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Abstract: We consider the semilinear heat equation involving
gradient terms in a bounded domain of I". It is assumed that
the non-linearity is globally Lipschitz. We prove that the system
is approximately controllable when the control acts on a bhounded
subset of the domain. The prool uses a variant of a classical fixed
point method and is a simpler alternative to the earlier proofl existing
in the literature by means of the penalization of an optimal control
problem. We also prove that the control may be built so that, in
addition to the approximate controllability requirement, it ensures
that the state reaches exactly a finite number of constrainis.
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1. Introduction and main results

Let © be a bounded domain of B™,n > 1 of class C? and consider the semilinear
heat equation

u— Au+ f(u.Vu)=e¢l, in Qx(0,7)
uw=0 on 92 x (0.7T) (1)
u(z,0) = u®(x) in - Q.

In (1) 1, denotes the characteristic function of an open non-empty subset w
of Q.

The function f : R x R™ — R is assumed to be globally Lipschiiz all along
the paper, i.e.

3L > 0: |7(9,€) - flzm)| < Lily - 2| +1€ —nl],
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Yy, z € R;€,n € R". (2)

In (1) u = u(z,t) is the state and v = v(z,1) is the control function which acts
on the system through the subset w.

The problem of the approximate controllability of (1) can be formulated
as follows: Given T > 0, 4%, u' € L*(Q) and ¢ > 0, to find a control v €
L%*(w x (0,T)) such that the solution u of (1) satisfies

lu(T) ' |2y < e (3)

In other words, the problem of the approximate controllability of (1) consists
in studying whether the range of solutions of (1) at time T,

R(u®,T) = {u(-,T) : v solution of (1) with v € L(w x (0,T))}, (4)

is dense in L?(Q2) or not.

In this paper we shall also study a stronger version of this control problem
that we shall refer to as the finite-approzimate control problem. Given E, a
finite-dimensional subspace of L?(Q), the rest of the parameters of the problem
being unchanged, we look for a control v € L?(w x (0, 7)) such that the solution
u of (1) satisfies

{ | w(T) = |2 @y< & (5)
7e[u(T)] = ngut],

7 being the orthogonal projection from L?(Q) over E.

Note that in (5), in addition to the approximate controllability requirement
(3), the control is requested to be such that the projection over E of the state
u(T) and the target u' coincide.

As proved in Appendix B of Lions and Zuazua (1997), in the context of
linear control systems, finite-approximate controllability is a consequence of
approximate controllability. However in the nonlinear context one property
may not be deduced as a consequence of the other one.

These problems have been the object of intensive research in the past few
years. Fabre, Puel and Zuazua (1993, 1995) adapted the fixed point method of
Zuazua (1991) to prove the approximate controllability of (1) in the particular
case in which f = f(y), f being globally Lipschitz. Note that the nonlinearity
was not allowed to depend on the gradient of the state in this result. Later
on in Zuazua (1997) the notion of finite-approximate controllability above was
introduced and it was shown that it holds when f = f(y), f being globally
Lipschitz. The complete case where f = f(y, Vy) was addressed by Ferndndez
and Zuazua (1997) by means of the optimal control approach introduced by
Lions (1991). In Fernandez and Zuazua (1997) it was shown that under the
elahallv Tinschitz assumption (2) the system is both approximately and finite-
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and Zuazua (1997) was the recent unique-continuation result by Fabre (1996)
on the linear heat equation

01— Ap + ap + div(bp) =0 (6)

with bounded potentials a € L*®(Q2 x (0,7)), b € (L= (2 x (0,7)))", and with-
out further regularity assumptions on b.

The goal of this paper is to show how the fixed point approach may be
adapted to address these two controllability problems for the complete system
(1) in which the nonlinearity is allowed to depend both on the state and its
gradient. Approximate and finite-approximate controllability of the system will
be proved. None of these results is new, since, as we said above, they were
proved previously in Fernandez and Zuazua (1997). However, the new proof we
present here is simpler and may be easily adapted to other situations (see Section
5 below). In particular, the boundary control problem may be addressed in a
similar way, as an alternative to Zuazua (1997b) in which the optimal control
approach was applied; the LP—versions can be easily handled; quasi bang-bang
controls may be built, etc.

