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Abstract: The purpose of this paper is to determine one fac-
tor which represents the whole market behavior on the basis of the
rates of return of all equities traded on this market. In the semi-
nal Sharpe model the factor is an exogenous variable which is not
determined by the model itself. This paper extends Sharpe’s idea.
as it assumes that the factor is a linear combination of all the rates
of return of all traded equitics. To determine the coellicients ol this
linear combination we minimize the loss function which expresses
the weighted mean square deviation of all rates of return from their
predictions, having given the linear combination form of the market
index. It is found that the vector of linear coellicients has 1o be a
nonzero eigenvector associated with the maximal eigenvalue of the
appropriately transformed and estimated covariance matrix.

The optimal market index for the Warsaw Stock Exchange was
compared with the standard index. It occurs that there is only a
very small difference between the standard index of this market and
the optimal index.

Keywords: portfolio analysis, Sharpe model, market index. lin-
ear regression, principal components

1. Introduction

The theory of portfolio selection was originally developed by Markowitz (1952,
1959). When analyzing linancial market behavior Markowitz and Sharpe found
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that the majority of traded equities behave in the same fashion. That is, they
are consistent with the whole of the market behavior. This finding resulted in
a very simple and frequently used market behavior model called Sharpe model
(Sharpe, 1963; Alexander and Francis, 1979; Elton and Gruber. 1991). 1t is
assumed that the rate of return on the i-th equity behaves in the following way:

R=0;+BF+e fori=1,....k
cov(F,e') =0Vi, cov(e',e)=0Vi#j
E(e') =0, Var(¢') =0}, Var(F)#0,

where:
R? — the random variable which represents the rate of return of the i-th equity,
F — the random variable which represents common market risk.
' — the random disturbance of the i-th rate of return.

In the Sharpe model it is assumed that there exists one common market risk
for all rates of return. The market risk is, however, an exogenous variable which
is not determined by the model itself. The common risk of a market F'is often
measured by market indices like S&P or Dow Jones. Parameters a; and 3, are
usually estimated from data using the method of least squares. Let me remind
the procedure of estimation using this technique because these resnlts will be
used later on in t.llle te;xt. Assuming that we have the historical rates of return of

s iNt=1,00,T
k equities (Ri)izl.,,,.k
risk (F¢)¢=1,..,r, the estimators a; and b; have to minimize the following loss
function:

and the historical rates of return of the common market

o
L"(u,-,bi) = Z(R: —a; — bgl‘})"".
t=1
- "l‘
which, after substitution e} = R} —a; — b, F}, takes the form L'(a;, b;) = Z‘[(’.;_)E.
=]

The functions L* for any i are convex. hence, the necessary conditions for
the minimum are also sufficient. They can be expressed in the form of the well
known system of normal equations:

T T
Y eF=0, > e =0
t=1 t=1
i
Solving the above system and assuming that Z(f}_ ~F)? # 0. we get the
t=1
classical linear regression estimators ¢; and b;:
i T o,
_ilR—R —F —i =z
bn-=z"'*'(,’ )(_ﬁ ) ;=R —bF, (1)
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i B s LT
where R = T 24— Ri and F= - Z, B

The estimator Df the variance of I.]u‘ (lihl‘lll'han('n term o7 is given by the
mean square error as

T

Ge') = —— (R} —a; — b F})°.

; T 0% ;=i L= ; :
which after substitutions R} — R = r}, Iy — F = f, and (1), takes the following
form:

= 2

"
% (') = Z(r = DA
=]

t=1 =]

The purpose of this paper is to determine one factor which represents the
whole market behavior on the basis of the rates of retuwrn of all equities traded
on this market. It assumes that the factor is a linear combination ol the rates of
return of all traded equities. This extends the Sharpe model where the market
risk is the exogenous variable which is not determined by the model itself (it
comes into the model from nowhere). The paper also generalizes and clarifies
the results obtained by Wierzbicki and Mnich (1995). To determine coeflicients
of this linear combination we minimize the loss function which expresses the
weighted mean square deviation of all rates ol return from their predictions,
having given the linear combination form ol the market index. It refers to the
method of components (Morrison, 1976), however, the idea applied here is not
the same. The result similar to that of the method of principal components is
derived in the case of linear regression model and it is used to construct the
stock market index.

