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Abstract: Second order sufficient optimality conditions (SSC)
are derived for optimal multiprocess control problems. For that pur-
pose the multiprocess control problem is transformed into a single
stage control problem with augmented state variables which com-
prise the state variables of all individual stages as well as the switch-
ing times as choice variables. This transformation allows to apply
the known SSC for single stage control problems. A numerical test of
SSC involves the solution of an associated Riccati equation together
with boundary conditions adapted to the multiprocess. Sensitivity
analysis of parametric multiprocess problems can be based on SSC.,
A numerical example of the optimal two-stage control of a robot
illustrates both SSC and sensitivity analysis.

Keywords: multiprocess control systems, second order sufficient
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1. Introduction

Multiprocess control problems and their great potential for practical applica-
tions were first drawn to the attention of the control community through the
pioneering work of Gutenbaum (1977, 1979, 1988, 1996), Clarke and Vinter
(1989A, B), Tomiyama (1985), Tomiyama and Rossana (1989). We adopt the
definition of Clarke and Vinter (1989B) that “optimal multiprocess problems
are dynamic optimization problems involving a collection of control systems,
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coupled through constraints in the endpoints of the constituent state trajecto-
ries and the cost function”. A unified theory of necessary optimality conditions
for a very general optimal multiprocess control problem has been developed in
Clarke and Vinter (1989B) using techniques from Nonsmooth Analysis.

Optimization algorithms for control problems are usually based on neces-
sary conditions. Clarke and Vinter (1989B) discuss a number of applications
to illustrate the use of necessary conditions, in particular those conditions that
arise from the concatenation of stages. However, numerical examples are mostly
restricted to cases where optimal solutions can be computed explicitly. Guten-
baum (1996) describes a general methodology for solving multiprocess control
problems using the dynamic programming principle. Solution methods for solv-
ing the boundary value problem associated with the maximum principle are
presented in Chudej (1994,1996) where a complicated problem from aerospace
engineering is solved.,

The purpose of this paper is to supplement the first order necessary con-
ditions by the second order sufficient conditions (SSC) and methods for sensi-
tivity analysis. In recent years, SSC and sensitivity analysis have been exten-
sively studied for single stage problems; see, ¢.g. Augustin and Maurer (2000),
Malanowski (1995), Malanowski and Maurer (1996), Maurer (1995), Maurer and
Pesch (1994), Maurer and Pickenhain (1995), Zeidan (1994). In these papers,
the numerical check of SSC and the computation of sensitivity differentials of
optimal solutions with respect to perturbations are linked o boundary value
methods. A numerical test for SSC requires that a Riccati equation associated
with the nominal solution have a bounded solution. Multiprocess problems can
benefit from these results for single stage problems by a transformation which
allows to view the multistage control problem as an augmented single stage
problem. The augmented state comprises the state variables of all individual
stages as well as the switching points as choice variables.

In Section 3, we review SSC for single stage control problems in the presence
of general mixed boundary conditions. Section 4 discusses the reduction of a
multiprocess to a single stage process and evaluates the Riccati equation and
boundary condition for the multiprocess control problem. The novel feature
is an augmented Riccati equation exhibiting additional components associated
with the unspecified switching times. In Section 5, a fwo-stage robot control
problem is solved and SSC are checked numerically. A sensitivity analysis of
optimal solutions is conducted with respect to the load mass as parameter,

2. Multistage optimal control problems

The multiprocess optimal control problem (MCP) is defined on a time interval
[0,tf] with unspecified final time ty. The process is divided into a given number
N > 1 of stages which are considered on time intervals [t;_¢,7;]. j = 1,..., N,
forming a partition 0 = &g < ¢} < ... < t;_1 < t; < ... < ty = t5 of the
total time interval [0,t5]. The switching points t;, 7 = 1,....N — I, are not
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specified and hence will be treated as choice variables. The dynamics for the
absolutely continuous state variable z € W1*(0,#;;IR™) and the essentially
bounded control variable v € L>(0,t5,IR™) is given by

8(t) = fO(2(t),u(®), t€[tints], F=1,...,N. (1)

The functions f) are assumed to be C2-functions on suitable open sets since
we intend to derive second order sufficient conditions. The derivative 2(t) at
points t;,7 = 1,..., N — 1, is understood as left, respectively as right derivative.
For simplicity, the boundary conditions for the state variables are given in the
special form that some components are specified at each point t;,

$§(ij)=a.gj ViEIjC{],...ﬂ}, 1=0,1,..N, (2)

with given index sets I;. Then, the optimal multiprocess control problem (MCP)
is stated as follows: determine a control function w € L*(0,ts;IR™), a state
function & € W1%°(0,t;;IR™) and switching times ¢;,7 = 1,..., N, which min-
imize the cost functional

F(z,t1, .y ty,u) = Z fL(ﬂ Ju(t)) dt (3)

J]f‘—'

subject to dynamics (1) and boundary conditions (2).

