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A bstract: \Ve consider the semilinenr heat equat ion in volving 
gradient terms in a bounded domai n of R'". It is <t ssurnecl that 
the non-linearity is globa ll y Lipschitz. We prove that th e systeru 
is approximately controll ab le when the control nets on a bounded 
subset of the domain . The proof uses n va ri ant or a cl assical fi xPcl 
point method and is a si mplei· n ltenw tive to tlte earlier pro or ex i:;t i ng 
in the li terature by means of the penalizntion of nn optima l cont.rol 
problem. We also prove that tile control may be built so that, in 
additi on to the approxim ate controll ability requirement, it ensures 
that the slate reaches exactly a finite number of constraints. 

Keywords: controll abili ty, systems governed by PDEs, nonlin­
ear PDEs of parabolic type 

1. Introduction and main results 

Let !1 be a bounded domain of Rn, n 2: I of class C 2 and consider tiJe S(~rn ilill Cclr 
heat equation 

in !1 x (0, T) 
on an X (0, T) ( I) 
in D. 

In (1) l w denotes the characteristic Junction of an open uon -er11pty subset. w 

of !1. 
T he function f : R x R n -+ R is assumed to be qlo/Jally Li]J.srhd:o ,, 11 along 

the paper, i.e. 

3L > 0 : lf(y,~)- f(z ,1J)I :::; L [ly- zl + I( - '~il l, 
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Vy, z E R.;~,TJ E R.n. (2) 

In (1) u = u(x, t) is the state and v = v(x, t) is the control function which acts 
on the system through the subset w. 

The problem of the approximate controllability of (1) can be formulated 
as follows: Given T > 0, u0 , 1L1 E L2 (D) and f > 0, to find a control v E 
L2 (w x (0, T)) such that the solution 1L of (1) satisfies 

(3) 

In other words, the problem of the approximate controllability of ( 1) consists 
in studying whether the range of solutions of (1) at time T, 

R(u0 ,T) = {u( ·,T): u solution of (1) with v E L2 (w x (O,T))}, (4) 

is dense in L2 (D) or not. 
In this paper we shall also study a stronger version of this cont rol problem 

that we shall refer to as the finit e-approximate control problem. Given E, a 
finite-dimensional subspace of L2 (D), the rest of the parameters of the problem 
being unchanged, we look for a control v E L 2 (w x (0, T)) such that the solution 
u of (1) satisfies 

(5) 

ne being the orthogonal projection from L2 (D) over E. 
Note that in (5), in addition to the approximate controllability requirement 

(3), the control is requested to be such that the projection over E of the state 
u(T) and the target u1 coincide. 

As proved in Appendix B of Lions and Zuazua (1997), in the context of 
linear control systems, fin ite-approximate controllability is a consequence of 
approximate controllability. However in the nonlinear context one property 
may not be deduced as a consequence of the other one. 

These problems have been the object of intensive research in the past few 
years. Fabre, Puel and Zu a.zua (1 993, 1995) adapted the fixed point method of 
Zuazua (1991) to prove the approximate controllability of (1) in the parti cular 
case in which f = j(y) , f being globally Lipschitz. Note that the nonlinearity 
was not allowed to depend on the gradient of the state in this result . Later 
on in Zuazua (1997) the notion of finite-approximate controllability above was 
introduced and it was shown that it holds when f = f(y), f being globally 
Lipschitz. The complete case where f = j(y, \ly) was addressed by Ferm\ndez 
and Zuazua (1997) by means of the optimal control approach introduced by 
Lions (1991). In Fernandez and Zuazua (1 997) it was shown that under the 
rrl()hallv T.insrhit.7. assumotion (2) the svstem is both approx imately and finite-
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and Zuazua (1997) was the recent unique-continuation resul t by Fabre (1 996) 
on t he linear heat equation 

'Pt - 6.rp + arp + div(brp) = 0 (6) 

with bounded potentials a E L00 (0 x (0, T )), b E (L00 (12 x (0, T)))n, and wi th­
out further regularity assumpt ions on b. 

