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Abstract: The classical Markowitz approach to portfolio selec-
tion leads to a biobjective optimization problem where the objec-
tives are the expected return and the variance of a portfolio. In this
paper a biobjective dual optimization problem to the Markowitz
portfolio optimization problem is introduced and analyzed. For the
Markowitz problem and its dual, weak and strong vector duality
assertions are derived. The optimality conditions are also verified.
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1. Introduction

Consider n risky securities Sy,...,S,. Assume that r; is the return on security
S; (1=1,...,n), u; = E(r;) is the expected value of return r;, and the covari-
ance between r; and r; is 03; = E[(r; — p;)(r; — p;)]. In particular, the variance
of r; is represented by oy;.

In order to reduce the risk, diversified portfolios are usually built for invest-
ments at the capital market. Let z; be the share of the investor’s capital that is
allocated to security S;. This defines a portfolio as a vector z = (21,...,2,)7
with 2; > 0 for i = 1,...,n and €Tz = 1 where e is the n-dimensional vector
of unit coordinates, e = (1,...,1)7. The portfolio « is characterized by the
expected return

n
E(z) = sz-,u,-
i=1
and the variance

Vig)= Y oiziz; .
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According to the Markowitz (1952) theory the investor intends to maxi-
mize the expected return and to minimize the risk measured with variance.
Because these two objectives are typically in conflict, an adequate and rea-
sonable solution notion is that of efficiency (Pareto-optimality). This leads to
the classical and well-known portfolio optimization problem with two objectives
(Markowitz, 1989, Linke, 1996, Elton,1991, and Sharpe, 1970):

(P) F(z) — v-—min

st ez =1
T = (mla---vln)T
o 2 0a=10000

T

riy={ 48 =] $5] )= h ;I :t

§g=1
A point (portfolio) = (z1,...,2,)7 that fulfils constraints ¢’z = 1 and
x; > 0,2 =1,...,n, is said to be an admissible point of (P). The aim of this
paper is to present a dual multiobjective problem to the Markowitz portfolio
optimization problem (P) and to prove the so-called weak and strong duality
assertions. Moreover, we will use the strong duality assertions to derive the
necessary and sufficient optimality conditions for the portfolio problem.

There are some comprehensive presentations of duality in multiobjective
optimization, given by, for instance, Gopfert and Nehse (1990), Jahn (1986),
Nakayama et al. (1985). Several authors applied general concepts of duality
in vector optimization to specific problems or have established direct consider-
ation for such problems independently from a general approach. A first dual
pair in linear vector optimization was given by Gale et al. (1951). Later, Is-
ermann (1978) introduced a dual problem in linear vector optimization which
turns out to be a direct generalization of the scalar linear duality. Duality
for geometric vector optimization was analyzed by Elster et al. (1989). Ex-
plicit formulations of dual problems also have been derived for multicriteria
location and control-approximation problems by Tammer and Tammer (1991),
Wanka (1991a, 1991b). However, to our best knowledge, multiobjective dual-
ity for the Markowitz portfolio optimization problem has not been investigated
until now.

2. Solutions of the portfolio problem and the dual prob-
lem formulation

Recall the definitions of efficiency and proper efficiency (Gopfert, 1990; Jahn,
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" E 4 ) (o] , . g —
DEFINITION 2.1 An admissible point P= (s e ,:(z)r,,‘)r is said to be an efficient
point (or solution) to (P) if there is no admissible point @ = (ry...... )T
) /L

that fi(x) < j,(i?),l, =1,2, and f;{z) < f.i(’(’l") for at least one index j € {1,2}.

such

T

his is the usual definition of the efficiency (Pareto-optimality) in the case of
two objectives.

DEFINITION 2.2 An admissible point @ = (.(1)'1 e .5)7,,)"‘ is said to be a properly
efficient point (solution) to (P) if there ewists a scalarizing vector /{ = (({1 ; ,{3)'
0 4 ) 4 0 0 v " g y 2

Xi> 0, i = 1,2, such that )\ f|(3)+ Mo folx) < N\ file)+ Ao fo(a) for all
admissible points x.

Obviously, a properly efficient point is an efficient one.  Note, however,
that there exist different definitions of properly efficient solutions (Goplert and
Nehse, 1990), the classical one having been given by Geoflrion (1968). Re-
lations between the different definitions have been explained by Gopfert and
Nehse (1990). In particular, for convex objective functions the definition on the
basis of linear scalarization (Definition 2.2) is an usual approach (Jahn, 1986;
Gopfert and Nehse, 1990) and the properly efficient solutions defined in this way
are also properly efficient in the sense of Geoffrion (Gopfert and Nehse, 1990).