In this formulation we have assumed that the state variable is continuous
across state junction times. However, the techniques developed in this paper
would allow to relax this continuity assumption. Namely, instead of the simple
boundary condition (2) more general boundary constraints

P(z(0), 2(t7), 2(t1 ), o 2 (t7), 2(t] ), s 2(tn)) =0 (4)

are tractable as well as a cost functional of the form

F(z,t1,...,tn,u) = g(z(0), -(t;),m(t‘*) t1yees B(E] ) @(EF )1 55 s 2N, )

+Z‘ [LU? u(t)) dt . (5)

J‘lt]

Such problems include certain types of impulsive control problems (see Rempala
and Zabczyk, 1988, Silva and Vinter, 1997) but these generalisations would
lead to a rather complicated form of fransversality and boundary conditions.
Moreover, the following approach is also suited to include mixed control-state
inequality constraints

CO((t),u(t)) <0, t€[ti—1,t;], F=1,...,N. (6)

However, to simplify the presentation we refrain from these extensions and
confine ourselves to the discussion of the unconstrained MCP.
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3. Review of SSC for single stage optimal control prob-
lems with fixed final time

We briefly review second order sufficient optimality conditions (SSC) for a
single stage optimal control problem with fixed final time. To avoid notational
conflicts with the multiprocess control problem (MCP) we denote the state
variable by y € IR™ and the control variable by v € IR™", where the dimensions
ny and m, will be adapted to the MCP in (1)-(3). Furthermore, we use the
time variable s to distinguish it from the time variable ¢ in the MCP. The
following autonomous control problem in the fixed time interval [0,1] will be
denoted by CP: determine a control function v € L*(0, 1; IR™") that minimizes
the functional

1
Fyo) = [ L), o)) ds (7)

subject to ’
y(s) = f(y(s),v(s)) forae se[0,1], (8)
©(y(0),y(1)) = 0. (9)

It is assumed that the functions L : R"™ x IR™" — IR, f:IR™ x R™" — R
and ¢ : R™ x R™ — IR",0 < r < 2n,, are C*-functions on appropriate
open sets. We suppose further that there exists a feasible pair of functions
(y,v) € Wh(0,1;IR™) x L*°(0,1; IR™") satisfying the constraints (8) and (9).
The first order necessary optimality conditions for an optimal pair (y,v)
are well known in the literature. The Hamiltonian function H is defined by

H(y,v,A) = L(y,v) + X*f(y,v), AeR™, (10)

where A is the adjoint variable and the asterisk denotes the transpose. Hence-
forth, partial first and second order derivatives are denoted either by D, respec-
tively D?, or by subscripts. In the following, the hypothesis will be made that
first order necessary conditions are satisfied in normal form with a non-zero
cost multiplier. Hence, we assume that there exist Lagrange-multipliers

(A, p) € WE*2(0,1; R™) x R"

such that the following conditions hold for a.e. s € [0, 1]:

A(s) = —Hy(y(s),v(s),A(s)) , (11)
(=A(0), A1) = D (y(0).5(1)) [p* ¢l (9(0), 4(1)) , (12)
Hoy(y(s),v(s), A(s)) = 0, (13)
H(y(s),v(s),A(s)) = const. (14)

In the sequel, the notation [s] will be used to denote arguments of functions at
a reference solution y(s),v(s),A(s) and p.
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SSC can be obtained by studying the behavior of the second variation on the
variational system associated with equations (8) and (9). One basic assumption
for SSC is the strict Legendre-Clebsch condition

Hyyls] 2 ¢+ I,, forallse[0,1], ¢>0, I, unity matrix. (15)

Then, SSC follow from the property that the quadratic form of the second
variation is positive definite on the variational system associated with equations
(8) and (9). Instead of discussing the second variation explicitly we shall resort
to another sufficient condition which guarantees positive definiteness of the
second variation. This condition is based on Riccati equations and turns out to
be helpful for the numerical verification of SSC.