There is a clear limitation in the application of this fixed point method: the
globally Lipschitz assumption (2) on the non-linearity. But this condition is,
roughly speaking, necessary. Indeed, a well-known example of A. Bamberger
(see for instance Henry, 1978) shows that system (1) is not approximately con-
trollable when f(y) = |y[?~'y for any p > 1. This counterexample does not
show that the globally Lipschitz assumption (2) is sharp but it does it in the
context of nonlinearities that grow at infinity as a power of 4. Note, however,
that, as proved by Ferndndez-Cara (1997), when f = f(y), null controllability
holds under the weaker growth condition

|£(s)] < Cls|log|s| as |s| — oo.

This condition has been more recently relaxed in Ferndndez-Cara and Zuazua
(1999) to

1£(s)] < C(s)log? |s| as |s| — oo, (7)

with C' > 0 small enough. In this work approximate controllability is also proved
under the condition (7). Therefore, one may expect the results of this paper to
hold in a slightly more general class of nonlinearities than (2).

We have mentioned above some works that are closely related to the present
one. But many others have also been published. We refer, for instance, to
the work by Naito and Seidman (1991) on the invariance of reachable sets un-
der nonlinear perturbations, Limaco and Medeiros (1998) on the approximate
controllability in non-cylindrical domains, Bezerra (1999), Teresa (1998), and
Teresa and Zuazua (1999) on the case of unbounded domains, etc. We refer to
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We do not address here the problem of null-controllability. Let us recall
briefly its formulation. Assume for simplicity that f(0,0) = 0. System (1) is
said to be null controllable if for any «¥ € L?*(€}) there exists a control v €
L?(w x (0,T)) such that the solution u of (1) satisfies

w(z,T) =0in Q. (8)

In the context of linear heat, equations with time independent coelficients Russell
(1973) proved that the null controllability of the heat equation is a consequence
of the exact controllability of the wave equation. More receutly, Lebeau and
Robbiano (1995) proved the null controllability without any assumption on the
control subdomain w using Fourier series developments and sharp estimates on
the eigenfunctions of the Laplacian. Similar results but in a more general context
including time-dependent coefficients were proved by [ursikov and Imanuvilov
(1996) using global Carleman inequalities for the heat equation. In Fursikov
and Tmanuvilov (1996) local null controllability results were also proved for
semilinear heat equations. More recently, the connections between null and
approximate controllability were investigated in Fernandez-Cara and Zuazua
(1998, 1999). We refer to the bibliography for a more complete list of references.

After this work had been completed the author was informed by O. Yu.
Imanuvilov about a work in collaboration with M. Yamamoto in which ob-
servability inequalities are obtained for equations of the form (6) with a €
L>®(Q x (0,T)), be (L=®(Q x (0.7)))" (see Imanuvilov and Yamamoto, 1998).
These observability estimates, combined with the fixed point technique de-
scribed in this paper, allow to prove null-controllability results for equations
of the form (1). On the other hand, one may expect that, combining these
estimates with the techniques in Fernandez-Cara and Zuazua (1998), explicit
estimates on the size of the controls that are needed to achieve (5) will also be
obtained. Using these estimates, the null controllability of system (1) for some
nonlinearities growing at infinity in a superlinear way has been demonstrated
by Anita and Barbu (2000).

2. Description of the fixed point method

As we said in the introduction, the method developed in this article is a variant
of the fixed point method introduced in Zuazua (1991) in the context of the
wave equation and adapted in Fabre, Puel and Zuazua (1993, 1995) to deal
with the semilinear heat equation.

We observe that for any y € L2(0,T; H}(Q)) the following identity holds:

' d
f0.90) - £0.0 = [ Z(fo.ovy)io )
- P .. - | S
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In (9) 0f/0y and Of/On denote, respectively, the partial derivatives of f with
respect to the variables y and Vy.
We introduce the notation

1
Fo)= [ L
0 53/

1 (10)
Gy) = / ﬂ(ay,(fv;y)da.
Jo On
In view of the globally Lipschitz assumption (2) on f, F and G map L*(0,T;
H}(Q)) into a bounded set of L*( x (0,7T)). Moreover,

| F(y) |l=@x@1)< L, Yy € L* (0, T; HY (), (11)
| GW) llr=@x@ry < L, Vy € L* (0, T; Hy () . (12)

L being the Lipschitz constant of f.
Using these notations the system (1) can be rewritten as follows

- Au+ F(w)u+ Gu) - Vu+ f(0,0) =vl, in Qx(0,7)
u=10 on 90 x (0.1 (13)
u(z,0) = u’(x) in Q.