Our aim is to formulate a multiobjective dual problem (P*) to the portfolio
optimization problem (P) and to verify the weak and strong duality assertions
as well as the optimality conditions for properly efficient solutions to (P) and
efficient solutions to the dual problem (P*), respectively.

For the portfolio optimization problem (P) we introduce its dual (P*") as the
following bicriteria optimization problem:

i [ARN ‘2) . n
(P ) G(Z‘/,Z) == ( 91(y =5 y o — ' —max

' 2\Y, 2 2 ijYiYy ~
92(9:2) ) :.;l s (y.2) € B

with the dual variables y = (y1,.. .. Yn)T € R™, 2z = (21.2)" € R? and the set

B of constraints

1§

B={(y,z2) e R*xIR? : 3\ > 0.\ >0 such that

|
AMzie+ X200y + z0¢) < =M} Ly
where vector g1 = (j1,..., )" is the vector of the expected returns and ¢ =
(O'ij)i,j:h..»,n denotes the covariance matrix to returns rq....,r,. The notation

v — max means here the vector maximization in the sense of determination of
efficient (Pareto-optimal) elements. An element (point) (y.z) € B is called
admissible to (P*). The definition of efficient solutions to (P*) is analogous to
g 3 Il I Y . . 7 ™\

r
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o -
DEFINITION 2.3 An admissible element (;f}._g) € B is said to be an efficient
solution to (P*) if there is no admissible clement (y,z) € B such that g;(y.z) >

g,(‘y, 2) fori=1,2 and 9i(y,2) > gj('.;,;._g) for at least onc indes j € {1.2}

Hereafter, we call problem (P*) the dual portfolio optimization problem.
This is because (P*) has properties that are characteristic for dual problems in
multiobjective optimization.

Consider two multiobjective optimization problems:

a minimum problem

F(z) = v—min (2)
TEA

and a maximum one

G(y) = v—max . @3
yE€B

It is assumed that

F(z) = (fiz),-, fm(@)T, G(y) = (01(¥), -+, gm(y))” € R™.
The usual partial ordering in IR™ is defined by
w= (ul,...,um)T Sy= (t.vh...,-n,,,)T ifu; >0 fori=1,...,m.

DEFINITION 2.4 The property that there is no z € A and no y € B such that
G(y) 2 F(z) and G(y) # F(2) is called the weak duality property for problems

(2) and (3).

Definition 2.4 is a natural generalization of the so-called weak duality prop-
erty within the usual scalar optimization with one objective function. i.e. F(x) =
fi(z) € R, G(y) = g1(y) € R. The weak duality means that G(y) < F(2) for
all y and 2 admissible to the respective problems. This is briefly described by
the formulation:

sup G(y) < inf F(z). (4)

In general, a duality gap may occur which means that sup G(y) < inf F'(z). If
inequality (4) is fulfilled as an equality, then, we say that the so-called strong
duality occurs. Sometimes the strong duality property is understood in the
stronger sense, that is, there exist solutions to inf Fi(z) and (or) sup G(y) such
that maxG(y) = G(‘E‘) = F(Z) = min F().
If multiobjective problems (2) and (3 ) with the weak duality properties have
a

i . o a L b —r Dy e | 1
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the problems have the strong vector duality property. One can distinguish
between a weak and a strong form of the strong duality depending on the fact

whether the equality F(ﬁ)) = G(E}) is fulfilled only for a certain (single) pair of
points Z and fl or for all (properly) efficient elements to problems (2) and (3),
respectively. Indeed, it follows from the weak duality property and the equality
of the objective function values G(T(}) = F(z) that ¥ as well as & are efficient to
the corresponding problems (3) and (2).

The weak form of the strong duality property can be interpreted geometri-
cally as touching of the image sets and also of the efficient frontiers of problems
(2) and (3) in single points. Similarly, the strong form of the strong duality prop-
erty means that the efficient frontiers coincide at least for all efficient points to
(2) or to (3) or even for all efficient points to both problems (2) and (3). We
have to distinguish between these different cases because it may happen that
there are efficient points to problem (3) for which there is no corresponding
efficient point to problem (2), and vice versa. In this situation we have only the
coincidence of parts of the efficient frontiers of both problems. In other words,
the efficient frontiers of problems (2) and (3) can have a common intersection
or even coincide in the case of the strong duality property. Otherwise, under
the assumption of the weak duality property there may be a duality gap as in
scalar optimization.