Let Q € Wh*°(0,1; M, »,) be a symmetric (ny,n,)-matrix function for
which we consider the Riccati equation

Q = —Qfy[s]—=fy[s]"Q—Hyy [s]+(Hyo [s]-+Q . [s] ) Huo 5]~ (Hyo [s1+Q o [s] )" - (16)
Boundary conditions for Q(0) and Q(1) are imposed by the requirement that

(hos)” [Daramlelw@ s+ (47 Gy ) tho) >0 a7

hold for all (hg,h1) € IR™ x IR™, (ho,h1) # 0, satisfying the linearized bound-
ary conditions

D 40y 2(y(0),y(1)) ho + D 41y ((0), (1)) hy = 0. (18)

The following SSC have been developed in Maurer and Pickenhain (1995) and
Zeidan (1994).

THEOREM 3.1 (SSC for optimal control problems with fized final time)
Let (y,v) be admissible for problem CP. Suppose that there exist multipliers
(A, p) € WHoe(0,1;IR™) x IR” such that the following conditions hold:

(1) the first order necessary conditions (11)-(14) are satisfied;

(2) the strict Legendre-Clebsch condition (15) holds;

(3) there exists a bounded solution Q(t) of the Riccatli equation (16) such that

the boundary conditions (17) and (18) are fulfilled.

Then, there exists ¢ > 0 and a > 0 such that the cost functional can be estimated
from below as

F(§,9) > F(y,v) +e[ll§—yll} o + |5 —v]3]

Jor all admassible (§,7) with ||§—y|]1,00 + |0 —v||cc € . In particular, (y.v)
provides a strict weak local minimum for problem (CP).
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4. SSC for multiprocess optimal control problems

We shall obtain necessary and sufficient conditions for the multiprocess control
problem (MCP) in (1)—(3) by transforming it into a single stage control problem
of the form CP described in (7)-(9). This approach requires augmented state
variables and a transformation of the time variable in each stage. Recall the
partition 0 =t < t; < ... < tj_; < t; < .. <ty = ty of the MCP with
unspecified time points ¢;, j = 1,.., N. The time interval [t;_,,t;] is mapped
to the fized time interval [0, 1] by the transformation

t:fj_l-l-S'Tj, SE[{},]], T; =1 — e, =0V (]9)

Such time transformations have often been used in the literature; see, e.g.
Hestenes (1966, p.297), and Tomiyama and Rossana (1989). The state vari-
ables z, respectively control variables u on the interval [t;_q,%;], j = 1,..., N,
are considered as functions of the new time variable s € [0,1] according to
29(s) =zt +s-715), w(s):=ultj-1+s-7), s€[0.1. (20)

Then, the MCP becomes equivalent to a single stage control problem of the type
(7)-(9) by defining augmented state and control variables

yi= (2, 7,2@ 1, ..., 2™ 7y) €eR™, ny=N-(n+1), (21)

vi= (um,um, ...,u(m) e R™, my, = N -, (22)
where 7; = t; —t;_; are treated as choice variables. Using the transformation
(20) we obtain the dynamical system
_ &= i
© ds ds
This dynamical system and the boundary conditions (2), i.e.,

#9)(s) =75 - fD (2 (5),ul)(s)),

=0, se€l[0,1]. (23)

xi(tj):a'ij V'EGIJ-C{I,...,?I}, j‘::(],],_____{\f',
can be written in condensed form as
y(s) = f(y(s),v(s)), s€[0,1], ¢(y(0),y(1))=0, (24)
where the functions f: R™ x IR™ — IR™ and ¢ :IR?*™ —IR",
T = Z:V:c card(I;) + (N — 1)n, are given by
r Ty " .f(])(:}:(l)‘u(]'))

fly,v) = i (25)

™ * f(N)(x(‘N), U(‘V))
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(25(0) — aio) ieto

(4)
0),y(1)) = (xs' (1)_aij)iel_.; . 26
Py(0),3(1)) (x(j“)(ﬂ)—m(j)(l) ] (26)

@M (1) - ain) sery

The terms 2+ (0) — 29 (1) appearing in the function ¢ reflect the fact that
the original state variable z(t) is continuous at the switching times ¢;. Finally,
the cost functional (7) is to minimize

F(y,v) = ]L (y(s),v(s))ds, L(y,v):= Z ;- LD Dy, (27)

First, we discuss the necessary conditions (11)-(14) and consider the adjoint
variable in the partitioned form

A= (00 5@ X8 x0, My e R, (28)
Merr, WeR, j=1,.,N.