T he goal of this paper is to show how the fi xed poin t approach may be 
adapted to address these two controll ability problems for t he complete system 
(l ) in which the nonlineari ty is allowed to depend both on the sLate and its 
gradient . Approximate and fini te-approximate controll abili ty of the system will 
be proved. None of these resul ts is new, since, as we said above, they were 
proved previously in Fernandez and Zuazua (1997). However, the new proof we 
present here is simpler and may be easily adapted to other sit uations (see Section 
5 below). In particular, t he boundary control problem may be addressed in a 
similar way, as an alternat ive to Zuazua (1997b) in whi ch the opt imal control 
approach was applied; the LP-versions can be easily handled; quasi bang-bang 
controls may be built , etc. 

There is a clear limitation in the applicat ion of this fixed poin t method: the 
globally Lipschitz assumpt ion (2) on the non-lineari ty. But t his condit ion is, 
roughly speaking, necessary. Indeed, a well -known example of A. Bamberger 
(see for instance Henry, 1978) shows that system (1) is not approximately con­
troll able when f(y ) = IYIP-1y for any p > 1. This coun terexample does not 
show that the globally Lipschitz assumption (2 ) is sharp but it does it in the 
context of nonlineari ties that grow at infini ty as a power of y. !\'oLe, however , 
that, as proved by Ferna.ndez-Cara (1 997), when .f = f(y), null controll abili ty 
holds under the weaker growth condi t ion 

lf (s)l::::; Cl s llog ls i as ls i--> oo. 

T his condi t ion has been more recently relaxed in Fernandez-Cara and Zuazua 
(1 999) to 

lf( s)l ::::; C(s) log% lsi as lsi--> oo, (7) 

with C > 0 small enough. In this work approximate controllab ili ty is a lso proved 
under the condition (7). Therefore, one may expect the res ul ts of t hi s paper to 
hold in a slightly more general class of nonli near it ies t han (2). 

We have ment ioned above some works that are closely related Lo t.he present 
one. But many others have also been published. \Ne refer, for instance, to 
t he work by Naito and Seidman ( I 991) on the invariance of reachable sets un­
der nonlinear per turbations, Limaco and Medeiros (1998) on the approximate 
controll ability in non-cylindr ical domain s, Bezerra (1999), Teresa ( I 998), and 
Teresa and Zuazua (1 999) on the case of unbounded domain s, eLc. \iVe refer to 
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V•/e do not address here t he problem of null-controll ability. Let us reca ll 
briefly its formulation. Assume for simpli city tha t f (O, 0) = 0. System ( 1) is 
said to be null controllable if for any ·n° E L2 (r2) there exists a con trol ·v E 

L2 (w x (0, T)) such that the solution u of (I) satisfies 

1L(x, T) = 0 in n. (8) 

Tn the context of linear heat equations witlt time independent coe rfi cicnts Russell 
(1973) proved that the null controllability of the heat equation is a consequence 
of the exact controllability of the wave equation. More recentl y, Lebeau and 
R.obbiano (1 995) proved the null controll nb ili ty without any assmnpt:ion on the 
control subdomain w using Fourier seri es developments and sharp est im ates on 
the eigenfunctions of the Laplacian. Si m il a.r results bu t in a more genera l context 
including time-dependent coeffi cients were proved by Fnrsikov and lm anuvilov 
(1996) using global Carleman inequa li ties for the heat equation . In Fm sikov 
and Imanuvilov (1996) loca l null controll abi li ty resul ts were also proved for 
sem ilinear heat equation s. More recently, t he connections between Jlllll and 
approximate controllability were investigated in Fern;\.ndez-Cara and Zuazua 
(1998, 1999). We refer t o the bib liogra phy for a more com plete li st of references . 

After t hi s work had been completed the author was inform ed by 0. Yu . 
Irnanuvilov about a work in colla bora t ion with !VI. Yarn a rnoto in whi ch ob­
serva.bility inequalities are obtained for cquutions of t.he form (G) wit h a E 

L 00 (n x (0, T)), b E (£00 (D x (0 , T)) )" (see Tmanuvilov and Yam amoto, J 998). 
These observability estimates, combined with t.he fix ed poiu t tech nique de­
scribed in this paper, a llow to prove uull -cont.rollab ilit.y results for equations 
of the form (1). On the other hand, one may expect tha l , combini ng these 
estimates with the techniques in Fernandez-Cara and Ztwzua ( 1998) , explicit 
estimates on the size of the contm ls th at are needed to achieve (5) wi i] a lso be 
obtained. Using these est im ates, the null contmll abili ty of system ( I ) for some 
nonlinearities growing at infinity in a superlinear way has been ckmoJistrated 
by Anita and Barbu (2000). 

