order term from estimates (146),
respectively (156), through a (by now standard) compactness/uniqueness argu-
ment. The known uniqueness continuation results include the following cases:

(a) Analyticity in time, or analyticity in space, subject to additional con-
ditions Tataru (1995), Section 5.2, Hormander (1997). The sub-case of time-
independent coefficients in A and F (as in (1)-(4)) can be reduced to unique-
ness results for the corresponding static problem, Hormander (1985), Theorem
17.2.6, p. 14.

(b) A result in Isakov (1998), Theorem 3.4.8, which has L. (Q)-first order
possibly time dependent terms F', and, for instance, A = —A (see also Lasiecka,
Triggiani, Zhang, to appear).

(c) The case of (real) analytic data covered by Homgren-John's theorem,
Isakov (1998), p. 52, Hormander (1985).

Theorem 3.1. (Dirichlet case) Let Q, A, and F satisfy the standing as-
sumptions (H.1)=(2), (H.2)=(4). Let assumption (H.3)=(47) hold and define
h(z) by (48). Let T > 0 be arbitrary. Assume that h(z)-v(a) < 0 for x € Tg,
where we recall that v(z) = [ (x),...,v.(x)] is the unit outward normal vector
toT', and where h(z)-v(z) = Y., hi(z)vi(x) is the dot product in R™. Assume
the uniqueness continuation property of the over-determined v-problem (5) with

ay
ra

©
for the Dirichlet p-problem (5) holds.

— ~ o~ - AT A A o Ptor 3] 1 |

=0, as described in Remark 3.1. Then, the observability inequality (6)
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continuation property of the over-determined v¥-problem (9) with v|y, = 0. as de-
scribed in Remark 3.1. Then, the observability inequality (10) for the Neumann
Y-problem (9) holds.

Carleman estimates. The results of Theorems 3.1 and 3.2 can be shown
as a consequence of suitable Carleman estimates for Eqn. (5) with no boundary
conditions imposed, which we now describe.

Let v : § — R* be the strictly convex function, with respect to the Rie-
mannian metric g, provided by assumption (H.3) = (47). Define the function
¢: xR — R by

2
t - = R 5 1 ) (50)

o(z,t) =v(z) — ¢ 5

For any T' > 0, the constant ¢ > 0 can be taken sufficiently large so that such
function @(z,t) has then the following properties:
(i)
¢(z,0) < =6 and ¢(z,T) < —é uniformly in = € €, (51)

for a suitable constant § > 0;
(ii) there are ty and t; with 0 <t < % <ty < T such that

i 1) > -, 52
xERTéEo.tiié(l' ) - & (5 )
since ¢ (, %) =v(zx) > 0 for all z € €; see statement above (46) (in fact, only
the weaker property: min ¢(x,t) > o > —§ is actually needed).

(iii) recalling (48),

Voo = Vv =h; ¢y(z,t) = -2 (1‘. - g) , Pu = —2¢; ¢u(x,0) = T

¢(z,T) = —T. (53)

Remark 3.2. (Optimal choice of ") We have already noted that by choosing
¢ large enough, we may obtain any 7" > 0 small. Henceforth, in all results to
follow, T > 0 may be taken arbitrarily small, since the proofs put no further
constraint on c.

The important property (51) will be invoked in the proof of (101) of Theorem
4.2.2 (same as Theorem 3.3). The important property (52) (in fact, only the
weaker property: min¢(z,t) > o > —4 is actually needed) will be invoked in
going from Eqn. (56) to Eqn. (57) in the statement of Theorem 3.3 (Carleman
estimates, first version), but not before (56).
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Theorem 3.3. (Carleman estimates, first version) Assume (H.1) = (2).
(H2) = (4), and (H.8) = (47). Let f € Ly(Q). Let w be a solution of the

Schrédinger equation
wy+Aw=Flw)+f inQ (54)
[with no boundary conditions imposed/, within the following class:
w € C(0,T); H'(2)
;T‘i € Ly(0,T; Ly(T)). il
Let ¢(z,t) be the function defined by (50), p > 0 being the constant in (47),

0 > 0 the constant in (51), and Cr a generic constant.
Then, for 7 > 0, the following one-parameter family of estirnates holds true:

2 .
(BTw)|s + - /Q ™| f1PdQ + Cr g+ 1wl|E 0,72 (02))

W,

C i T eméT e N 3
> (p_ TT) ]Q Vw2 — [E(T) + E(0) (56)
ty =0T
> ( _ 9'3".) % [ Ewdt— —E(T) + E©O)), (57)
T to T

where the boundary terms (BT, )|y, over X = [0,7] x I' are given by

dw | ;
= il — = ’,Td) 1w 2 % i ¥
(BT)|s = Re ([z % h{w )dE) 5 /):c [V, u [yh vdy

A

/ — @ divg(e" h)dY — i / wwe™h - vdy. (58)
JE
Moreover, we have set for convenience
E(t) = Eu(t) = / [Vow(t, 2)7dS2, (59)
Q

and we recall that h(w) = (h, Vow), = (Vyu.Vyw), = Vow - h by (21). and
(24), with h the vector field defined by (48).

Remark 3.3. By (26), (2), we have
a!Vg'w(t,:.r:)|2 < |Vyu’(r.._::)|§ = Vouw(t,z) - A(2)Vow(t,x) < a) | Vow(t, z)]?,
z €], (60)

where a > 0 is the constant in (2). Thus, by (59) and (60) we have that

TL | -~ ey P ' LhY
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We shall henceforth use (61) freely, particularly fort =0 and t =T

Remark 3.4. Property (51) is used to obtain (56). Property (52) is used
to obtain (57).

Remark 3.5. The presence of the factor L in front of the integral term
containing f in (56) is critical to extend Theorem 3.3 to a system of coupled
Schrédinger equations as in Triggiani (1996), Theorem 1.1.