From Definition 2.4 it follows that the property of weak duality provides
an opportunity to construct lower bounds for efficient solutions ol the primal
problem (2) and upper bounds for efficient points of the dual problem (3), as in

[
scalar optimization. For example, if we are given an admissible point ¥ to the

dual problem (3), then G(ﬁ) represents a lower bound in the sense that there
are no admissible points a to the primal problem (2) such that F'(a) < C’(i;/)) and
F(z) # G(;) with respect to the partial ordering considered for problems (2) and
(3), respectively. If we find an admissible point T fulfilling F(.(I,:) = G(:;;)., then
its efficiency is guaranteed. In the case of the strong duality properties, one can
solve the dual problem (3) getting an efficient solution ¥ and the corresponding
G’(!(j) This yields the objective function value F(;'(I)‘) = G(;}) of a primal efficient
solution 57, i.e. the remaining problem is to solve the equation F(x) = g with

the known right hand side g = G(;})

An additional opportunity is the formulation of optimality conditions to the
primal and dual problem by means of strong duality. This gives also conditions,
equations or inequalities etc., for the determination of eflicient solutions. Thus
the assertions of duality play a useful role both in scalar optimization and in

OIS I
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3. Weak duality

In the remainder of the paper we will point ont weak duality as well as strong
duality for the portfolio optimization problem (P) and its dual (P*). We start
with the weak duality theorem (cf. Definition 2.4).

THEOREM 3.1 There is no admissible point x to (P) and no admissible point
(y,2) to (P*) such that G(y,z) > F(x) and G(y,z) # F(x).

Proof. Let us assume that the assertion of Theorem 3.1 is not true. Then
there exist  admissible to (P) and (y, z) admissible to (P*) with corresponding
numbers A\; > 0 and Ay > 0 and a vector k = (ky, ko))" # (0.0)", key > 0. ky >0
satisfying the equation G(y, z) = F(x) 4+ k. This implies that

Mhi(@) +Xafa(z) = Mgi(y.2) + dogaly, 2) = Mk = Aok
< Mgi(y.2) + Aage(y, 2).

On the other hand, we will show that
ALf1(2) + Ao fa(z) = Mgy, 2) + Aega(y. 2)

which leads to contradiction. .
We may note that from the inequality defining the set of consiraints B ol
(P*) withz >0 (i.e. 2, >0, i =1,....n) it follows that

0> 2" [M(p+ zie) + A2 (20y + 22¢)] .
The above inequality allows to obtain
M) +Aefo@) = M(—E(@) + V()
M= z Jir) + Ao z L0

] i,j=1

Il

> M(=2"p+ 2T (u+ z1€) (5)
n . x
+ M| Y wizjoi; 42" (209 + zz0)]

ig=I .
= Mznale+ MaTox + 20aTay+ Ama'e
A2 + Aezg + Ao(2 + 2u) T ou

because of zTe=eTz =1 and " =0, i.c., 270y = yTo" 0 =y 0u.

Using the Schwarz inequality for positive semidelinite symmetric matrices
(see the following Lemma 3.1), i.e.
~wTox < 2yToy)t(2To2)t < yToy+aTon

1

(with 2ab< a2+, a= (yToy)} . b= (2To)?). (6)

we obtain

L B . -~ e -
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By substituting (7) into (5) we get

M fi(@) 4 Aafo(@) = Mizi + Aoz = May” oy = Mg (9, 2) + Moy (y. 2)
which compietes the proof. a
LEMMA 3.1 Let o = a” be a positive semidcfinite (n, n)-matriz. Then.

W' ou| < (57 oy)* o ow)¥ (8)

Proof. It is well known that for a positive definite matrix o = o’ (y.1), =
y'ox defines a scalar product. Thus. inequality (8) represents the Schwarz
inequality for that scalar product. If ¢ is only positive semidefinite, several
cases have to be considered. For y”ox = 0, inequality (8) is trivially fulfilled.
If y"ox # 0, inequality (8) can be proven in a similar manner as for positive
definite matrix o. Namely, starting with

0< (y=2A2)To(y = Aa) = yToy — A" oy — AyToa + N ou
and substituting
A= oy)(y ox)",
we obtain
0. < —yT oy + (5 oy ow) 2" ow). (©)

Therefore, for y such that y"oy # 0 inequality (8) follows from (9).