Given y € L2 (0, T; H}(€2)) we now consider the “linearized” system

—Au+ F(y)u+G(y) - Vu+ f(0.0) =vl, in Qx(0.7)
u=0 on 99 x (0,T7) (14)
u(z,0) = u%(z) in (.

Observe that (14) is a linear system on the state v with potentials « = F(y) €
L®(Q x (0,T)) and b = G(y) € (L>®(Qx (0,7)))" satisfying the following
uniform bound

I a llzee@x o)< Ly 10 (L= @x o,y < L. (15)
With this notation the system (14) may be rewritten in the form

u— Au+tau+b-Vu+ f(0,0)=vl, in  Qx(0.7)
u=0 on 90 x (0,7) (16)
u(z,0) = u°(2) in Q.

We now fix the initial datum v € L*(Q), the target v' € L*(2), # > 0 and
the finite-dimensional subspace E of L%(12).

Using the variational approach to approximate controllability introduced by
Lions (1992), further developed in Fabre, Puel and Zuazua (1993) and adapted
to the problem of finite-approximate controllability in Zuazua (1997a), we build
a control v for the linear system (16) such that

f I u(T) = u' llrzeen< e,
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The control v € L?(Q2 x (0,7)) satisfying (17) is not unique but the varia-
tional approach mentioned above provides the unique one of minimal L?(w x
(0,T))—norm.

Thus, for any y € L2 (0,T; H}(2)) this allows us to define a control v =
v(z,t; y) € L*(w x (0,T)) such that the solution v = u(z,t; y) € C(]0.77;
L3(Q)) N L% (0,T; HY(R)) of (14) satisfies (17). This allows to build a non-
linear mapping

N :L2(0,T; Hy(Q)) — L2 (0,T; Hy(Q)), N(y) = u. (18)

We claim that the problem is then reduced to finding a fixed point of A,
Indeed, if y € L2 (0,T; H}(R)) is such that N'(y) = u = y, u solution of (14) is
actually solution of (13). Then, the control v = v(y) is the one we were looking
for since, by construction, u = u(y) satisfies (17).

As we shall see, the nonlinear map N :L? (0,7 HJ(2)) — L2 (0.7 H}())
satisfies the following two properties:

N is continuous and compact ; (19)
the range of A is bounded, i.e. 3R > 0: (20
EN@) 2 (0,7, a () S B Vo € L?(0,T; Hy(Q)) )

In view of these two properties and as a consequence of Schauder’s fixed
point theorem, the existence of a fixed point of N follows immediately.

The uniform bound (20) on the range of A is a consequence of the uniform
bound (15) on the potentials @ and b which, in turn, is a consequence of the
globally Lipschitz assumption (2).

Roughly speaking, the control problem for the semilinear equation (1) or (13)
through this fixed point method is reduced to obtaining a uniform controllability
result for the family of linear control problems (14) under the constraints (11)-
(12). At this level the unique continuation result of Fabre (1996) for equations
of the form

wr — Ap + ap + div(bp) =0

with L®-coefficients a and b plays a crucial role.

3. Controllability of the linearized systems

Given L®-potentials a € L®(Q x (0,7)), b € (L*®°(Q x (0,7)))" and a real
constant A € R we consider the control problem

I w—Au+au+b-Vu+r=vl, in Qx(0,7T)
w=0~N on 00 x (0.7 (21)
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Let E be a finite-dimensional subspace of L?(Q2). Given «° € L*(Q), u' €
L%(Q) and & > 0 we look for a control v € L%(w x (0,T)) such that the solution
u of (21) satisfies

{ | w(T) —u! “LHQ%S £
me(uw(T)) = mp(u’).