2. Description of the fixed point method 

As we said in the introduct ion , the method developed in t hi s mticle is a variant. 
of t he fixed point method introduced in Zuazua (J 99 1) in t he context. of the 
wave equation and adapted in Fabre, Pucl and Zua.:wa ( 199:3, 1995) to deal 
with the semilinear heat equation. 

We observe that for any y E £ 2 (0, T; HJ (12)) tbe following ident ity holds: 

f(y , \ly)- f(O , 0) 11 

d~ (.f(ay , a\ly))da (9) 

rl a.r , rl of, ,..-, \ I 
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Tn (9) of joy and of j or1 denote , respectively, the partial derivatives off with 
respect to the variables y and 'Vy. 

\Ve introduce the notation 

{ 1
1 of 

F(y) = --;;-(ay , a'Vy)da 
0 uy 

i t of 
G(y) = [)(ay, a'Vy)da . 

. Q ry 

(1 0) 

In view of the globally Lipschitz assumption (2) on f , F and G rnap L 2 (0, T ; 
HJ(!l)) into a bounded set of L00 (!1 x (O , T)). Moreover, 

II F(y) II L "" (O x (O,T)) :S L, 'Vy E L2 (0, T; He~ (!1)), (1 1) 

II G(y) II(L""(O x (O,T)))"::; L, 'Vy E L2 (O,T:H(\(!1)), (12) 

L being the Lipschitz constant of f. 
Using these notations the system (1) can be rewritten as follows 

in !lx(O, 'l ') 

{ 

'Ut- l:J.1t + F(u)u + G(·u) · 'V·n + f(O, 0) =v i"' 
1l = 0 
u(2:, 0) = H0 (x) 

Oil an X (CJ , 'l') (13) 
in 0.. 

Given y E L2 (0, T ; HJ(D)) we now consider Llle "l inear ized" system 

in n X (O.T) 

{ 

1lt - f::J.1L + F(y)u + G(y) · 'V·u. + f(O, 0) = v1w 
u=O 
1L(x ,O) = u0 (x) 

on an X (0, T) (14) 
in n. 

Observe that (14) is a linear system on the s tate v. with poteJJtiHis n = F(y) E 

L00 (0. x (0, T)) and b = G(y) E (L00 (0. x (0 , T))t satisfy in g t!JC' following 
uniform bound 

II a IIL"" (Ox(O,T))::; L, II b IICL""' (fl x (O,J')))" :::; L. 

vVith this notation the system (14) rnay be rewritten in the fo rm 

{ 

1Lt- f::J.u + a1L + b · 'V1L + f(O , 0) = vi "' 
u=O 
1L(x,O) = 1t

0 (x) 

in 0. x (0, T) 
0 11 on X (0, T) 
in 0.. 

(15) 

( 1 G) 

We now fix the initial datum u0 E £ 2 (0.) , the target u1 E L2 (n ), c: > 0 and 
the finite-dimensional subspace E of L 2 (D) . 

Using the variational approach to approximate controllabi lity introduced by 
Lions (1992), further developed in Fabre, Puel and Zuazua ( 199:1) and adapted 
Lo the problem of finite-approximate controll abi li ty in Zuazna (1 D97a ), we build 
a control v for the linear system (1 6) such that 

f ll1t(T) - 1l
1 II f.210\ < E' 
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The control v E L2 (D x (0, T)) satisfying (17) is not unique but the varia­
tional approach mentioned above provides the unique one of minimal L2 (w x 
(0, T))-norm. 

Thus, for any y E L2 (0, T; H6(D)) this allows us to define a control v = 
v(x, t ; y) E L 2(w x (0, T)) such that the solution 1L = tt(x , t ; y) E C ([0, T] ; 
L2(D)) n L2 (0, T; H{J(D)) of (14) satisfies (l 7). This allows to build a non­
linear mapping 

N: L2 (0, T; HJ(D)) _, £ 2 (0, T; HJ(D)) , N(y) = u. (J 8) 

We claim that the problem is then reduced to finding a fixed point of N. 
Indeed, if y E L2 (0, T; Hd (D)) is such that N(y) = ·u = y, 'lL solution of (14) is 
actually solution of (13). Then, the control v = v(y) is t he one we were looking 
for since, by construction, 1L = u(y) satisfies (17) . 