The proof of Theorem 3.3 is given in Section 4. The counterpart of Triggiani
(1996), Theorem 2.1.2 is given next. To this end, we specialize the first-order
operator F(w) to have real first-order coeflicients; i.e.. we assume that:

(H.4) the first-order term F(w) is of the form

{F(w) = R(w)+rw, R(w)= R-Vow by (24) where R is a real vector (62)

field on R™-fields; and r : R™ — C is a function, which is Lo, on Q.

Theorem 3.4. (Carleman estimates, second version) Assume the hypotheses
(H.1) = (2), (H.2) = (4). (H.8) = (47). and (H.4) = (62). Let f = 0. Then,
for all T > 0 sufficiently large, there exists a constant kg . > 0 such that the
following one-parameter family of estimates holds true:

(BT1,)ls + Croor 0l 0,700

—kT O
> e {( - ) S t-to)- l} [E()+ EO)]  (63)
> ke [E(T) + E(0)], (64)

Cr a generic constant, where the boundary terms (BT )|y over ¥ = (0,T] x T’
are given by

(BT )y = (BTw)|s + constqa,r‘p/ ‘%| [[w] 4 [W (w)| + |rw]]dX, (65)
> A

with (BT )|s defined by (58), where W(w) = W - Vow, and W(x) is a vector
field on the submanifold T such that W(x) € I'; for x € ' (the tangent space to
I' at x); see (108) below.

(b) Assume, further, that the solution w of (54) satisfies

wlg, =0, Xo = (0,T] x I'y, and that h(x)-v(z) <0, x € Iy. (G6)

with h = V¢ = Vv by (53), and v(z) the unit outward normal vector at x € T

Then, estimate (64) holds true for 7 > 0 sufficiently large. with the boundary
terms (BT . )|y replaced by (BT 4)|s, , i.¢.. evaluated only on ¥y = (0, T]x T,
while the boundary terms (BT .. ), evaluated on Lo = (0,11 %y are neqative:
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The proof of Theorem 3.4 is given in Section 5. Estimate (64) of Theorem
3.4 then readily yields Theorem 3.1 on the continuous observability inequality
(6) in the Dirichlet case for ¥ = w with f =0, ¥|g =0and h-v < 0 on I'g.
This is done in Section 6. However, to prove Theorem 3.2 on the continuous
observability inequality in the Neumann case for ¢ = w with f = 0, ¢y, =0,
I'g #0, and h- v < 0 on Ty, an additional non-trivial step is needed. This
is provided by a result of Triggiani (1996) which will be quoted in Lemma 7.2
below. Combined with Theorem 3.4, this result will permit us to obtain the
following theorem, which may be viewed as the main estimate (at the energy
level) of the present paper, the counterpart of Triggiani (1996), Theorem 2.1.5.

Theorem 3.5. Assume (H.1), (H.2), (H.3), (H.4) and that f = 0. Let w
be a solution of Eqn. (54) in the class (55).

(a) Then, the following estimate holds true. There ezists a constant kg » > 0
for T sufficiently large such thai. for any ez > 0:

[

(b) Assume, further, that the solution w of (54) satifies hypothesis (66).
Then, estimate (66) holds true with [, replaced by |, .

dw

2
2
8V_4 + thl

2 i (8 n L
dE+Csllwll] 1 1ty 2 Kor[E(T)+E(0)](67)

Estimate (67) implies the continuous observability inequality (10) for ¢ = w,
f =10, under the required assumption (66):
o

Yls, =0, To#0, h-v<0onTy and —| =0, (68)
vy o

by dropping E(T) in (67) and by absorbing the lower-order interior term by
compactness/uniqueness, see Section 8.

Remark 3.6. (Uniform Stabilization) Consider the well-posed (in the semi-
group sense, Lasiecka and Triggiani, 1992) Neumann feedback problem with

]“095@:

1wy + Aw =0 in Q;
w(0,-) = wo in (69)
wlg, =0; o =-—w; in Y.

6UA 2.

Then, inequality (67) permits to obtain a uniform stabilization (on H'(£2)) result
for the Neumann feedback problem (69) in the case of variable coefficients in
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there exist constants M > 1, ¢ > 0, such that the energy (see (59)) of problem
(69) satisfies

E(t) < Me™™E(0), t>0. (70)

The case of A = —A with geometrical conditions on I'y is given in Machtyngier
(1990).

By contrast, the uniform stabilization (on H~'(9)) of the Schrédinger equa-
tion under Dirichlet feedback is much more demanding. The case of A = —A is
given in Lasiecka and Triggiani (1991). The general case A will require the coun-
terpart of the energy estimate for second-order hyperbolic equations obtained
in Lasiecka, Triggiani and Yao (1998).

4. Proof of Theorem 3.3: Carleman estimate (first ver-
sion)

4.1. Preliminaries

We collect here below a few formulas to be invoked in the sequel.

Green’s formula. In the proof of Theorem 4.2.1, Eqn. (85), as well as
Eqn. (91) and (103), we shall make use of the following Green’s formula. Let
z(z) € C'(Q). Then, the following identity holds true:

dw
A(Aw)zdﬂ—fn(vgw, Vg2)gdf — rzmdr, (71)

see also (26). In fact, to prove (71), we write by recalling (28) for Aw, and the
usual divergence formula (Lasiecka and Triggiani, 1992, (A.1), or (88) below):

/(Am)zdﬁ = —/ z divg(V w)dQ (72)
0 Q

= / Vow - VozdQ — / z2Vaw-vdl. (73)
1] r

Then, recalling identity (24), and (25) for 5% we see that (73) leads to (71),
as desired.