The associated Hamiltonian functions are
H(y,0,\) = £V, 7 HO (@0, u), \D), -
HO (g 4@ AD) 1= LGz 4)) 4 (AD)* fO) (20), (), )

The adjoint equations (11) split into equations for j = 1,..., N with s € [0,1] ,

)'\(.f)(s) = —H,w [s] = —7; HS?) [s] (30)
/I\}j)(s) = —Hg [S] =—HU) [5] (31)

Now we insert the function ¢ in (26) into the transversality condition (12)
which is repeated here for convenience with a multiplier p = (p;;) € R’

(=A(0), A(1)) = D (y0)u1y " @l (¥(0),y(1)) .

Exploiting these conditions with respect to the state variables 2(7) we find the
following boundary and junction conditions

Woy=0 vig¢l, MXVu)=0 Vi¢ly, (32)
At g) = A9 (1) Vigl, j=1,.,N—1, (33)
Wity =29D1) 4+ pi; Viel, j=1,..,N-1. (34)

Evaluating the transversality condition with respect to the free time variables
T; we get

Wo)y=0, M)=0, j=1,..,N. (35)
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From (14) one can derive the constancy of the Hamiltonians, sce also Clarke
and Vinter (1989A, Corollary 3.1),

HO)[s] = const., se€[0,1), j=1,...N.

Combining the adjoint equation (31) with the boundary condition (35) we con-
clude that

HD[¢ =0, se0,1], j=1,..,N. (36)
Finally, the control variables are determined by the conditions
H9 s)=0, se[0,1], j=1,.,N. (37)

Our next task is to derive SSC on the basis of Theorem 3.1 involving the relations
(15)-(18). The strict Legendre-Clebsch condition (15) holds if the correspond-
ing condition is satisfied on each stage,

[s] > ¢ Iy, s€0,1], j=1,..,N, forsomec>0. (38)

u(J)u(J)
Now we turn our attention to the Riceati equation (16). Observing the special

structure of the state variable y in (21) and the dynamics (23) we set up the
symmetric (ny,n,)-matrix @ in the form

A1)
Q ﬂo 0 » S
2 ° v 0 ' - A% 7) B x
Q= . Q ‘ : (RY) qfﬁ (39)
: 0 ., 0 o
0 0 Q(N) F=1yu Ny

The matrices Q1) are composed of (n,n)-matrices Q) = (qii_)) I<ik<n s T
vectors R() = (ﬂ@)a 1,..n, and a scalar qm, which is associated with the

free time points 7;. We insert the matrix @ into the Riccati equation (16) and
use the augmented functions (25) and the Hamiltonians (29). This procedure
yields the following three equations where the time argument is suppressed for
convenience:

QW = T [= Q(J)fm(-('}} (f('?)) QYW — ,m:m T
(‘Hz(-i)u(-” +Q(:)fiﬁ])(Hfi},u{_,}) I(Hﬁhum +Q@ f,(j?)) |, (40)

RW = —QU) (@) Tj(fif_g})*g(j) —(H (;E')n)*

+75 ¢ [Hiﬁ,u(;,-, + Q(J) (i?) ( wli >um) 1“&:2 ) Rm : (4])
¢ = —2(RDY* 9 4 7y (RDY* 79 (D) )1 (19))*RO), (42)

These equations comprise a Riccati equation for QU), a linear equation for

(1)

RUY) and a direct integration for g7 " on the interval [0,1]. They generalize
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similar relations for single stage problems in Maurer (1995), Maurer and Oberle
(2000). Note that for multistage linear—quadratic control problems, the Riccati
equation (40) for Q1) reduces to a well known Riccati equation with coefficients
not depending on the nominal solution; see, e.g., Tomiyama (1985, Section 5).

The final step is to translate the boundary conditions (17) and (18) into
the multiprocess setting. In view of the linearity of the function  in (26), the
condition (17) on positive definiteness reduces to the condition that

P paef Q0 0 ) P g ;
ho, h ~ ho,hg) >0 43
oy (9 3y ) G (a3
holds for all (Fl-g,rflf) € R™ x IR™, (ﬁ.g,fl.f} # 0, which satisfy the linearized
boundary conditions

D y0) #(¥(0),y(1)) ho + D1y 0(y(0), y(1)) hy = 0. (44)

THEOREM 4.1 (SSC for multiprocess control problems)
Let (xz,u) and the final time ty, respectively the switching times t;,j = 1,...,N—
1, be admissible for the MCP problem in (1)-(3). Define the transformed func-
tions 29, w9, 75, 5 =1,..,N, through (19) and (20). Suppose that there exist
multipliers A7) € Wh*°(0,1;R™), j = 1,....N, and p € R" such that

(1) the necessary conditions (24), (30). (32)-(34) and (36) are satisfied;

(2) the strict Legendre-Clebsch condition (38) holds;

(3) there exists a bounded solution Q(t) of the Riccati equations (40)-(42) for

which the boundary conditions (43) and (44) are fulfilled.