2. The endogenous common risk model

In the Sharpe model, it is assumed that the factor F' is given exogenously,
which means that it is a random variable that comes into the model from the
outside and is not determined by the model itself. Let us make the assumption
that the factor £ is a linear combination of the random variables ' Jor i =

.k with the nonzero vector of combination coeflicients y = (y;..... )T
ie. F(y) = Zf=1 R'y;. Let us denote by F,(y) the estimator of the factor F(y)
calculated on the basis of the sample Ry, for ¢ = 1..... k. for the moments of
time t =1,...,T: Fy(y) = T~ Riy;.
From now on, having given positive weights wy,wo, . ... Jwy > 0, our task w |H
be to find such a vector y and such vectors a = (ay..... ay,) '. b= (b,.... by )!

which minimize the following loss function:

L(a,b,y) = Y - Y[P biF(y))*  where w; > 0 Yi.
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This is an extension to the idea of Wierzbicki and Mnich (1995, 199%a, 1995b),
mttoduced, without any formal proof, for the cases when either all weights

=1orw; =1/6; fori=1,... k where a; is the estimator ol variance of
thc i-th rate of return.

The minimization problem Il'l;illL(H.fJ. y) can be considered as the iterated
a. b,y

minimization. First, for any y, we find such vector functions a(y) and b(y) that

L(a(y),b(y),y) = miﬂl L(a,b,y). Tn order to do it, we need to solve the sequence
a,

of classical regression problems. In the next step, we have to find such a vector

y for which the loss function L(y) = L(a(y), b(y).y) is minimized. Becanse the

random disturbance term is now the function of y, denoted by ='(y). see that

sz e'(y))- (2)

Hence, L(y) can be thought of as an estimator of weighted sum of the variances
of disturbance terms.
After the same substitutions like in the previous section, we get:

) 1 kT k ( t=1 T'I.fff(.*»‘))g
i = — wi(r)) — —— ¥ T et 3
) =1 ;;u ( I) ot Z:-I(f’ y))* v
where: fi(y) = Fi(y) — F(y) = S5, (R — F )y and Fy) = £ 51, Fily).

From now on we will assume that the estimator of covariance matrix C' is
nonsingular. The first term of the right hand side of (3) does not depend on
y. Hence, minimization of function (2) can be reduced to maximization of the
second term of (3) which, after substitution of the appropriate formulas in place
of f, and 7} can be expressed as follows:

i 2
k Z?’;ft(y) Z“' ZG‘UU;

=03 == _ (Cy)"W(Cy)
T—1 — wy r = R = _UTC'U \
Z fiy)* Z Ti;YilV;
1= §,7=1
where C = (Gij)i,=1,....k — estimator of covariance matrix, W = diag(w;..... wy)

and

T »

Gij = Z )(R] - F').
t=1

Thus, the minimization problem has been finally transformed into the following

maximization problem:

.VM {4
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THEOREM 2.1 The solution of the maximization problem () s a vector y*
1 T + [
such that y* = W2z2", where z* is @ nonzero cigenveclor corresponding fo the
’ ; : , e
mazximal eigenvalue of the matric W2CIW'Z,

Proof. After substitution z = I‘i'%(.:-‘y. problem (1) takes the form:

Cy)TW(Cy _ AW-1C-'Wt;
max ﬂ—u =1 / min 7
u#0 yT'Cy 270 212
2T Az
For any symmetric matrix 4, min —— = min_#; and the minimum is
=0 2tz ni€spec(.A)

exactly attained at an eigenvector which corresponds to the minimal cigenvalue
of the matrix A. Moreover, if matrix A is nonsingular and positively detined,
then

ni€spec(A) AiEspec(A™!) N Espec(A—1)

min 1 = min 1/ = l/ max A\

Any eigenvector associated with minimal eigenvalue of matrix A is an eigen-
vector which corresponds to the maximal eigenvalue of the inverse A~'. Hence,
the optimum is attained at the nonzero eigenvector z* associated with the max-
imal eigenvalue of the matrix W2CW? = (W=2C~'W=2)~'. After simple
transformation we get y* = W4z, which completes the proof. il

COROLLARY 2.1 [t is possible that there exist many optimal factors - as many

as the number of nonzero eigenvectors which correspond to the highest cigenvalue
Nger & o S

of the matriz W=2CW?Z,

It follows from Corollary 2.1 that the length of the vector y is not important
and we can normalize it to equalize the sun of coordinates to one, provided that
they do not sum up to zero. The i-th coordinate of the vector can be interpreted
as the percentage contribution of the #-th asset in the portfolio associated with
the optimal factor, assuming the possibility of short sale (y; can be negative).

If the weights have the form w; = 1/a,;, for i = 1,... k. then Witws =
I, where K is the estimated correlation maltrix, Therefore, =7 is o nonzero
eigenvector of the estimated correlation matrix A, and y* = 132", Note that
this result is different from that suggested by Wierzbicki and NMuich (1995,
1995a, 1995b).