For y such that y"oy = 0, inequality (9) cannot be divided by y” oy. More-
over, (8) is violated because yTox # 0. This situation, however, is impossible
since yTox # 0 implies also y"oy # 0. To verify this, let us assume that
yToy=0forsomey #0. Let Xp,..., M >0. Mgy =...=Ay =0 k<n—1,
be the eigenvalues of & with the corresponding system of orthonornal eigenvec-
tors ' to Aj, i=1,...,n. Let y= > a;y'. Sinceay’ =0fori=k+1,.... n,

§=1

we obtain

T 7. T :
0=yloy = (z cr,-y‘) o (Z n‘,-yd')
=1

1=

n Tr % k
(Z r'.ig;") (Z rlj/\jyf) = 3 Aat.

i=1 J=I1 i=1

This implies that oy = as = ... = a; = 0. Thus,

" mn
Y= Z a;yt and oy = Z oy =0,

i=k+1 i=k+1

that is, from yToy = 0 it necessarily follows that oy = 0. Hence, there is
y"ox = 2T oy = 0 which contradicts y" oa # 0.

- ] : i sl we o R T
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4. The scalarized problem

In order to establish the strong vector duality we need the following proposi-
tion concerning optimality conditions for the scalarized portfolio optimization

problem (Py) (A = (A1, A2), A > 0,4 = 1,2) corresponding to (P):
(Py) inf {=\u"x+ AaTox} .
st. fa=1

20, 9=, 00

This is a quadratic programming problem. For such problems there exists a
well elaborated duality theory (Elster et al., 1977; Dorn, 1960). For our special
problem (Pj) a suitable dual problem is:

(P5) sup {=Xay" oy +w} .
yeR"welR
2Xo0y +we < =\

Due to the classical (scalar) duality theory, problems (Py) and (Py) satisfy
the strong duality property, i.e. inf(Py) = sup(Py ). Moreover, the dual problem
(Py) is always solvable. By means of the duality, the optimality conditions can
be derived.

PRrROPOSITION 4.1 Let T be a solution to (Py). There exists a solution (jj, @) to
(Py) fulfilling the following optimality conditions:

i) Poj+alox+2§ oz =0,

ii) T (2Xg09 + we + Ajp) = 0.

Proof. Because of the strong duality and the solvability of (Py) the optimal
objective function values of (Py) and (P}) for the solutions & and (g.w@), re-
spectively, are equal. That is

0=-Mp"z+ Mi"0z+ Ngloj—w. (10)

It is straightforward to verify the following equality:

0 = 2X§" 0F — &' (2X207 + We) + W . (11)
Adding (11) to (10), we obtain
0 = =\puTz+ X idTor+ Ny oy —w

+2X057 0% — 2T (2M209 + we) + @ (12)
= M[iToj+2"0x + 2§ o) + [~2" (2\207 + We + M pr)] .

Due to (6) and since  and (y, z) are admissible to (Fy) and (Pf), respectively,
the two expressions in the last line of (12) are nonnegative. Hence, equation
(12) implies that the terms inside the square brackets are equal to zero, i.e. i)
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REMARK 4.1 The second condition of Proposition 4.1 can be interpreted as the
complementary slackness condition.

Note that if conditions ) and ) of Proposition 4.1 are satisfied for & and
(y,w) admissible to (Py) and (Py), respectively, then & and (i, w) are (opti-
mal) solutions to the corresponding problems. This results from the proof of
Proposition 4.1: if we begin with (12), we obtain (11) and (10). But (10) is the
equality of the objective function values of (Py) and (Py) and, thercfore, r is a
solution to (Py) and (,@) is a solution to (Py), because they are admissible.
Thus, we get the following assertion:

PROPOSITION 4.2 Let & be feasible to (Py) and (§,w) feasible to (Py). More-
over, let conditions 1) and ii) from Proposition 4.1 be satisfied. Then & and
(7,) are optimal solutions to (Py) and (Py). respectively.

REMARK 4.2 Condition i) of Proposition 4.1 is equivalent to
To(z+9) =0 and §"0(z+7)=0. (13)

Proof. Adding up the two equations of (13) implies immediately ¢).

To verify (13) starting from condition 7) let us analyze inequality (6). From
i) we see, replacing x with  and y with g, that inequality (6) is fulfilled as
equation. Hence,

—2iToq = 2(_} i % ‘cr;-';)é =jloj+z oF.
Substituting a = (§707)?, b = (#70F)?, we obtain 2ab = a? + b which is
equivalent to a = b, i.e. 70 = T ox. With condition i) this yields

0= 1F"oy+2T0z+2§"0x) = 12870z + 27" 07
= @+9 ox=2"0(Z+7)

and, analogously, 0 = 7o (& + §). Therefore, (13) is true. |

5. Strong duality

Now, we are able to prove the strong duality theorem for the multiobjective
portfolio optimization problem (P) and its dual (P*).