Then, there ezists ¢ > 0 and o > 0 such that the cost functional can be estimated
from below as

F(.’f,ﬂ, E] ) ---1{N) = F(E,?L,t] y ....,f.N)
N
+e Y {|[#D - 2D}, + |5 — 7 + &P — 9|3}
=1

for all admissible (z,4) with || — a2 o + |75 — 75| + [|@1D) — uP)|[, <
a, 7 =1,..,N. In particular, (z,u) provides a strict weak local minimum for
the MCP problem.

More effort is needed to bring the boundary conditions (43) and (44) into a
form suited for practical applications. Writing the variational vectors hg, hy as

ho = (hz()j); k{()j))j=1,‘.,N, hﬁ.ﬁ e R", »‘-:l(]” € R,

7 i) 4.0 ; ; (45)
(7) n )
hy = (B K jmrn, KD eRY, KD e R,
the linearized boundary conditions (44) yield the relations
h(l)zo V‘LEI? h(J):D erf‘ '.:I,...,IV,
0,i 0 f 3 J (46)

h((}j-i—].) = h}j), j=1,.,N—1.
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We derive a first set of conditions by observing that the variational equations
(44) are satisfied for hg“') =0 and hY =0 and arbitrary k[(j’ L L:}") € R.
Then, condition (43) immediately provides the following sign conditions, see
also Maurer (1995), Maurer and Oberle (2000):

Q‘}j]({]) > 0, q}j)(l) 20, ¥F=Tan Vs (47)

Since it is rather tedious to evaluate the definiteness condition (43) in full gen-
erality, we restrict the discussion to some cases of practical interest.

Case 1: The state variables x(t;) are completely specified for all indices j =
0,1,...,N. Then, obviously, conditions (47) are equivalent to the condition (43).

Case 2: Suppose that one component :r;gj)('l) is unspecified for some 1 €
{1,..,n}, and j € {1,....,N —1}. Then, condition (43) is equivalent to the
statement that relations (47) hold and that, in addition, the relevant compo-
nents in the solutions of the Riccati equations satisfy

- . .
dij =gt ©0) =P’ (1) > 0, rP(1)? < —di;qf(1),

. , (48)
1 1

(00 < di;gft0(0).
An application of the boundary test (47) and (48) to the optimal control of a
robot will be discussed in the next section.

Case 3: Assume that two components :ugj)(]) and 2:5‘;?')(1) are unspecified for
two indices 7 < k and some j € {1,...,N — 1}. After some manipulations in
(43) we find that in addition to relations (47) and (48) the following relation

must hold:

(qgi-!—l)(o) - ‘L‘(f:)(-‘ )) < dij ko " (49)

5. Sensitivity analysis for multiprocess control problems

Sensitivity analysis for parametric (perturbed) single stage optimal control prob-
lems has been the subject of intensive research in recent years. Malanowski
(1995), Malanowski and Maurer (1996,1998), Maurer and Pesch (1994) provide
conditions for the Fréchet differentiability of optimal solutions with respect to
perturbation parameters. These conditions are based on SSC for the nominal
solution. We briefly sketch how these results carry over to the multiprocess
problem (MCP). Let p € R' be a perturbation parameter which is introduced
into the multiprocess (1)-(3) such that the following parametric multiprocess
problem (MCP(p)) arises:

Nl
Minimize F(2,t1, ., tn,%p) = 9 /L(j)(gr(t),-u.(f):-p}df (50)

=145,
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subject to the dynamics

#(t) = f9@),u@)p) tEltintil F=1wul, (51)
and boundary conditions

®i(t;) =a(p) Vi€ C{lum}py J=0,1,uN (52)

The functions LY, fU), a;; are of appropriate dimensions and are assumed to
be C?—functions. Let py be the nominal parameter and let ::;{(]j). 1.-.55'), (10)5: 4 =
1,..,N, be the nominal solution, defined on the interval [0.1] according to
(23). The sensitivity result in Maurer and Malanowski (1996) applies to control
problems with control-state constraints. For unconstrained control problems
this result simplifies and leads to the following theorem on the basis of the

transformations in the last section.