The following holds:

(22)

THEOREM 3.1 Let T > 0. Then, there exists a control v € L*(w x (0,T)) such
that the solution u € C ([0, T]; L*(Q)) N L2 (0,T; H(Q)) of (21) satisfies (22).
Moreover, for any R > 0 there ezists a constant C(R) > 0 such that

| v lz2wx(0r)< C(R) (23)
for any a € L>®(2 x (0,T)), be (L>®(2 x (0,T)))" satisfying

|| allz=@x@r)n< By || b ll(n=@x(0,7))" < R. (24)

REMARK 3.1 Theorem 3.1 does not provide any estimate on how the norm of
the control v depends on E. u°, u' and ¢ > 0. However, (23) guaranteces that v
remains uniformly bounded when the potentials a, b remain bounded in L™,

The control v is not unique. The construction we develop below provides the
control of minimal L*-norm. It is this control of minimal norm which satisfies
the uniform boundedness condition (23).

Proof of Theorem 3.1.
Without loss of generality we may assume that A = 0 and ©” = 0. Indeed,
otherwise we consider the solution z of

zp—Az4+az+b-Vz4+4A=0 in  Qx(0,7)
z=0 on  d0x (0,7T) (25)
z(0) = u° in Q.

Then, the solution u of (21) may be decomposed as
u=w+z (26)

where w solves

wy—Aw+aw+b-Vw=vl, in Qx(0,7T)
w=0 on 8 x(0,7) (27)
w(0) =0 in €.

Then, (22) is equivalent to

[ | w(T) = (u! = 2(T)) ll2em< e .
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Therefore, in the sequel we shall assume that A = 0 and wW=0.
The regularizing effect of the heat equation allows to show that

z(T) remains in a relatively compact set of L*(9) (29)
when the potentials a and b vary in the class (24). .
This will be important when deriving the uniform bound (23).
Consider the adjoint system
- —Ap+ap—divibp) =0 in Qx(0,7)
=0 on 90 x (0,T) (30)

o(T) = ¢° i Q.

Taking into account that the potentials a and b are bounded it is easy to
see that for any ¢¥ € L?(Q) system (30) has a unique solution in the class
o € C ([0,7); L*()) n L2 (0,T; HY()).

We now consider the functional J : L(©) — R defined as follows:

i '
J(¢°) = E/o / prdedt +¢ | (I = 78)¢° | 20) — L u'dur, (31)

It is easy to see that

J : L*(Q) — R is continuous ; (32)

J: L*(Q) — R is convex . (33)
Moreover

J: L*(Q) — R is strictly convex . (34)

This property is a consequence of the following unique continuation result
due to Fabre (1996):

ProposITION 3.1 (Fabre, 1996). Assume that a € L>(Q x (0.77)) and b €
(L®(Q % (0,7)))". Let ©° € L2(Q) be such that the solution ¢ of (30) satisfies

¢w=0inwx(0,7). (35)
Then, necessarily, ¢° = 0.

The functional J : L2(Q) — R is also coercive. More precisely, the following
holds:

ProprosITION 3.2 Under the assumptions above

liminf ——{(iu)—— S, (36)
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Proof of Proposition 3.2. The proof of this proposition follows the argu-
ment in Fabre, Puel and Zuazua (1993) and Zuazua (1997a) combined with the
unique-continuation result of Proposition 3.1. Let us recall it for the sake of
completeness.

Let {(p?} be a sequence in L%(Q2) such that
We denote by {¢;} the corresponding sequence of solutions of (30).

We also set

83 =03/ 1165 Iz, @5 = 03/ || 5 Nz - )
Obviously @; is the solution of (30) with the normalized initial data 39.
We have
J (Y 01, T
(‘pi) - 1l / / 15,1 dadt (39)
I €2 llL2ca) 2 0 Ju

+

eI - :lr,g)gb“?”Lz( -/s:u \,o_.',da,

We distinguish the following two cases:

T
Case 1. liminf / f |3;1% dadt > 0;

q=ee

Case 2. lim inf/ /|q.,_,[ dzdt =

j—oo
In the first case, due to (37), the first term in (39) tends to +o00 while the
other two remain bounded. We deduce that

J (0
lim inf&

= +m
i=oo |3

|L2(m

in this case.
Let us now analyze the second case. Let us consider a subsequence (still
denoted by the index j to simplify the notation) such that

T
/ ] |8,1? dzdt — 0, as j — 0. (40)
0 w
By extracting subsequences we may deduce that
@7 — @° weakly in L*(Q). (41)

Consequently
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where @ is the solution of (30) with datum @° According to (41) we deduce
that

p=0inwx (0,T)

and, as a consequence of Proposition 3.1, that @° = 0. Therefore, if (40) holds,
necessarily

@] — 0 weakly in L*(Q2). (43)
But then, E being finite-dimensional,

75@) — 0in L*(Q)
and therefore

||(I—ar5)¢§'||m a1 (44)
()

since ||g3?"”(m =1 for all j.