THEOREM 5.1 If Z is a properly efficient solution to (P). then there exists an
efficient solution (‘,f(:*, g) € B to (P*) which holds the equality of the objective
function values

F(x)=G¥,z).

Moreover, with the caﬂ"espondmg scalarizing numbers ,\,> 0, i = 1,2 (see

nN.r. s nony 2 r.f oy T Y ] o1y . ot T
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T T T
i)Yoy +2 o842 08=0
implying
oT ol & o
:ra(a:+y) 0, Jaa,+ff)-0
i) & [,\1 p+ 2y €)+ ,\') ('ZGJ+Z.1(’ ]i=0
Proof. Let T be properly efficient to (P). From Definition 2.2 of pm])or ef-

o

ﬁucn{,y it follows that there cxmLs a mnt‘spondm" scalarizing vector Y= (A1,
,\3) ,\,) 0,7 = 1,2, such that ,\ F(x) >,x F () for all admissible 2 to (P).
In other words,  is a solution to the scalarized problem (P;\.}. With the assigned

dual problem (P.T) we have the strong duality property and also the existence

of a dual qO]thlon ( W), i.e. nnn(P,. = max(FPr). With conditions ¢) and i)

A
of Proposition 4.1, condition ¢) of Ihc'mem 0.1 is satislied (it has exactly the
same form as condltlon 1) of Proposition 4.1). Moreover, there is

ol o o o o
xr (2,\20’?}+we+,\|,{1):l}. (14)
We define 2= (21, 22)7 by

o (] a
Zi=—p' T, 29i=-=-2Y ol . (15)

Let us first establish the strong duality relationship F(¥) = G(¥. ?). Following
g e 3 « : 1 .
this, we check the admissibility of (v. 3) with respect to (P*). Consider the

components of G(‘E" %) = ((,2), gg(f},g)}"". Due to (15) and ). there is

a o o o = -
01{¥,2) = z1= —p' 2 Z pi = —E(x) = fi(x),
1=]
o g [ 0j o [}! @ o”‘l L]
02Y,2)= 23—V aJ— —2Yocx—Yay
T o0
=T o= Z 04 Tt i= V(&) = fa@)
i5=l

which means F(%) = G(;g) To point out (};‘g) € B (i.c. admissibility), we
calculate, taking into consideration (14) and (15).

o o ol

2 o o o 0 o
MZi+ Az = —pox ..,\zf} o (16)
ol 1 0JI o o o
= T (- )u ,!t—..,\;rrf)'} =r we=wel F=w

Notice that (‘.ﬁ, t‘f)) is admissible to (P7) (it is even a solution of (P})). There-
A A
fore, it satisfies the inequality

o o o 7]
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Replacing W with (16), we obtain
o o o g o g o
2X20Y+ \iz1 e+ dazae< — A

and, further

o

M (p+2e)+ 32 (200 +2) <0,

The last inequality is required to guarantee (E‘g) € B. Finally, the equation
F(t) = G(;,g) and the weak duality assertion of Theorem 3.1 shows that {?j. z)
is efficient to (P*).

Equations (14) and (16) imply condition 4z) of Theorem 5.1. This completes
the proof. ]

6. Conclusions

In this paper, we have considered a dual multiobjective optimization problem
(P*) to the classical Markowitz portfolio optimization problem (P). Tor the
Markowitz problem we have considered the so-called properly efficient solutions
while for the dual problem — the efficient solutions. The weak and strong du-
ality assertions have been derived (Theorems 3.1 and 5.1). In particular, a
linear scalarization of the Markowitz problem was used to gain these results.
Moreover, the strong duality assertion has been used to obtain the necessary
optimality conditions. We note, without proof, that these conditions turn out
to be sufficient, too. For the scalarized problems (Py) and (Py) this has been
expressed in Proposition 4.2.

In scalar linear programming, it is possible and also useful to give an eco-
nomic interpretation of the dual problem and of the dual variables (Padberg,
1995). Such economic or capital market interpretation could also be an inter-
esting completion of our mathematical investigations but, until now, we were
unable to give one. We want to address this problem and involve rescarchers in
the area of capital market theory.

Finally, let us point out that our approach can also be applied to construct
dual multiobjective problems to some generalizations of the classical Markowitz
portfolio problem, e.g. to portfolio problems allowing short sales or to problems
with other types of constraints. This will be presented in a forthcoming paper,
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