THEOREM 5.1 (Frechet differentiability for parametric multiprocess problems)

Let pg € R! and let :céj)‘ uéj). (10): 7= 1,.... N, be admissible for the nominal
problem MCP(py). Suppose that the following conditions are satisfied:

(1) the control functions uéj}, j=1,..N, are continuous:

(2) the system (24) is completely controllable;
(3) there exist adjoint functions )\gj) € Wh(0,1;IR*), j = 1,...N, and a
maultiplier po € R™ such that the SSC in Theoremn 4.1 hold.

Then, the nominal conirols u{()j), j=1,...N, are C'—functions and the nominal
solution xé"), uéj),)\%’), (10)js 3 = 1,..., N, can be embedded into a Fréchet dif-
ferentiable family of optimal solutions z9(-,p), w9 (-, p), AU (-, p), 7;(p), p(p)
to the perturbed problem MCP(p) in a neighborhood of po. The sensitivity dif-
ferentials

: () 5 i}
20)(s) = 8= (sipo), Y9 (s) == B (85 po),

; (i) dr;
uf(s) = 2 (spo), 05 = G (po),

(53)
exist for all s € [0,1] and satisfy a BVP which is obtained by formal differenti-
ation of the necessary conditions with respect to the parameter p.

We dispense with the precise form of the BVP for the sensitivity differentials
(53) and refer as an illustration to the practical example in the next section; see
(78)—(81). Condition (2) of the theorem requires the complete controllability of
the dynamical system (24). We point out that a practical verification of this
condition can be organized as a byproduct of solving the BVP for the nominal
solution.
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6. Optimal two — stage control of a robot

The problem is to control a robot so that in the first stage the robot arm trans-
fers an object to a preseribed endposition where it drops its load, whereas in
the second stage the robot arm returns to its initial position. Time optimal
solutions for this type of robot control have been discussed in Clarke and Vin-
ter (1989A) where explicit bang-bang solutions are given. In our example we
modify the cost function and combine the time optimal with the energy opti-
mal solutions. The cost of energy involves a quadratic control term which is
indispensable here since the strict Legendre—Clebsch condition (38) is required.
Consider the following two-stage LQ-problem:

ty ty
Minimize  F(z,t1,t7,u) = t; +fu(t)2dt " /(1 +u(t)?) dt (54)
0 0
~ly < .
subject to &y =g, iy = s M)"lu AR, (55)
m-u o, 4 <t<tiy,
z1(0) = 22(0) =0, a1(1) =22(1) =0, (56)
z1(t) =2, za(t) = za(t7). (57)

The state @; represents the position of the end of the robot arm and s its ve-
locity, m is the mass of the robot arm and M is the mass of the load. Both the
switching time ¢; and the final time ¢; are choice variables. We point out that
this two-stage LQ-problem differs slightly from the class of LQ-problems con-
sidered in Tomiyama (1985) since some state components in the above problem
are specified at the switching and final time.

To convert the two-stage problem (54)-(57) into a single stage problem we
use the time transformation (19) with 73 = ¢, and 7 =ty —t, . Then the state
and control transformations (20)-(27) yield the following single-stage control
problem CP on the fixed time interval [0, 1]:

1 1
Minimize f - (1 + u(1)(s)2) ds + / ™ (1 + u@)(s)Z) ds (58)
0 0
subject to 3':5” =7 -;cgl), ¢§” =7 -(m+ M)'lu{]), 7 =0, (59)
:b?) =Ty _mgz)‘ 3';%2) =Ty -':'rz_]u(z}, 75 =0, (60)
2M0) =2"0) =0, 2P1)=2P(1)=0, (61)
2 (1= 0) =9, #520) ==, (62)
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6.1. Solution of the boundary value problem

The Hamiltonians (29) for each stage are given by

2 Ag u®
HO =7 (1 + (V)" + AP + :“M) , (63)
2 2 (2),@) AP
HD =1 1+ (u )) + A2 — |. (64)
The adjoint equations (30) yield
A =0, AP = —raD, (65)
A =0, AP =_m®. (66)

The transversality conditions (32) and (33) reduce to the continuity condition
2570) =257, (67)
In addition, the formal jump condition (34) holds,
AP0 =21 +p, p20. (68)

The stationarity conditions (37) give

(1) ., N (2) @ A
H Sy 2urt? 4 m =0, Hu(?) =71y | 2u'*' 4+ ? =0, (69)

so that the control variables are evaluated as

(1) 2sY @ _ 2
T Y T Tom )

Finally, by combining the transversality condition (36) with the control law (70)
we get the relations

Am (2) 132
0=HW[0]=n (1 —~ ?1_(‘32(%35) , 0=HO1]=n, (1 = —/\24?53,12) ) ,

from which we obtain the boundary conditions
M0 =4(m+ M2, AP(1)? =dm?. (71)

In summary, we have to solve the boundary value problem (BVP) comprising
the equations (59)-(62), (65)-(67) and (71) where the controls are substituted
from (70). This type of BVP can be efficiently solved with shooting methods
which are implemented in the routine BNDSCO of Oberle and Grimm (1989).
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J:SI) xi.i'.’}

Figure 1. Optimal state and adjoint variables for m = M =1 with j =1 (left)
and j =2 (right).