As we shall see, the nonlinear map N :£2 (0, T ; HJ(D)) -> L2 (0, T ; Hd(D)) 
satisfies the following two properties: 

N is continuous and compact ; (19) 

{ 
the range of N is bounded, i.e. 3R > 0: 

II N(y) ll£2(o,T;HJ(n)) ::; R, 'tly E L2 (O,T; HJ (D)). 
(20) 

In view of these two proper ties and as a consequence of Schaucler 's fi xed 
point theorem, the existence of a fixed point of N follows immediately. 

The uniform bound (20) on the range of N is a consequence of the uniform 
bound (15) on the potentia ls a and b which, in turn, is a conseq uence of the 
globally Lipschitz assumption (2). 

Roughly speaking, the control problem for the semi linear equati on (1) or (13) 
through this fixed point method is reduced to obtaining a uniform controll ability 
result for the family of linear control problems (14) under the constraints (11 )­
(12). At this level the unique continuation result of Fabre (1996) for equations 
of the form 

'Pt - t::.cp + acp + div(bcp) = 0 

with L 00 -coefficients a and b plays a crucial role. 

3. Controllability of the linearized systems 

Given £ 00 -potentials a E L 00 (D x (0, T)), b E (L00 (rl x (0, T)) t and a real 
constant ,\ E R we consider the control problem 

f 1Lt-!::.u+au+b·'V'u + >- =v lw 
., = n 

in 
on 

n x (o, T) 
an x ro. T) 
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Let E be a finite-dimensional subspace of L2 (D). Given v0 E L2 (D), u 1 E 

L2 (D) and E: > 0 we look for a control v E L 2 (w x (O,T)) such that the solut ion 
u of (21) satisfies 

{ 
II u(T)- u 1 11 £2(!1)::; E: 

7rE(u(T)) = 7rE(u1 ). 

The following holds: 

(22) 

THEOREM 3.1 LetT> 0. Then, there ex·ists a control v E L2 (w x (0, T)) sttch 
that the solution u E C ([0, T] ; L2 (D)) n L2 (0, T; H6(D)) of (21) satisfies (22). 

Moreover, for any R > 0 there exists a constant C(R) > 0 s·u.ch that 

II V IIL2(wx(O,T))::; C(R) (23) 

for any a E L 00 (D x (0, T)), b E (L00 (D x (0, T)) t satisfi;ing 

II a IIL00 (!1x(O,T))::; R, II b II W"'(!1x(O,T)))"::; R. (24) 

R EMARK 3.1 Theorem 3.1 does not provide any estimate on how the norm of 
the control v depends onE, u0 , u 1 and E: > 0. However, (23) g·namntees that v 
remains uniformly bounded when the potent·ials a, b remain bounded in L 00

. 

The control v is not unique. The constrv.ction we develop below prov·ides the 
control of minimal L 2 -norm. It ·is this control of minimal no-rm which satisfies 
the unifo rm bounded ness condition (23 ). 

Proof of Theorem 3.1. 
Without loss of generality we may assume that A = 0 and H0 = 0. Tndeed, 

otherwise we consider the solution z of 

{ 

Zt - D.z + az + b · \l z + A = 0 in 
z = 0 on 
z(O) = u0 in 

D x (0, T) 
EJD X (0, T) 
n. 

Then, the solution u of (21) may be decomposed as 

tt=w + z 

where w solves 

{ 

Wt- D.w + aw + b · \lw = v l w ID 

W = 0 O il 

w(O) = 0 in 

Then, (22) is equivalent to 

r II w(T)- (u1 - z(T )} IIL2(!1):::; E: 

[2 x (0, T) 
EJD X (0, T) 
n. 

(25) 

(26) 

(27) 
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Therefore, in the sequel we shall a.ssurne that A= 0 and u0 = 0. 
The regularizing effect of the heat equat ion allows to show that. 

{ 
z(T) remains in a relatively compact set of L 2 (n) 
when the potentials a and b vary in t he class (2~). 

This will be important when deriving the uniform bound (23). 
Consider the adjoint system 

{ 

-cpt- D.cp + acp - div(bcp) = 0 in 
cp = 0 Oil 

cp(T) = cp0 in 

[l x (0, T) 
()[l X (0, T) 
fl. 