Assuming that the weights w; = 1 for i = 1...., . we get Wicws: = C.
Hence, y* = 2* and y* is a nonzero eigenvector of the estimated covariance
matrix C. Then, the estimators b; and #°(F) take the simple forms:

*

bi=—= and G*(F(y'))=")"Cy' = max \ly'l3.

1
”H*Hg N Eeneel Y
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3. Construction of the optimal index and the dynamic
market portfolio

Let C, be the estimated nonsingular covariance matrix of returns of equities
until time t (inclusive). Tt is possible to find the sequence of optimal factors
associated with the sequence of vectors {y'},—. .. which are cigenvectors as-
sociated with the maximal eigenvalues of the sequence of estimated covariance
matrices {Cy}4=1,....n. Vectors y' fort = 1....,n can be normalized Zf‘l =1
for any ¢, to represent the investment portfolios, provided that Z’:’_l yt #£ 0 for
any t. Such a normalized sequence of vectors will be called hereafter the dy-
namic market portfolio. We can compute, for any ¢, the value of the above
portfolio Vi(y) = Z:.;l Ply! and the rate of return, assuming that V;(y) # 0:

Vit1(y) — Ve ('y}'

B =—m

where:
P! - the price of the i-th asset at time ¢,
y! - the percentage contribution of the i-th asset in the dynamic market
portfolio at time ¢,
Vi(y) — the value of portfolio at time ¢,
Ri(y) - the rate of return of the portfolio y between time moments { and f+ 1.
This approach has one serious disadvantage. We must assert that the ma-
trices {C’l}t._,_.,_‘__,n have to be nonsingular, The necessary condition for the
nonsingularity of the matrix is that for any i = 1..... [ the number of observed
returns R{ must be strictly greater than the degree of the matrix. Hence, it is
impossible to construct such a factor in the case of emerging markets. where
the historical time series are not long enough.

4. Illustrative example

In order to illustrate the optimal index we analyze the data from the Warsaw
Stock Exchange from the period January 1996 — April 1997. Due to the fact that
during this period new equities appeared on the market, the number of examined
equities is restricted to these which were traded on the market for a long enough
period of time. Otherwise, the time series would have empty places or would
not have an appropriate length of time to assert nonsingularity of the covariance
matrix. Moreover, the analysis takes into account a one day investment horizon
period, which means that only daily rates of return are considered. The dynamic
market portfolio is built on 65 equities. The total length of the time series of
daily rates of return is 324 and the number of moments of time for which the
optimal factor is computed is 175. We want to compare the optimal index with
WIG (Warsaw Stock Exchange Index). This is done in Table 1 and shown in
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Optimal index WIG
Expected rate of return 0.003396 0.003456
Standard deviation 0.015997 0.016080

Table 1. The comparison of WIG and the optimal index.
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Figure 1. The rate of return of the optimal index associated with the dynamic

market portfolio and the returns of the WIG index.
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One can easily notice that the behavior of the optimal index which corre-
sponds to the dynamic market portfolio {y'},—1..,. is almost the same as the
behavior of WIG. There is very little difference between the mean rate of return
and the risk measured by the standard deviation. Thus. we can conclude that
WIG is very close to the optimal index for the market.

5. Concluding remarks

We assume that there exists one commaon risk for the whole market., whicli can be
represented by the linear combination of the rates of return of all listed equities.
The loss function (2) which represents the weighted sum of the estimators of
the variances of disturbance terms is minimized. Other tyvpes of loss functions
(i.e. absolute error loss function) are left for further research. It occurs that
the vector which minimizes the loss function is a transformed cigenvector of
the transformed estimated covariance matrix. corresponding to the maximal
eigenvalue, assuming that this estimated covariance matrix is not singular. It
would be interesting, particularly from the practical point of view. to relax the
assumption about nonsingularity of the estimated covariance matrix. This is
proposed for further research.

Next, the dynamic market portfolio whose value represents the optimal index
of the stock market is constructed as the sequence of normalized cigenvectors
associated with the sequence of estimated covariance matrices. These matrices
are the nonsingular estimated covariance matrices of the rates of return on
equities until the particular points of time for which the dynamic portfolio is
created. The optimal market index computed for the Warsaw Stock Exchange
behaves very similarly to the existing market index called WIG (Warsaw Stock
Exchange Index). Further research is suggested to create the optimal indices for
other markets and to compare them with the existing indices on these markets.
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