Choosing the nominal values m = 1 and M = 1 for the mass of the robot and
load, we obtain the following numerical results:

T o=t = 414790960, 75 =t; —t; = 3.89776004, t; = 8.04566964,
20(1) = 040053436,  232(0) = 2V (1),

AD(s) = —1.54783427, A{P(s) = 113405561, (72)
. AD(1) = -2,
MP(1) = 42027663 2D 0) = 20).

These data completely specify the solution together with the boundary condi-
tions (61), (62), (67) and (71). The jump multiplier in (34) is p1; = )\52)(0) =
,\El)(l) = 2.68188988. The corresponding state, adjoint and control variables
are displayed in Figs. 1 and 2.
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Figure 2. Optimal control for m=M =1and j=1,2.

6.2. Verification of SSC

We are going to verify that the solution characterized by the data (72) provides
a local minimum. Since the Legendre-Clebsch condition (38) trivially holds in
view of (58), it suffices to find a bounded solution of the Riccati equations
(40)-(42) such that the boundary conditions (47) and (48) are satisfied. In this
example we have dimensions n = 2, N = 2, and hence consider the symmetric
matrix (39) in the form

. i o
Qz( Q ) Q=] o o o |, 5=12. ()

iD P

For j=1 we insert m = M = 1 and obtain from (40)-(42) the following
Riccati equations in [0, 1],

(1))? (1)_(1) (1)?
(1 q (1 1 (1 q 1
0=l B ), = B e
M),(1) (1), (1)
S A T RO O e
(74)

(1),.(1) (1),,(1)
(1 9T (1), (1) _ ap’u (1) _ @)
""2):7'1’2%2__?123*2 = M= TP, —A

( m)?
q'}l) = 1"28 — 27‘%”:1:&” = rél)n“} :
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For j=2 we put m =1 and get

2)? (2)_(2) ; (2)

(2 (9:2) 2 ¢ 2 (2 q 2

i =m0 aBe ) g =B ),

(2 P @) (2 2
i =tz _ s — oD@, -
(2 (2),.(2) 2) (2 2 2 2
TN Y YO

@__ ) L oe_ .
gy =Ty —2r "y — 2y uf?) |

Note that the coefficients x : ) 49 in these equations represent the solutions
corresponding to the data (?2)

Next we evaluate the boundary condition (47) for the indices j = 1,2 and
the condition (48) for indices i = 2 and j§ = 1. This results in the following set
of inequalities,

0 >0, ¢’(1) <0, ¢70)>0, Rn<o
dar = g2(0) — (1) >0, (10(1))" < ~dm (1), (76)

(r2©)" < dn 20
Choosing the set of boundary values

g2(1) = ¢P1) = rP1) = ¢(0) = ¢2(0) = r$2(0) =0,
KO =1, rP0)=-05, (1) =0 < 0.1=¢3(0),
q}”(l) =-0.2 < 0, qf)(l) =-01<0,

we obtain the following solution of the Riccati equations (74) and (75),

aVls) = ¢ ls] = a5 ls) = ¢ s = ¢ ls) = 0, r{V[s] =1, r{P[s] = —0.5,

”(0) = 2.600075, g3 (1) = 0.12420632, r§”(1) = 0.92649418,
¢{"(0) = 0.20043315 > 0, ¢¥(0) = 0.09593715 > 0,

which satisfies the boundary conditions (76). The functions q;j ), j=1,2, are
shown in Fig. 3 to illustrate the first set of sign conditions in (76). In summary,
we have arrived at the conclusion that the computed solution characterized by
the data (72) is indeed a local minimum.

6.3. Sensitivity analysis

We perform now a sensitivity analysis of the optimal solution with respect to a
perturbation in the load mass M. We have chosen the mass M as a sensitivity
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Figure 3. Solutions qU) j=1,2 of the Riccati equations (74) and (75).