(29) 

Taking into accoun t that Lhc potentials a and b arc l>oullded it. is easy to 
see that for any cp0 E L2 (n) system (30) has a unique soluti on in the class 
cp E C ([O,T]; L2 (rl)) n L2 (O,T; H1\ (fl)). 

We now consider the fun ctional J: L 2 (fl) __, R. defined as follows: 

]j.T! ;· 0 - 2 0 .1 0 J( cp ) = 2 cp d:rdt + c: II (I -1rE)'P ll£2 (fl)- ·u. cp <Lr. 
o w . n 

It is easy to see that 

J : L 2 (fl) -4 R is cont inuous ; 

J: L 2 (n) --> R. is convex . 

Moreover 

J: L2 (D) __, R. is strictly convex . 

(:31) 

(:32) 

(3:3) 

(34) 

This properLy is a consequence of the fo llowi ng tmicp1e cont inuat ion resul t 
due to Fabre (1996): 

PROPOSITION 3. 1 (Fabre, ] 996) . A.ss11.rne that a E £ 00 (11 X (0, 1')) and b E 

(L00 (fl x (0 , T))t. Let cp0 E £ 2 (11) be s·u.ch that the sohtt-ion cp of (30) sat·isfies 

cp = 0 in w x (0 , T) . (35) 

Then, necessarily, cp0 = 0. 

The functional J : L2(n) --> R. is also coercive. More preci sely, the following 
holds: 

PROPOSIT ION 3.2 Under the assumptions above 

lim inf (36) 
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Proof of Proposition 3.2. The proof of this proposition follows the argu­
ment in Fabre, Puel and Zuazua (1 993) and Zuazua (1997a) combined with the 
unique-continuation result of Proposition 3.1. Let us recall it for the sake of 
completeness. 

Let { cpJ} be a sequence in L2 (D) such that 

II'P~IIu(o) _, oo as j _, oo. (37) 

We denote by {cpj} the corresponding sequence of solutions of (30). 
We also set 

Vf] = cp~ I II cp~ II ucol, IPj = 'Pj I II tp~ II ucol . (38) 

Obviously ipj is the solution of (30) with the normalized initi al data ip~ . 
We have 

II 'P~ llucol 
II cp~ llucol ( r ;· IIPj 12 dxdt 

2 Jo '" 
(39) 

+ E II (I -7rE)<{J]II£2(0) -in u 1
<{J]dx. 

We distinguish the following two cases: 

Case 1. liminf ( J11Pj l2 dxdt > 0; 
J--' 00 Jo w 

Case 2. lim inf ( j10j 1

2 dxdt = 0. 
J-->oo Jo w 

In the first case, due to (37), the first term in (39) tends to +oo while the 
other two remain bounded. Vle deduce that 

in this case. 
Let us now analyze the second case. Let us consider a subsequence (still 

denoted by the index j to simplify the notation) such that 

faT 111Pil2 
dxdt-> 0, as j-> oo. 

By extracting subsequences we may deduce that 

<{fj ___, ipD weakly in L2 (D). 

Consequently 

( 40) 

( 41) 
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where cp is the solution of (30) with datum ipO. According to (41) we deduce 
that 

cp = 0 in w x (0, T) 

and, as a consequence of P roposition 3.1, that cpa = 0. Therefore, if ( 40) holds, 
necessarily 

But then, E being finite-dimensional, 

1re¢]-+ o in L2(0) 

and therefore 

II (I -7re)¢JII£2(n)-+ 1 

since ll~ll£2(n) = 1 for all j. 
As a consequence of ( 43) and ( 44) we deduce that 

liminf J (rp~) ~ l~~~f [c II (I- ne ) ~li£2(n) -ln 1¢}dx] = E:. 
j-+oo ll<.p~~~£2(f!) " 

( 43) 

( 44) 

This concludes the proof of Proposition 3.2. • 
In view of properties (32), (34) and (36) of the functional J we deduce that 

J achieves its minimum at a unique cpa E L2 (0), i. e. 

( 45) 

It is easy to see that the cont rol 

v = cp in w x (0, T) , ( 46) 

cp being the solution of (30) with the minimizer cpa as datum is such that the 
solution u of 

{ 

Ut- 6.u +au+ b · 'Vu = vl w in 
u = 0 on 
u(O) = 0 in 

n x (O ,T) 
an x (o, T) 
n 

satisfies (22) (see Zuazua, l997a, for the details of the proof). 
This concludes the proof of the finite-approximate controllability. 