As a consequence of (43) and (44) we deduce that

0
lim inf l{)((pj) > liminf e ||(I - ﬁE)‘E{;“Lﬁ(n) ™ / u'@?da:] =
U ”‘PJ' ”LHQ} e J/Q

This concludes the proof of Proposition 3.2. |
In view of properties (32), (34) and (36) of the functional J we deduce that
J achieves its minimum at a unique % € L%(9), i.e.

J(@°) = min J(¢°
((p ) 4’0652(“) ({'9 ) (IS}
J(#°) < J (¢°), Ve° € L2(Q), ¢° # &°.
It is easy to see that the control
v=@ginwx (0,7), (46)

@ being the solution of (30) with the minimizer @° as datum is such that the

solution u of

wy—Au+au+b-Vu=vl, in Qx(0,T)
=0 on 90 x(0,T) (47)
u(0) =0 in 0

satisfies (22) (see Zuazua, 1997a, for the details of the proof).

This concludes the proof of the finite-approximate controllability.

In order to prove the uniform bound (23), we first observe, as indicated in
(29), that the problem may be reduced to the case u® = 0 and A = 0, provided
u! is allowed to vary in a relatively compact set of L2(0).
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PROPOSITION 3.3 Let R > 0 and K be a relatively compact set of L*($2). Then,
the coercivity property (36) holds uniformly on u' € K and potentials a and b
satisfying (24).

REMARK 3.2 Note that the functional J depends on the potentials a and b and
the target u'. Proposition 3.3 gquarantees the uniform coercivity of these func-
tionals when u' € K, K being a compact set of L*(Q) and the potentials a and
b are uniformly bounded.

As a consequence of Proposition 3.3 we deduce that the minimizers @° of

the functionals J are uniformly bounded when u' € K and the potentials a
and b are uniformly bounded. Consequently, the controls v = 2 are uniformly
bounded as well.

Therefore, in order to complete the proof of Theorem 3.1 it is sufficient to
prove Proposition 3.3.

Proof of Proposition 3.3. The proof is similar to that of Proposition 3.2. We
argue by contradiction. If the coercivity property (36) does not hold uniformly,
we deduce the existence of sequences

u} cK “48)
3 € L) 3]y — o0 o
and
{ a; € L*(Q x (0,7)); b; € (L®(2 x (0,T)))" (50)
I a; lze@xrn< Bs || bj llz=@x@mryy< R
such that
J: (o0
i(6) g (51)
I 5 L2

for some 0 < 6 < e.

Here and in the sequel J; denotes the functional corresponding to the target
u} and to the potentials aj, b;.

As in the proof of Proposition 3.2 we set

&5 =5/ 1 €3 iz @5 = i/ | 65z - (52)
We have
J (#3 O3l 2y [T ;
u((pj) = “ . |L (ﬂ)/ /|Haj]2dﬂ?dt (53)
”cpj”,[,z(n) 2 0 Jw

L] v~ Ir 1 .~ .
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In view of (49) and (51) we immediately deduce that

T
/ /i@-}dxdt-—»{], i ot 60, (54)
0 w
Extracting subsequences we also have
@9 — ° in L*(Q2) weakly (55)
p; = @in i (0,7; Hy(2)) weakly (56)
uj — u' strongly in L*(Q) (57)
a; — a weakly —* in L=(Q x (0,T)) (58)
bj — b weakly —*in (L®(Q x (0,T7)))". (59)

In view of (54) we have
p=0inwx(0,7). (60)
On the other hand, @ solves
—pr—Ap+ap—div(bp) =0 in  Qx(0,7)
p=0 on 99 x(0,T) (61)
o(T)=¢° in 0,

the potentials a and b being the limits in (58)-(59) and the datum @° the limit

in (55).
In order to obtain (61) we have to show that
a;@; = a@ weakly in L*(Q x (0,7)) (62)
b;@; — b weakly in (L*(Q x (0,7)))" . (63)

This can be done easily since
9,p; is bounded in L* (0,T; H™'(Q2)). (64)

Combining (56) with (64) and Aubin-Lions compactness lemma we deduce
that

?; is relatively compact in L*(Q x (0,7)). (65)
Consequently
8; = §in L@ x (0,T)). (66)

Clonveroences (621-163) follow immediatelv from (58), (59) and (GG). This jus-
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According to Proposition 3.1, (60)-(61) yield that ¢ = 0. Going back to (55)
this shows that

@7 — 0 weakly in L*(Q).