(perturbation) parameter because in practice it often happens that the load has
not exactly the desired size. We take m = 1 and the nominal paramter Mg = 1.
The results in the preceding section show that all assumptions in Theorem 5.1
for Fréchet differentiability of optimal solutions are satisfied. Hence there exist
optimal solutions

9 (s; M), v (s; M), \D(s; M), 7;(M), j=1,2,
for all M in a neighborhood of My and, moreover, the following sensitivity
differentials exist for j =1,2:
; (3 :
O (s) = 22 (51 M), A1) =
(3) d
) du Py
( ) aM ( Mﬁ)l UJ dM
Relations between uf,f‘.,)(s] and vU)(s) are established by differentiating the
control law (70) with respect to M and setting My =1:

o)

(83 Mop),

—=(Mo) .

(1) (1) (2)
Y (s) | A3 (s) 2 g
e =-28 20 @ 20 )
ODEs for the other sensitivity differentials are obtained through the process of
formal differentiation of the dynamical system (59), (60) and (65), (66) with
respect to M. For convenience we suppress the time argument and find for
i=1,

é{ =T zgl) + crla:( ; éé” = %(o‘lu(]) + 7 u(l)) - %T'[’U.(U,
(1) (1) (1) (78)
=0, ;72 = '_Jl’\]. — T
while for j = 2 we get
3 = ng(z) +0028?, 2P = ulD) + oou? | (79

4 =0, 54 = e — .
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In these equations, the control sensitivities have to be substituted from relations
(77). Note that the sensitivity derivatives o; are treated as [ree variables which
are determined by the following boundary conditions. Namely, the boundary
conditions (61), (62) and the continuity of the state at 7 yield conditions for
the sensitivity differentials of the state variables:

. 1 1 1

j=1: 2M0)=2"(0) =0, A1) =0

; 2 2 1 2 2

i=2: 220)=0, 27(0)=5"(), 27(1)=2z1)=0.
Boundary values for the sensitivities of adjoint variables are deduced from a
differentiation of relations (67) and (71):

¥0) = -2, AP0 =%, w1 =o. (81)

Note that for the computation of 'yél )(O) = —2 we have used the value AS)(O) =
—4 from (72). Again, the routine BNDSCO of Oberle and Grimm (1989) is a
convenient method to solve the BVP in (77)—(81). The solution is characterized
by the initial and final values complementary to (80) and (81) and by the free
variables o1,03 :

20(1) = 22(0) = 0.13892468, 0y = 0.63394569, o5 = 0.15523510,
+(0) = 1P (1) = —0.27594324, 57(0) = 45" (1) = 0.12583048, (82)
A2(0) =+ (1) =—0.01288298.

The sensitivity differentials are shown in Fig. 4.

(80)

6.4. Real time control

In practice, sensitivity differentials can be used to approximate perturbed solu-
tions by first order Taylor approximations which are computable in real-time.
Details of this real-time approach are to be found in, e.g., Biiskens and Mau-
rer (2000), Maurer and Pesch (1994). Let us demonstrate the quality of such
an approach by selecting the switching times 7 (M), 72(M) as candidates for
real-time approximation. Assume that the nominal load My = 1 is perturbed
to M = 1.05. We wish to compare the approximation with the exact solution
for the perturbed value M = 1.05 and compute:

My=1 : 71(Mo)=4.14790960, 7(Mo) = 3.89776004,
M=105 : 7(M)=4.17956227, 75(M) = 3.90516036.

Using the sensitivities 01,05 from (82) we compute the Taylor approximation
for M = 1.05 as
81‘1

TI(M) ~ Tl(ﬂffo) + m(Mﬂ)(M - .Mr()) =7 (ﬂ/fo) + 0.05 gl = 417060688,

ad
T'z(M} = Tg(Mo) + gﬁ{ﬂfo)(M - )?'-/fo) = Tg(ﬂf’f{)) + 0.05 gg = 3.90552180.
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Figure 4. Sensitivity differentials of state and adjoint variables for m =1, My =
1 with j =1 (left) and j =2 (right).
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The reader may verify that these values are indeed very good estimates for the
exact values. The following estimates for the control approximations confirm
also the quality of the real-time approximation for all s € [0,1]:

max |70 (s; M) —uM(s; M)| = 2.5497- 1074,

s€[0,1]

max |7 (s; M) — u®(s; M)| = 1.5501 - 107,

SE[‘:}}]-]

(s : uld)

u(J}(s;M) = u(J)(s; M) + (M — MO)W(S; M), 3=1,2.
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