(tl7) 

In order to prove the uniform bound (23), we first observe, as indicated in 
(29), that the problem may be reduced to the case u0 = 0 and >. = 0, provided 
·u 1 is allowed to vary in a relatively compact set of L2 (n). 
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PROPOSITION 3.3 Let R > 0 and K be a relatively compact set ofL2 (D). Then, 
the coercivity property (36) holds uniformly on u1 E K and potentials a and b 
satisfying (24). 

REMARK 3.2 Note that the functional J depends on the potentials a and b and 
the target 1t1 . Proposition 3. 3 guarantees the uniform coercivity of these func­
tionals when u 1 E K, K being a compact set of L2 (D) and the potent·ials a and 
b are uniformly bounded. 

As a consequence of Proposition 3.3 we deduce that the minimi zers <pD of 
the functionals J are uniformly bounded when u1 E K and the potentials a 
and b are uniformly bounded. Consequently, the controls v = ij5 are uniformly 
bounded as well. 

Therefore, in order to complete the proof of Theorem 3.1 it is sufficient to 
prove Proposition 3.3. 

Proof of Proposition 3.3. The proof is simi lar to that of Proposition 3.2. We 
argue by contradiction. Tf the coercivity property (36) does not hold uniformly, 
we deduce the existence of sequences 

and 

{ 
a1 E L00 (D x (0, T)); b1 E (L00 (D x (0, T))t 
II aj IIL00 (0 x (O,T))::; R; II bj II(L00 (0 x (O,T)))"::; R 

such that 

for some 0 < 6 < £ . 

(48) 

( 49) 

(50) 

(51) 

Here and in the sequel 11 denotes the functional corresponding to the target 
1t} and to the potentials a1, b1. 

As in the proof of Proposition 3.2 we set 

We have 

J ( 'P~) 

II 'P~ t2(0) 
II / T ' ........[)II 

(52) 

(53) 

r , ~n . 



676 

In view of ( 49) and (51) we immediately deduce that 

loTi \<PJ\ dxdt---+ 0, as j---+ oo. 

Extracting subsequences we also have 

0lj--' cp0 in L2 (D.) weakly 

<PJ--' cp in L2 (O,T;HJ(D.)) weakly 

aj--' a weakly -*in L00 (D. x (O ,T)) 

bj--' b weakly -*in (L00 (D. x (0, T))t. 

In view of (54) we have 

cp= 0 in w x (O ,T). 

On the other hand, cp solves 

{ 

-'Pt - D.cp + acp - div(bcp) = 0 in 
cp = 0 on 
ip(T) = ijP in 

D. X (0, T) 
an x (o, T) 
D. , 

E. ZUAZUA 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

the potentials a and b being the limits in (58)-(59) and the datum ijP the limit 
in (55). 

In order to obtain (61) we have to show that 

ajcpj--' acp weakly in L2 (D. x (0, 1')) 

bjcpj--' bcp weakly in (L2 (D. X (0, T))r. 

This can be done easily since 

8t'Pj is bounded in L2 (0, T; H- 1(0.)) . 

(62) 

(63) 

(64) 

Combining (56) with (64) and Aubin-Lions compactness lemm a we deduce 
that 

cpj is relatively compact in L 2 (D. x (0, T )). (65) 

Consequently 

cpj ---+ cp in L2 (D. x (0, T)) . (66) 

r"mr<>r<T<>nr<>~ {fi?)_(fl:i) follow immecliatelv from (58), (59) and (66). This jus-
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According to Proposition 3.1, (60)-(61) yield that 0 = 0. Going back to (55) 
this shows that 

lPJ--" 0 weakly in L2 (0). 

This, together with (57), implies that 

l u}cp]dx----> 0. 

On the other hand, as indicated in the proof of Proposition 3.2, we also have 

Therefore 

Jj(cp~) > II (I )~I I j 1 ~d 
II o II - c - 7rE 'Pj U(n)- ujcpj x-----> c. 

'Pj U(n) n 

This is in contradiction with (51). 
This completes the proof of Proposition 3.3 and consequently that of Theo-

rem 3.1. • 

REMARK 3.3 Note that the proof of Theorem 3.1 provides not only for the ex­
istence of the control v but also a constructive way of finding it, and choosing it 
in a unique way. 