An identity. Let ¢ be the function in (50). Let H = e™h, with h = V¢
by (53). Finally, let X = V,w. Then, with reference to (30), the following
identity to be invoked in the proof of Theorem 4.2.1, (87), holds true:

DH(X,X) = (DxH,X), (Dv .« (e7%h), Vyw) (74)

g

If

= 1e™[h(w)]® + e D*¢(V, w,V,w), (75)
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Proof of (75). We preliminarily compute, by using the axioms of the con-
nection D,

DxH = Dx(e™h)=X-Vo(e™®) h+e"*Dxh
= 7€™X Voo h+e"®Dyh. (76)
Thus, (76) yields by (24),
(DxH,X), =1 X($)(h, X), + e™*(Dxh, X). (77)

As to the second term in (77), with h = V¢ by (53), we have, recalling definition
(38) of Hessian of ¢:

(Dxh, X), = (Dx(V,9), X), = D2$(X, X). (78)

As to the first term in (77), we have with X = V,w, i = V¢, recalling (21) or
(24):

X(¢) =(Vg0, X)g = (h, X)g = (h,Vow)g = h(w). (79)
Thus, (78) and (79), used on the R.H.S. of (77) yield for X = V w, h = V¢
(DxH,X), = re™[h(w)]? + e™®DH( X, X), (80)

which, in turn, proves (75).

4.2. Energy methods in the Riemann metric: First Carleman esti-
mate

We will complete the proof of Theorem 3.3 through several propositions. The
strategy follows closely the proof of Triggiani (1996), Section 2, for constant
coefficient principal part (A = —A), except that it is carried out in the Rie-
mann metric g defined by (15), rather than in the Euclidean metric as in Trig-
giani (1996). The close parallelism between the present treatment and that of
Triggiani (1996) will be emphasized in the intermediate results as well. The
counterpart of Triggiani (1996), Theorem 2.2.1, is

Step 1. Theorem 4.2.1. Let w be a solution of Eqn. (54) within the class
(55). Then the following one-parameter family of identities holds true for v > 0,
where ¥ = [0,T] xT; Q =[0,T] x Q:

ow 1 ) ,
il o X A TF e e
Re ([Se aVAh(w)dL) 2/88 |Vgwlgh - vdS

1 [ dw

S T T (] f - T "
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:/ eT¢D2¢(Vg'w,Vg1D)dQ+T/ e™|h(w)2dQ
Q Q

~ Re ( /Q [F(w) + f](e””h)(zﬁ)dQ) + % /Q BV 0, Y, (divo(e™h))),dQ

1

T2 /Q[F(w) + flw divo(e"*h)dQ

i

" _d(e™) i e
3 E/Qw ;- h(w)dQ — 5 {/ﬂ we ™ h(w)dQ

(81)

In (81), we have h(z) = V,¢ = Vyv(z), see (48). (53). while D*¢(-,-)
is the Hessian (as defined in (88)) of the function ¢ in (50); finally. h(w) =
(h,Vgw)g = (Vguv,Vow)y = Vow - h by (21), and (24), with the vector field h

defined by (48).
Proof. We first set

a:/thewh(zD)dQ.

(82)

(a) We multiply both sides of Eqn. (1) by the multiplier e™®h(w), see (13).

We shall show that

1 ' :
+3 / [Vowl? divo(e™h)dQ — 7 / e™|h(w)|?dQ
Q Q

(i)
ow 1
: L= T e Wil — 'Td) 2, I3
ia /Ee h(w) o % 2/26 IVywlgh-vdE
— / €™ D2 p(Vyw, V,w)dQ
Q
+ /[F(*w)+f]ewh(m)dQ,
Q
(ii)

a—a=2i(Ima)= / wywe™h - v dY

z

. f e / Th1 N alU ™



646 R. TRIGGIANI and P.-F. YAO

-1 / |Vqw|? divo(e*h)dQ
Q

d(e™)

-i/Q@(ng,Vg(divu(e”'"h)))ng—I—/Q wh(w) 5 dQ
iE
r z]q[F(w) + flw divg(e™?h)dQ — [/ﬂ em-mh(m)dﬂ]ﬂ : (84)

Proof of (i). Once the Schrédinger equation (54) is multiplied by e™h(w),
we obtain by invoking (82) and Green’s identity (71),

ia = — | Awe h(w)d Fw) + fle™h(w)d
i /Qwe ()Q+_/Q[()f1 (@)dQ
(by (7)) = /E emh.(za)%dz- /Q (0, Vo (7 h())), dQ
- /[F(ul)—t-f]f:ﬂ:’h(ﬁr)dQ‘ (85)
Q

By the identity (27) with H = ¢"“h, we have
I = oy g
(Vow, Vy(e"h(w)))y = D(e™®h)(V w, V) + 5 divo(|Vw|ie™h)
1 o
—§|ng;§ divo(e™®h), (86)
where, by identity (75), the first term on the RHS of (86) is given by
D(e™h)(Vyw, V@) = 1" |h(w)[? + €™ D?¢(V jw, V ;D). (87)

Inserting first (87) into (86) and then the resulting (86) into the second inte-
gral term on the right of (85), we thus obtain (83), as desired, using also the
divergence theorem.