This, together with (57), implies that

ut@%dz — 0.
/ﬂ 3%

On the other hand, as indicated in the proof of Proposition 3.2, we also have
~0
||(I - "'TE)[}O_‘,I ”L’(n) — 1.

Therefore

Jj (¥9)

—=I_ > e|l(I - 7g)@° —/ul-‘qdr—re.
Tl = Il = J 15

This is in contradiction with (51).

This completes the proof of Proposition 3.3 and consequently that of Theo-
rem 3.1. ]

REMARK 3.3 Note that the proof of Theorem 3.1 provides not only for the ez-
istence of the control v but also a constructive way of finding it, and choosing it
N a unique way.

4. The semilinear control problem
This section is devoted to proving the following result:

THEOREM 4.1 Assume that f satisfies (2). Then, for all T > 0, system (1) s
finite-approzimately controllable.

More precisely, for any finite-dimensional subspace E of L*(Q), u°, u' €
L%(Q2) and £ > 0 there exists a control v € L*(w x (0,T)) such that the solution
w of (1) satisfies (5).

REMARK 4.1 As indicated in the introduction, this result is not new. It was
proved in Ferndndez and Zuazua (1997) by means of a suitable penalization of
an optimal control problem. However. we believe thal the proof presented here
is simpler, easier to adapt to other situations and that it brings new light to the
approzimate controllability problem.

Proof of Theorem 4.1.
We proceed by means of the fixed point method described in Section 2.
Given a finite-dimensional subspace E of L*(Q), «°, u' € L*(Q) and ¢ > 0,
the nonlinear map
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is well defined in view of Theorem 3.1.

As indicated in Section 2, in order to conclude the existence of a fixed point
of N by means of Schauder’s fixed point method (and therefore to conclude the
proof of Theorem 4.1) it is sufficient to check the following three facts:

N L*(0,T; Hy()) — L2 (0,T; Hy(Q)) is continuous ; (67)
N:L2(0,T; Hy(Q)) — L2 (0,T; HJ(R)) is compact ; (68)
JR>0: | Nw) || L2(0.1; H3(@) S R,Vy € L?(0,T; H)(Q)). (69)

Let us prove these three properties.

Continuity of NV. Assume that y; — y in L? (0,T; H(2)). Then, the poten-
tials F'(y,), G(y;) are such that

F(y;) = F(y) in LP(2 x (0,T)) (70)

G(y;) — G(y) in (LP(Q2x (0,T)))" (71)
forall 1 <p< oo and

Il F(y5) llLe@xco,rn< Li | G(y;) liw>@xomy< L. (72)

According to Theorem 3.1 the corresponding controls are uniformly bounded:

I vi lL2@x o)< C, Vi1 (73)
and, more precisely,

v; =@; inwx (0,T) (74)
where @; solves

—i— Dg+ Fly)p —div (Gu;)e) =0 in Q% (0,T)
p=0 on dQx(0,T) (75)
o(T) = 33 in Q

with the datum nﬁg minimizing the corresponding functional J;. We also have
”‘ﬁ?”z.qm <C. (76)

By extracting subsequences we have
(}3? — 0 weakly in L2() (77)

and in view of (70)-(71), arguing as in the proof of Proposition 3.3, we deduce
that
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where & solves

—or — Ao+ F(y)p —div(G(y)p) =0 in Qx(0,7)

p=0 on 9d2x(0,7) (79)
o(T) = &° in Q.
We also have that
8,%; is bounded in L? (0,7; H~'(®)), (80)
and, once again, by Aubin-Lions compactness lemma, it follows that
P; — @ strongly in L?(Q x (0,7)). (81)
Consequently
v; — v in L*(w x (0,7)) (82)
where
v=pinwx (0,7). (83)
It is then easy to see that
uj — win L* (0,T; H)()) (84)
where

w— Au+ F(y)u+G(y) - Vu+ f(0,0) =vl, in Qx(0,T)

oy on 902 x (0.T) (85)
u(0) = u® in O
and
| w(T) =o' 2= €, ‘
{ 7e(w(T)) = mp(u'). (86)

To conclude the continuity of N it is sufficient to check that the limit @°
in (77) is the minimizer of the functional J associated with the limit control
problem (85)-(86).