4. The semilinear control problem 

This section is devoted to proving the following result: 

THEOREM 4.1 Assume that f satisfies (2). Then, for al l T > 0, system (1) is 
finite-approximately controllable. 

More precisely, for any finite-dimensional subspace E of L2(0) , u0 , u 1 E 

L2 (0) and c > 0 there exists a control v E L 2 (w x (0, T)) such that the solution 
1l of (1) satisfies (5). 

REMARK 4.1 As indicated in the introduction, this res·ult is not new. It was 
proved in Fernandez and Z<Lazua (1997) by means of a sudable penalization of 
an optimal control problem. However·, we believe that the proof presented here 
is simpler, easier to adapt to other situat·ions and that it brings new l-ight to the 
approximate controllability problem. 

Proof of Theorem 4.1. 
We proceed by means of the fi xed poin t method described in Section 2. 
Given a finite-dimensional subspace E of L2 (0), 1t0 , 11.

1 E L2 (0) and c > 0, 
the nonlinear map 
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is well defined in view of Theorem 3.1. 
As indicated in Section 2, in order to conclude the existence of a fixed point 

of N by means of Schauder 's fixed point method (and therefore to conclude the 
proof of Theorem 4.1) it is sufficient to check the following three facts: 

N: £ 2 (0, T; HJ(O)) --t £ 2 (0 , T ; HJ(O)) is continuous; (67) 

N: £ 2 (o, T; HJ(O)) __. £ 2 (0, T; Hci(O)) is compact ; (68) 

:JR > o :II N(y) IIP(o,r;HJ(n))s R , Vy E L2 (o ,r; HJ(O)). (69) 

Let us prove these three properties. 

Continuity of N. Assume that Yj __.yin £ 2 (0, T ; H6 (0)). Then , the poten­
tials F(yj), G(yj) are such that 

F(yj) --t F(y) in £P(O x (0 , T)) 

G(yj) --t G(y) in (£P(O x (0, T)) t 

for all 1 S p < oo and 

(70) 

(71) 

(72) 

According to Theorem 3.1 the corresponding controls are uniformly bounded: 

II Vj IIL2(w x(O,T))S C, 't!j ~ 1 

and, more precisely, 

Vj = ipj in w x (0, T) 

where ipj solves 

{ 

- 'Pt- b.cp + F(yj)'P- div (G(yj)cp) = 0 in 
cp=O oo 

cp(T) = (jfj in 

ox (o, T ) 
80 X (0, T) 
o 

(73) 

(74) 

(75) 

with the datum (jf} minimizing the corresponding function al J j . We also have 

By extracting subsequences we have 

r1}----' ~weakly in £ 2 (0) 

(76) 

(77) 

and in view of (70)-(71 ), arguing as in the proof of Proposition 3.3, we deduce 
that 
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where rp solves 

{ 

-cpt- 6 cp + F(y)cp- div (G(y) cp ) = 0 in 
cp = 0 on 
cp(T) = cpD 111 

We also have that 

n x (o, T) 
an x (o, T) 
n. 

679 

(79) 

(80) 

and, once again, by Aubin-Lions compactness lemma, it follows that 

rpj ~ rp strongly in £ 2 (!1 x (0, T)). 

Consequently 

Vj ~ v in L 2 (w x (0, T)) 

where 

v = rp in w x (0, T). 

It is then easy to see that 

where 

and 

{ 

1lt- 6u + F(y)u + G(y) · \7v, + f(O, 0) = vlw 
u = O 
u(O) = u0 

{ 
llu(T)- tt

1 llu(o) :::= c, 
7rE(tt(T)) = 7rE(u1). 

(81) 

(82) 

(83) 

(84) 

in n X (0, T) 
0 11 8D X (0, T) (85) 
inn 

(86) 

To conclude the continuity of N it is sufficient to check that Lhe limit c;f! 
in (77) is the minimizer of the functional J associated with the limi t control 
problem (85)-(86) . 

To do this, given 1/;0 E L2 (D) we have to show that 

But this is immediate since, by lower sem icontinuity, we have 

J ( rpD) ::; lim inf l j ( rp~ ) , 
J~OO 

on the one hand, 

.T (1J,Oj = lim inf T (,;,Oj 
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on the other one, and finally 

11 ( ¢]) ':5: 11 ( 'l/Jo ) 

since cpJ is the minimizer of 11. 