Proof of (ii). Using the standard divergence identity
/wk ~pdl :] ¥ divgk dQ +/ k- Vo d§) (88)
r Q Q

with k = [e7®h], h = V,¢, see (53), and ¢ = w,w, we compute, since h(w) =

Vow - h by (24):

fwttﬁe'r“’h‘udil = /wgﬁr divo(e™h)dQ
z @

lrr " 1 Ty 1
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(by (24)) = ]Q wy @ divo(e™h)dQ + rr.+LeT¢ﬁ:f1('t:!,)([Q. (89)

recalling again (82) for a in the last step. As to the last term in (89), we
integrate by parts in time and obtain via (82)

/ wywe™h - vdL =a —a+ / wyn divo(e™h)dQ
z Q

T T
- fQ @h(w) d(z 2 4+ [ /Q e”’irh(w)dﬂ] . (90)

t 0

We next rewrite the first integral term over Q in (90). To this end, if m = m(z, 1)
is a real function in C'(Q), we may verify the identity

z/ wwmdQ = /ﬁ:m ] dE+/[F(w)+f]tE'mdQ
Q s O Q

VA

- f m[ngjﬁdQ—/ W(V,w, Vym),dQ. (91)
Q Q

This is done by multiplying the Schrédinger equation (54) by @ and inte-
grating by parts using the Green’s identity (71). Specializing (91) with m =
divo(e™®h), we obtain
r & 1'@ ~ - Lf TG aw ul
w, W divg(e™®h)dQ = —i | w divg(e"?h) =— dX
Q b3} 31/,4

+i/ |ng|52F divo(e™h)dQ + ‘if W(Vgw, V,(dive(e™h))),dQ
Q Q

—i / [F(w) 4 f]@ dive(e™h)dQ. (92)
Q

which is the desired identity, to be substituted into the RHS of (90). Upon
doing this, one obtains identity (84), as desired. So (ii) is proved as well.
Finally, we use the identity Re(ia) = (a—a), with (ia) given by the expres-
sion in (83) and (a—a) given by the expression in (84): after cancellation of the
term %IQ [Vyw|2 divo(e™h)dQ, we finally obtain identity (81). Theorem 4.2.1
is proved. |

Step 2. (Carleman estimates, first version) This is Theorem 3.3, restated.

Theorem 4.2.2. Assume (H.1) = (2), (H.2) = (4), (H.8) = (47). Letw be
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the following estimates hold true:

9 . .
(BTw)|s + = /Q |F12e7?dQ + C¢.r;rl|ﬂ’i|é.-([o,r};£,g(nn

C =9
> (p~ -}) /Q 1¥gwl2dQ — < [E(0) + E(T) (93)

o (- %)es oS

where p > 0 and § > 0 are the constants in (47) and (50), respectively. E(t)
is defined in (59), and finally, the boundary terms (BT, )|y, are defined (in
agreement with (58)) by

dw 1 ;
BT\ = . "rd: _— - ol = _1'(,’; . 7 ]
(BTW)ls Re (/I e s h(w}dL) 5 /Ee [Vgwlgh - vds

/ — w0 divg(e"h)dES — i / Dwe™h - vdY
J3

[b + E(T)), (94)

. (95)

Proof. The passage from (93) to (94) simply invokes property (52) for the
pseudo-convex function ¢. Thus, we prove (93). First, by (4) on F. given € > 0,
we have the following estimate

(F(w) + le®h(@) 2 - 5|F(w)+ [Per® — o clh(a)P?

- 2

(by (4),(60))

v

—EC’f']vﬂ'fL'|§€T¢ — EC’."‘|THF("-T¢

~efPer® — o <Plh(a) (96)

Thus, invoking (96) and the key assumption of coercivity in (47), we estimate
the first three terms on the right-hand side of identity (81).

‘ / €™ D% ¢(V,w, Vyw)dQ + 7 / e h(w)|*dQ — Re ( / [F(w) + j']e”‘h(u‘s)dQ)l
Q Q JQ

(by (47), (96)) > (p — ECT]/ e”‘|vgw|§dQ + (T - -]-)] e h(w)]2dQ
Q 2/ Jq

—~ won? [ Td1 12 34 fo=h
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Again, using (4) on F and (60), and the inequality 2ab < ea® + 1 b, where a
denotes “energy level” terms: V,w, F(w), as well as f, while b denotes lower-
order terms, i.e., w, we obtain the following estimate for the last three _[Q—Lerms
in identity (81): for any € > 0,

l/ W(V w, V,y(divo(e™h)))4dQ — = /[F (w) + flw dive(c™h)dQ

] et

25 [ eVl Cur. [ Plufd@—e [ 1Peaq.  (98)
2Jq Jao Jag

.(w)d.Q‘

Combining (97) with (98) we obtain the following estimate for the RHS of
identity (81)

RHS of (81) >

(p—eC;-— %)Le”’[V”w];dQ+ (r— 5'2) ]Qe”’m(w)]?d()

s Ecé.Tllw"%’([ﬂ,'-‘"};f.z(ﬂ)) - f/ eT;‘r!f-l?{fQ + Gor. (99}
Q
where, using property (51) for ¢(2,0) and ¢(2,T) and h(w) = (V, w.h), via
(24):
i o -
Borl = |—-3 [/ we ™ h(w)| | > —ee™*" / [V w(T)2 + |V,w(0)]2] d
2 g 0 /0 ‘
Cy i o3 .
= g [[w(T)] + Jw(0)]7]d2 (100)
Ja
= e I[B(0) + B(T)] - Correlwlqorptatany (101)
In the last step we have l'ecalled (59) for E(:).
We now select 7 = 1 so that (71— 3-) = 1 > 0, drop the second integral
term on the right-hand side of (99), combine lhe resulting estimate with (101),
and finally obtain the desired estimate (93). O

Remark 4.2.1. In the third integral over @ on the left-hand side of (97),
both factors F(w) and h(w) are energy level, with F' a general first-order op-
erator. The virtue of the free parameter 7 is seen in the second term on the
right-hand side of (99), in making the coefficient 7 — 5= > 0, after € has been
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5. Proof of Theorem 3.4: Carleman estimates, second ver-
sion; f =0
Assumptions (H.1)-(H.3) are in force throughout.
Step 1. Lemma 5.1. Let w be a solution of the Schrédinger equation (54)
in the class (55). Then, with reference to (59) for E(t). we have for allt,s:

E(t) =
+2Re (/ /wt—dl“d )+2Re (j:/g[F(w)+f]tf.',,dﬂrirr). (102)

Proof. We multiply (54) by w, and integrate over (s,t) x €, obtaining by
virtue of Green’s first identity, (71):

//|w¢|2dﬁd0'-/ /w;——dl‘d
vy

t t
- / /(ng,vgm;)y deJ+f ]{F(w)%—f]ﬁr;dﬂda (103)
s JQ s JO

1 ¢ ) ) .
=-—§[E(t]—E(s)]+/s /r@%dmﬁ/s ]F[F(w)-l-f]u‘:gdl‘do. (104)

since

t Lt .p
E(t)—E(s):/ﬂ/ a%qvgwg)dgdsz::z(/ /Q(vg-u;,vm)gdszda) .(105)

Thus, (103) yields (102), as desired. )

Step 2. We next estimate the second integral term on the right-hand side
of (102) by using

Wy = —i AW + i[F(w) + f]. (106)

Proposition 5.2. Let f = 0. Let w be a solution of Eqn. (54) within the
class (55). Assume further (H.4) = (62); i.e., that the first-order term F(w) is
given by

F(w) = R(w) +rw, R(w)=R-Vow by (24), (107)

where R is a real vector field on R™ fields and r : R™ — C a function. Decom-
pose R as

- R'I/(.’L‘) oA

R § 3.0 Y 1oy
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where, by (18), va(z) is defined by

Z(Zau 2z )83 Ale)u(z) (109)

i=1

to be normal of the submanifold I" in the Riemann metric g. Morcover. W is a
vector field on the submanifold T’ such that W(z) € 'y for z € T".
Then the following inequalities hold true: for T >t > s > 0.

E(t) < E(s)+ AT)+ k/l E(o)do; (110)

E(s)

IA

E(t) + A(T) +k/‘ E(o)do, (111)
where S

A@) =2 [ [+ W o)l + o] | a5+ o [ luaq. (12
G,k dre constants ond W) = W Vaw, see (2)).

Proof. We initially take f # 0, and refer to Remark 5.1 below. According
to (102) we seek a bound for R.e(f: Jo F(w)d,dQ dcr). Using (106) for @y, we
compute

/ﬂF(w)zﬁ;dQ: ~1'/QAwF(m)dQ+f h/n|F(-w)|'dQ+-s']nF(-u:}fd!2. (113)

Applying Green’s first theorem in (71) and (107), we obtain

fn F(w)®,d =

z/F( )ﬂdF—E/(Vglﬁ. Vg(f?(m)))gdﬁ—f/ 1’|V,}-u}iﬁr1§!
r J 10

- / w(V 0, Vgr),d + i / |F(w)|2dQ + i / F(w)f dQ. (114)
Q Q Ja

On the other hand, invoking identity (27), we compute for the second term in
(114),

fﬂ (Y, Vo (R(w)))yd

rr\nll—r - 7 L o ] f 1 e 12 My 1 l lrlu—- 17 T Mo Fa e
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1. f ;
= fﬂ DR(V 0,V w)dQ — %/ﬂlvgwg divgR dQ + 3 /I ]Vyw|jﬁ’ cvdl’,  (116)

e

using the divergence (Gauss) theorem on the second term in (115). Since the

vector field R is real, we obtain by (116),

Re (—é/( oW, Vo (R(w))),dQ + i |F(-w)|2d!1) =0. (117)
Q 0
By (107) and the decomposition (108), (109), we compute
i) = B Ry 5 5 o "(”l Al)v(z) - Vg + W(w) +rw.  (118)
lva(z)ls

Thus, by (19), since 3‘:’3‘- A(z)Vow - v(z) = Vo - A(z)v(2), the matrix A
being symmetric, (118) y]e]ds

| F(w)=— dI' =
z]r (w)avA

i fr fi;(';()é Vow - Ax)v(z)[2dr +i /r [ () +r-¢;=]§7‘i(zr. (119)

Then, taking the real part in (119), the first terim drops out since R is real and
we get

Re( fF w)—dl‘) = ( f[n (w) Hw]—dl“) (120)

Finally, integrating (114) in time over [s, t], taking the real part in the resulting
expression, and invoking (117) and (120). yields

(/  Fmands ) <re i [ /r W/ (w) + o] 5 drda )

¢ t
—Re (?/ /r|ng]3de0‘+£/ /'li:(vg'tﬁ.vgv')gdﬂda
s 40 Js J0
t
—if /F(w)fdﬂda), (121)
s 40

since vector field R is real. Estimating the right-hand side of (121). we obtain
via (59) on E(t) and (4) on F,

2 |Re ( / / w;deo)

f - A i 2 ll A2 A 100\

<2/{|H (w)] + |7 u|]|—‘r£h
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where
C= %1;1&3}{ |Vorlg+€ and k= Zl’-lr]éf\f‘f fr| + max [Vgrly +& (123)

Eqn. (122) gives the sought-after estimate. Inserting (122) into the right-hand
side of identity (102) yields

- x i dw " ; ; . Sw
E(t)— E(s) <2 Re (/5 j; wtm dl dO‘) +2/):HH (w)] + |rw|] ‘m’dE

+qu|w|2dQ+k/:E(a)da+%/(;’ff[de

+2 Re (/:/watdﬂdo). (124)

We now set f = 0, as assumed, and then (124) yields the desired inequality
(110) via definition (112). Similarly for ('11). The proof of Proposition 5.2 is
complete. ]

Remark 5.1. If f # 0, we use again (106) in the last integral term con-
taining (fw;) in (124), and proceed as in ('14) under the assumption that
f € Ly(0,T; H'(R2)), see Triggiani (1996), Eqn. (2.3.16) and ff. for details.