To do this, given ¥° € L?(Q) we have to show that

J(2°) < J(¥°).
But this is immediate since, by lower semicontinuity, we have

7(3) <limint J; (79).
j—o0

on the one hand,

T8 = liminf 7. {:00)
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on the other one, and finally

J; (#5) < J; (v°)
since 39 is the minimizer of J;.
Compactness of . The arguments above show that when y lies in a bounded
set Bof L2 (0,T; H}(Q)), u = N(y) also lies in a bounded set of L? (0.7 Hg(92)).
We have to show that A'(B) is relatively compact in L? (0, 7; HJ($)). But this

can be obtained easily by means of the regularizing effect of the heat equation.
Indeed, we have

w—Au=h in Qx(0,7T)
u=0 on 0Qx(0,7)
u(0) = u° in Q

with

I h=vl, = F(y)u —G(y) - Vu— f(0,0)

which is uniformly bounded in L*(Q x (0,T)).

Then, u can be decomposed as
u=p+q

where
p—Ap=0 in Qx(0,7)
p=0 on 9 x (
p(0) = u® in

and

@ —Ag=h in Qx(0,7T)
g=0 on 90Qx(0,7T)
q(0) =0 in Q.

Obviously, p is a fixed element of L? (0,7 H}(2)). On the other hand,
by classical regularity results on the heat equation we deduce that ¢ lies in a
bounded set of L? (0,7; H2(2)) N H' (0,7 L*(Q)), which, as a consequence of
Aubin-Lions compactness lemma, is a relatively compact set of L? (0,7 H}(9)).
This completes the proof of the compactness of N,

Boundedness of the range of . Theorem 3.1 shows that there exists C' > 0
such that the control v = v(y) satisfies

I v(¥) ll2@x o)< C-
The classical energy estimates for system (85) show that
() 20,7, ma ()< ©

as well, since the potentials involved in it are uniformly bounded.
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5. Further comments and results

The method presented may be easily adapted to deal with various variants of
the problem addressed here. We present briefly below some of them. Note that
we systematically assume the nonlinearity f to be globally Lipschitz.

5.1. Boundary control

Consider the semilinear heat equation with boundary control

w—Au+ f(u,Vu) =0 in Qx(0,7T)
u=v on J90 x (0,1) (87)
u(0) = u° in Q.

This problem was addressed in Zuazua (1997a) by means of the penalization
technique of an optimal control problem. The finite-approximate controllability
of (87) may be easily proved by the fixed point method we have presented here.
This completes the results in Fabre, Puel and Zuazua (1993) on the case where

f=f).

5.2. The LP-setting

All along this paper we have worked in the L2-setting. Similar results may be
proved in LP for 1 < p < oo or in Cy(£2). We refer to Fabre, Puel and Zuazua
(1993) for a careful analysis of the case f = f(u). One can easily combine the
developments in Fabre, Puel and Zuazua (1993) and in the present paper to
deal with the more general case f = f(u, Vu).

5.3. Quasi bang-bang controls

The problem of finding quasi bang-bang controls was addressed in Fabre, Puel
and Zuazua (1993, 1995) in the case where f = f(u). In a similar way, using
the fixed point argument of the present paper, the case where [ = f(u, Vu)
may be addressed as well. We recall that quasi bang-bang controls are of the
form v € Asgn(g), A being a real number and ¢ a solution of an adjoint heat
equation.

5.4. Control in the initial data

Let us consider the semilinear heat equation

u—Au+ flu, Vu) =0 in  Qx(0,7)
u=0 on 00 x(0.7) (88)
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When f = f(u), f being globally Lipschitz, it was proved in Fabre, Puel and
Zuazua (1995a) that the range of the semigroup

R(T) = {u(T) : u° € L*(Q)}

is dense in L2(£2). This may be interpreted as an approximate controllability
result, the control being the initial datum u°.

By combining the developments of the present paper and Fabre, Puel and
Zuazua (1995b) this result may be easily extended to the case where f =

f(u, Vu), f being globally Lipschitz.
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