Compactness of N. The arguments above show that when y lies in a bounded 
set B of £ 2 (0, T; HJ(D)) , u = N(y) also lies in a bounded set of £ 2 (0, T ; Hd (D)). 
We have to show that N(B) is relatively compact in £ 2 (0 , T ; Hd (0)). But this 
can be obtained easily by means of the regul arizing effect of the heat equation. 

Indeed, we have 

{ 

Ut - f:lu = h in 0 X (0, T) 
u = 0 on 80 x (0, T) 
u(O) = u0 in 0 , 

with 

h = v1w- F(y)u- G(y) · \lu- j(O, 0) 

which is uniformly bounded in £ 2 (0 x (0, T) ). 
Then, u can be decomposed as 

u=p+q 

where 

{ Pt- f:lp = 0 in ox (o, T) 
p=O on 80 X (0, T) 
p(O) = u0 in o 

and 

{ q,- !lq ~ h in ox (O ,T) 
q=O on 80 X (0, T) 
q(O) = 0 in o. 

Obviously, p is a fixed element of L2 (0, T; Hd (0)) . On the other hand , 
by classical regularity resul ts on the heat equat ion we deduce that q lies in a. 
bounded set of £ 2 (0, T; H 2 (0)) n H 1 (0, T ; £ 2 (0)), which, as a consequence of 
Aubin-Lions compactness lemma, is a relatively compact se t of L2 (0 , T; Hd (0)). 

This completes the proof of the compactness of N. 

Boundedness of the range of N . Theorem 3.1 shows that there exists C > 0 
such that the control v = v(y) satisfies 

II v(y) ll£2(w x(O,T)) ':5: C. 

The classical energy estimates for system (85) show that 

II u(y) l lu(o,T; H~(n )) ':5: C 

as well, since the potentials involved in it are uniformly bounded. 
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5. Further comments and results 

The method presented may be easily adapted to deal with various vari ants of 
the problem addressed here. We present briefly below some of them. Note that 
we systematically assume the nonlinearity f to be globally Lipschitz. 

5.1. Boundary control 

Consider the semilinear heat equation with boundary control 

{ 
~t: v/:::,u + f(u, 'Vu) = 0 

u(O) = u0 

in 
on 
in 

n x (0, T) 
an x (O,T) 
n. 

(87) 

This problem was addressed in Zuazua (1 997a) by means of the penalization 
technique of an optimal control problem. The finite-approximate controllability 
of (87) may be easily proved by the fixed point method we have presented here. 
This completes the results in Fabre, Puel and Zuazua (1 993) on the case where 
f = f(u). 

5.2. The £P-setting 

All along this paper we have worked in the L2-setti ng. Similar results may be 
proved in LP for 1 ::; p < oo or in Co(n). We refer to Fabre, Puel and Zuazua 
(1993) for a careful analysis of the case f = f(u). One can easily combine the 
developments in Fabre, Puel and Zuazua (1 993) and in the present paper to 
deal with the more general case f = j(1t, 'Vu). 

5.3. Quasi bang-bang controls 

The problem of finding quasi bang-bang controls was addressed in Fabre, Puel 
and Zuazua (1993, 1995) in the case where f = f(u). In a similar way, using 
the fixed point argument of the present paper, the case where f = f('n, 'Vu) 
may be addressed as well. We recall that quasi bang-bang controls are of the 
form v E >.sgn(~) , >. being a real number and ~ a solution of an adjoint heat 
equation. 

5.4. Control in the initial data 

Let us consider the semilinear heat equat ion 

( Ut- /:::,u + f(u, 'Vu) = 0 

< u = 0 

in 
on 

n x (O,T) 
an x (o, T ) (88) 
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When f = f(u), f being globally Lipschitz, it was proved in Fabre, Puel and 
Zuazua (1995a) that the ran ge of the semigroup 

R(T) = { u(T) : u0 E L2 (0)} 

is dense in L2 (0). This may be interpreted as an approximate controll ability 
result, the control being the initial datum u0 . 

By combining the developments of the present paper and Fabre, P uel and 
Zuazua (1995b) this result may be easily extended to the case where f = 
f(u, \i'u), f being globally Lipschitz. 
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