Step 3. Corollary 5.3. Under the assumptions of Proposition 5.2, we
have for T >t > s > 0,

E(t) < [E(s) + AD)e* 95 E(s) < [E(t) + A(T)]e* ) (125)
E(t) > w e *T —AT), 0Lt<T, (126)

where A(T') and k are defined in (112) and (124), respectively.

Proof. To show (125), we apply the classical argument of the Gronwall’s
inequality to (110) and (111), where we note that the terms in the brackets are
independent of ¢ in (110), and of s in (111), respectively. Next, the inequality
on the right of (125) with s = 0, and that on the left with t = T and s = t,
yield then

E(0) < [E(t) + A(D))e*T;  E(T) < [E(t) + A(T))e*T. (127)

Summing up these two inequalities in (127), we arrive at (126), as desired. M

Step 4. (Carleman estimates, second version) This is Theorem 3.4 restated
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Theorem 5.4. Let f =0. Assume (H.1) = (2), (H.2) = (4). (H.3) = (47),
and (H.4) = (62). Let w be a solution of the Schrodinger equation (54) within
the class (55). Then the following one-parameter family of estimates holds true

for all T > 0 sufficiently large:

(BThw)ls + Crrsllwl &0 000))

-z
> ¥ {(p_ 9:‘1) gl 8 }[E(O (7))
T 2
> ke [E(0) + E(T)], for some consiant ky > 0,

where in agreement with (65), via (58)

(BTiw)ls = (BTw)lz+Coor [; (el + [

ow 1 _
— T = JTOIT 0121 . )
= Re (]z N — h(w )dL) 5 /z e"?|Vywlgh - vd%

{/ — b divg(e” ¢h)db—?/ wwe”h v dy
5

Jw

1
—|d
OAE

dx.

+ Cpo [ lhual + W ()] + frul b
5 o

(128)

(129)

(130)

Proof. We return to inequality (94): on its right hand side, we use inequality

(126), thus obtaining

151 ad .
E(t)dt > &);@ = 4
to

~2(t1 — to) [E[]wtj + [W(w)| + |rwl] ’% dy

~ Cltr ~to) ]Q wl2dQ,

(131)

aftor racalline A(TY fram (1192) Tnsertine (131) into the rieght side of (94) vields
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6. Proof of Theorem 3.1: Continuous observability in-
equality (Dirichlet case)

Let 1 be a solution of the ¢-problem in (5) (including the B.C. ¢|y, = 0). We
want to apply Theorem 3.4 (same as Theorem 5.4) to it.

Step 1. First, we deal with the values of [V,%|2 and h(1) on the boundary

I', respectively, as required by (BT,.)| in (58).

z

Lemma 6.1. Let v be the solution of problem (5) [including the B.C. ¢y, =
0/. Then, in this case, the boundary term (BT )|y defined by (65) and (58)
reduces to

1
(BThp)ls = (BLy)lp = 3 /E e™?

where, via (18), we define v4(x). as in (109):

va(z) = Z (Z a,;j(a:)vj(:.':)) 3%,3 = A(z)v(x). (133)

i=1l \ j=1

Y

2
lval?

N

3 1
o 4, (132)

to be the normal of the submanifold I in the Riemannian metric g.

Proof. Given z € R™, the vector V,1(x) has the decomposition into direct
product in (R?,g(z)) as

vgw(a:)=<vgw(m).i> = +Y<—"~')=( l (M) a"

va+ —Ss. (]34)

waly /g Iwals VAR dvx 3
Here, by (133), (22), (25),
(Voto(z),va(z))y = (Vgo(z), A(z)v(a))y = Voi(a) - v(x) = ;TT'; (135)

Moreover, Y (z) € R satisfies (Y (z),v4), = 0; consequently, by (22) and (133),
Y(z) - v(z) = (Y(a),va(z))y =0, that is, Y (z) € 'y, the tangent space of T at
2. Therefore, if s denotes a unit tangent vector, then, by (24):
Mz

Y(x) = (Vyw(e). o), = Voula) - s = 20

is the tangential gradient. Thus, (135), (136) show the RHS of (134). By (134),
(24), we have

(136)

Vowl2 = (Vo, Vyt)g = Veu() = (Vyb(e),va(@))2 + Y () (137)

lva(z)l?

1oy

e F1904%
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since ¥|y; = 0, hence Voip L T and hence Y (¢0) = V- Y = 0 by (24). Similarly,
h(z) has the decomposition into direct product

h(z) = <(') I)*M)) val@) | e, (139)

va@l, /, Wal)l,

where Z(z) € T';. Moreover, by (133), (25), (24), we have

2 = (A@)Vob) ¥(z) = Vo A)(a) = Vo vale) = (Vva)y. (1O
since the matrix A(z) is symmetric. Hence, by (24), (133), (139), (140), (22),
W) (@) =

(Vo h)y = <h(.1-), l;’;‘{(__;)lg>y<vgt’a va(x))g + (Vo¥, Z(2)), (141)

_ (h(@),val@))g (0¥ _ (h(x), Alx)v(z))y OV

o) = Skl (52) = Mo
h(z) - v(z) [ OY »
e =S () i

since, as before, |y = 0, hence, Voo L I', and (V4. Z), = Vou - Z = 0, via
(24).

Finally, we return to definition (58) for BTy (written for ¢») and (65) for
BT\ y; use here ¢|g = 0, hence ¥, = 0 and W (1)) = 0 since W is tangential, as
well as (137) and (142), to obtain

(BTy)ls = (BTy)ls =
T aﬁ) F ;] 1 ) v
Re( [ et h(@)ds ) - = [ ™|V, b2k vdE (143)
b3 3%4 2

oy [ h-v 1/ O hov
= [ l—| —mdE—= [ €% —=d¥. 144
/Ee oval WAB T30 |Bual Al (144)
Then, (144) yields (132), as desired. O

Step 2. Completion of the proof of Theorem 3.1. In the Dirichlet
case, to obtain the continuous observability inequality (6) from inequality (64)
of Theorem 3.4 already proved, it suffices to return to (132); since h(z)-v(z) <0
for 2 € I’y by assumption, we readily have from (132),

T (8
1 [ o h(z)-v(x)\ /T [ |8'~”| % ~ (DT A\l 1480
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Then (145) used on the left-hand side of inequality (64) yields (when the pa-
rameter 7 > 0 is large enough) and f = 0:

[1l
o Jr, 10
where ky,ky > 0 are constants.

To get the sought-after inequality (6) from (146), we only need to drop the
low order term k2||w|lzc[[0‘T[;L2(ﬂ)} in (146). This may be done, as usual, by

a compactness/uniqueness argument, Lions (1988), Lasiecka, Triggiani (1987,
1991), see Remark 3.1. |

dZ + k2l E 0,7 o)) = F1E(0), (146)

7. Proof of Theorem 3.5: Main inverse inequality

We prove the specialized version of Theorem 3.5 for w being a solution of (54)
within the class (55), which moreover satisfies hypothesis (66).

Step 1. Lemma 7.1. Let w solve (54) and satisfy (66): wls, = 0 and
h-v <0 onTy.

(a) Then, in this case, the boundary terms (BT ..)|y; defined by (65). (58)
reduce to

(BT,w)lz = (BThu)lse + (BT ) |5y (147)

ow

i\“<0 148
B (148)

(BT1)lz0 = (BTu)l50 = = / / roh(@) - v(z)

UA(J

|BT1u |2|<

UL

for any eg > 0, where — denotes, as before, the tangential gradient (derivative)

81{)

6:/,4

+ ]md{' d¥ + |lw ”.f . “(‘!))} (149)

ofwon T, so that |3" | = [Wangeniisiteld:

(b) Moreover, if in addition, w satisfies also £ |5, =0, then
v g

BT] u)|E1 = BT 121 = 2/ ‘/I T-‘:J l]w 1..
1

Proof. We return to (65), (58): we then sece that BT, and BT\, coincide
on Yo = (0,T] x Tp, since wly, = wy|y;, = 0 by assumption. We may divide
BT\|y, as in identity (147), where BT, |5, is given by (148) by virtue of the

8:

11; vdy  (150)



658 K. TRIGGIANI and 12.-F. YAQ

this time on Xg). Similarly, from (65), (58), where h(w) = (V v, V,w),, we
readily obtain

s

T
(BTl = (BLls =4 [ [ el = [9pun- v
Jo o Jry
when 3871: =0;

< 2 (151)

d

|(BT1w)ls,| < {f / [i + V,}w| —,—|url}
Iy
2 i

| + [lw “L or¥+omy [’ in general,

since W(w) = (Vgw, W),, by use also of trace theory applied to w € I';. Next,
the decomposition (134) of V w in normal and tangential components yields by
virtue of (137)

2,12 )
% . when {?Tti,‘l =0
on Ty : Inglﬁ = (152)
I ow |* |0%w|’
EHER +| o

since, from (134), Y(z) € I',, the tangent space of I at x, we have Y (w) =

Vow Y = %‘f]g by (24), (136). Then, (152) and (152), used in (151) and (151),
yield (150) and (149), respectively. Lemma 7.1 is proved. |

Step 2. The following result is taken from Triggiani (1996), Theorem 2.1.4.
It is proved by micro-local analysis. It is critical in eliminating artificial ge-
ometrical conditions of the carlier literature on the controlled part Ty of the
boundary in the Neumann case.

Lemma 7.2. Let f € Ls(Q) and let w be a solution of Egn. (54) in the
class (55).
(a) Then, for any € > 0. €9 > 0. and T" > 0. there exists a constant C, ., 1 >

0 such that
T—e 2 T ¢ 2
a dw ;
/ / = dX < Ceeo,T / / il D |'“"r|2 d?
€ I o Jr|l0va
/) Moreover. if w satisfies in addition hupothesis (66): wlyy, =0 and h-v <

+jw|? (153)

La2(0,T;HE 0 () 1””u-* ﬂ{Q)}'
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Step 4. We next use Lemma 7.2, (153), to eliminate the tangential deriva-
tive from the estimate (149) [or identity (150)] of the boundary terms (BT )
evaluated over [e,T —¢] x ;.

Proposition 7.3. Let f € Lo(Q) and let w be a solution of (54) in the class
(55). Moreover, let w satisfy hypothesis (6G). Then. for all T > 0 sufficiently
large, there exists a constant kg > 0 such that

[ 15

> ko |E( )+ E(0)). (154)

2&

+ |wy[?

Cr e 2
dz+;3é 1PQ+ Crlwl?

Proof. We apply Theorem 3.4, estimate (64), over [e,T — €| x T" rather than
[0,7]x T = . In so doing, we use hypothesis (66) to invoke (148) and conclude
that (BT1,u)|ie,r—¢jxr, < 0. Moreover, we invoke (149) for (BT . )|(c,r—cxr,
and use the key estimate (153). Finally, the right-hand side of (64) becomes
kor[E(e) + E(T —¢)]. But

E(e) + E(T — €) > [E(0) + E(T))e™*< — 2A(T). (155)

This can be proved as in the case of (126): by nsing the inequality on the right-
hand side of (125) with s = 0 and t = ¢, and the inequality on the left-hand side
of (125) with ¢t = T and s = 1" — ¢, and smming up the resulting inequalities.
This yields (155). Then (154) is obtained. |

Step 5. Completion of the proof of Theorem 3.5. The sought-after inequal-
ity (67) of Theorem 3.5 now follows at once from (154) of Proposition 7.3, by
further majorizing its left-hand side. Theorem 3.5 is proved. |

8. Proof of Theorem 3.2: Neumann case

We return to inequality (G7) of Theorem 3.5(h), written for the solution w = ¢
of problem (9), with the boundary integral over I'y, since, by assumption, (66)
holds true: [y, =0 and h-v <0 on T'y. Morecover, on ¥y, it suffices to take
f{i =0 ?fl (9), i.e., a‘)T‘;b;l = 0. Then, as [ = 0, (67) becomes the following
inequality:

__'2 o A I,‘n'). ~ N . i
/.\:. VidY + k |Mf‘([ﬂ'r1:n%+'°(sm > ko E(0), (156)

where ki, ko > 0 are constants. Finally, by a compactness/uniqueness argument
again, see Remark 3.1, we obtain the desired inequality in (10).

Remark 8.1. Given the ¢-problem (9), say with g = 0, the proof of
Theorem 3.5 uses (135), (137) and the first part of (139) rather than (134),
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9. Some illustrations where Assumptions (H.1) and (H.3)
on A hold true

Example 9.1. Let Q C R? be a bounded domain. Assume that A is defined

by
o o D(Lr oy 0 o
S 1422495 Oz Oz \1+z22 445 dy

3] 2y’ ) ) l+22 @
e . +—(-——;f—_—“ . (157)
Oy \ 1 +a2+y5 Oz Ay \ 1 +a2+y% dy
Set
14y xy®
1+22 495 1422490
A(z,y) = (aij) = s ) . (158)
Ty I

1422490 1+a22+y0

Then, det A(z,y) = 1/(1+2®+3%) >0, V(z,y) € R? and A(x,y) is strictly
positive definite on the bounded domain . Thus, assumption (H.1) is verified.

The inverse of A(z,y) is
1 1422 -8
G(z,y) = (9ij) = A7 (z,y) = - (159)

—xyd 1498
Consider the Riemannian manifold (R?,g), where the Riemannian metric g
is defined in the natural coordinate system (x,y) via (159) by

g = (1 +2%)dz dz — zy’da dy — 2y3dy dx + (1 + y%)dy dy. (160)

Consider the surface in R3 given by

M= {(z,y,z)iz: flz,y) = %Iz_ iy‘l} :

with the induced Riemannian metric gp;. Then the (projection) map ®(x,y, z) =
(z,y), for any (z,y,2) € M, determines an isometry from M to (R%g). The
Gaussian curvature of (R2,g) at (z,y) is therefore

k(z,y) = the Gaussian curvature of M at (z,y,z)

2 2 2, N2
(%) (5#) - (&%) _3y? B
- 5 = ——v S0, V(zy) R (161)
.. zaex® . a2l (1 + 2% + yb)
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Since, by (161), the Gaussian curvature is non-positive, the function defined by
v(z) = dg(x, 29), o fixed € R?, (162)

i.e., as the square of the distance d,(x, x¢), in the Riemann metric of (160), from
x to a given fixed point 29 € R2, is in fact strictly convex on (R?, g), Wu, Shen
and Yu (1989), p. 108. Thus, assumption (H.3) also holds true in this case.

Example 9.2. Let 2 € R" be a bounded domain and a; > 0 constants,
i =1,2,...,n. Consider the operator on R",

n
20
n 1+) &z}

Ay | 2 B e D) GmEy B

n
— Oz; du; O, dz;
el 1+ Z air? #i 1+ Z aja}
k=1 k=1
Set
A(z) = (ay;) =
( n
2.2 4 v
1+ iz  —a T T2 —G1QpT Ty
i=2
. 9.2 e
—aparaxy; 1+ Za,- T v —02QpTaTp
1 i#2 :
- — (164)
1+ Zai:ﬂi
k=l n—1
2 9
—AnQTyT]  —AnQaXTply o+ 1+ Z a;z;
\ 1_-1
Then, the inverse of A(z) is
14 a?x% a1y v A2 T,
a e | 2.2 . e
20122 + asrs Ay Xody,
4, e FRERSY, gmd Lok
G(z) = (g:i) = A7 (z) = . (165)

sk
AnQ1TnT)  QpaTpxy -+ |+ ajz;

Consider the Riemannian manifold (R", g), where the Riemannian metric g
is determined in the natural coordinate system x = (2, 29,...,2,) via (161) by

n
q= Y‘ g;idzidy; = T (8;5 + asasm e drdr;. {166)



662 R. TRIGGIAN] aund P.-F. YAO

where d;; is 1 if ¢ = 7, and 0 if ¢ # j. It follows that

Z 965 = Z (8;5 + @iajziz;)&€; > [EIG,

i,j=1 i,j=1
Vz, {=(&,6,...,6) € R™. (167)

It is easily checked from the above inequality that (R",g) is a complete non-
compact Riemannian manifold.
Let M be the hypersurface in R"*' given by

I n )
M= {fml W B Baat] ey = 3 Z H-g.'j.'f} , (168)

with the induced Riemannian metric in R™. Then, by Yao (1999), Letuma 3.1,
M is of everywhere positive sectional curvature. It is easily verified from (166)
that the map ® : M — (R", g), defined by

Q)(p) o [xlg---ewn]e Vp= ia:lt"'1‘1'.'1'!,2'1'.!1-}]] €M,

is an isometry between M and (R",g). Thus, (R",g) itself is of cverywhere
positive sectional curvature. Since (R", g} is a non-compact, complete Rieman-
nian manifold of everywehre positive sectional curvature, then there exists a C*°
strictly convex function v(z) on (R". g) by Greene and Wu (1976). Assuinptions
(H.1) and (H.3) are verified.
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