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l. Introduction 

Le t 

(]) 

bean a.utoregressive model, where X 0 = :r:0 and (Et )~0 i s a sequence of i. i .d . ran­
dom variabies s uch tha.t the Et 's a.re independent o f the sigma-fielcl o-(Xo ' X l' ... 
. . . , Xt-1 ). Clearly, 

E(Xt!Xt-1 = x) = .>..( .:~:) 
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and with o-2 = Var( E ) ' o . t ' 

The conditional variance or volati li ty beconws hornoscedas tic if 8(-) is 1.1 con­
stant ; in general, it is heteroscedastie. 

T he problem of identifica.tion ariel , to scllnc extent, testing of II onlinea r 
a.nd/or heteroscedastic time series ha.s receivecJ much attent ion in t he last deca.de. 
For excellent surveys see Tj0stheim (1994) and Tong (1 995) ; see also Tong (1990) 
for a relatively early but fundamental treatrnent of nonl incar t inw scri es . An 
analysis of ARCH (A utoregressive Couclitionally J-leterosc·.cdasti c) moc! eis cau 
be founcl in Gourieroux (1 997). For recent cl evelopmen ts in norqx lr<J.metric es­
timation of >{) and 82 (-)o-6 , see in ]Jart ieul a.r Hofhn a.n (1099), Neurn anu a1 Icl 
Kreiss (1 998), Hiirdle and T sybakov (J 997), and the li teratme thPre for relatecl 
earlier work. In Hoffman (1 999), wavelet threshold estimat.ors for hoth ,\ (-)and 
82 (-)a-6 have been investigated. In Neumann and Kreiss (1998) , (~sL im a.tors for 
,\(-) , based on local polynomia.l estirn a.tors (LPE's) ha.ve been clealt. with nsing 
their strong approximations to LPE's for corresponding regressioJJ model s. ln 
this way, boatstrap methodology for nonpara.metric autorcgressions has been 
simplified and, hence, boatstrap confidence bands and ( c:orn posit.e) good ness­
of-fit supremum-type tests have been providecl for J\(- ) as well. H ii rdl e and 
T sybakov (1 997) used ]ocal polynorni a l G ts to estimate th e condi t iona l vari ance 
function. 

Regressagram estima.tors for cumula.t ive versions of J\ (-) and P(-)a-6 (Subsec­
tion 2.3 below), along with corresponcliug conf-idence bancls and so n1 e gooclness­
of-fit tests, have been given by NlcKeague and Z hang (1994) . Rec:ent ly, Hafner 
and Herwatz (1999) ha.ve exa.mined empirica.l properties of several t.est ing proce­
dures for autoregressive clyna mics of order one (against purc 110ise mli l hypotb­
esis) and Liero (1999) has proposed a nonparametric. test of horn osceclast icity 
against heteroscedasticity for t be non linear regress ion problem. 

The main goal of this report is to investiga.t.e small-sarnpl e properti es of 
methods for dis tinguishing between models wl1 icb are given by Lh e same con­
ditional mean function /\ (·) but clifl:'er in c:onclitional vari a nCE' fun ctions c\2 (-)o-6. 
T hus, in contrast to goodness-of-fit type test.s , wlwre th e model i s know n exa.c:tly 
u n der a simple n uli hypothesis or i t i s known up to a pantnwter i n case o f a 
c:omposite null hypothesis, we aim at test.s of hom.ogeneity of two u.IJtoregressivc: 
models (actually, we are interested in testiug homogeneity, i. e .. eqtwl ity, of two 
conditional va.riance functions). Our stncly reli es on simulat ion s for salllpl es of 
s i ze 500 , whose size we eonsicJer smali to mecl i u m if one sarn pi es frorn a tirne 
series starting from a fixed initia.l va.lne . J\1o re precisely, when ciecieling on the 
sa.mple size, we a.im ed at obta ining elear di st.ingui shabili ty of hypotheses under 
scrutiny. Our preliminary si rnulation stucli es (not reportecl h er e) showed L h at 
ra.ther simila.r· resu lts can be hopecl for for , sny, sampies of size 400 and still 
mea.ningful but much weaker results for sampi es of size 300. 
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One wa.y to obtaiu a test for <1 difl'ere nce bctween such modcls is to coustruct 
a eonfidence band for t he difference be twecn two comlitioTT<I l vari <TITce flm etions 
in tbe two-sa.mple problem with two inde pendent. tirne series (whiciJ have or 
bave not identica.l condition a l mean functions). Under the hyp orhesis of eq T1 <1ht.y 
o f conditiona.l va.riance funetions, the eon licl ence band sb on l d i nclllcle t he zero 
funetion. If either tbe band 's upper bouncl goes negative or t.lw band 's ]ower 
bouncl goes positive, the two conclitiona.l variance fnnctions are Jikely LO be 
different. In Section 3 we study empirical proverties of tests b clst'cl 011 t~ hi s idea. 

Section 2 begins with presenta.t.ion of tbe 1nodels studiecl. Except for rnoclels 
Cminus and E, they are eit her borrowed frorn or are h e t:eroscedas tic va ri at.ion s 
of t he models discussecl by Auest.acl and Tjostheim (J 990) cmcl JVlcKea.gne and 
Zha.ng (1994). Following t be latter of t.hose papers, es timators of cunml ative 
versions of the conditional mea.n and variance fun ctions <~re IISecl to construct 
the confidence bands neeclecl. 

In Subsection 2.2, we get res ults on estimation of >-(-), in pmticular , on 
how clifferent estimators behave for homosceclastic as o pposed to het.eroscecl ast.ic 
errors . Also, we get results concerning clifl'ercnt estima.tors of ; 2 (-) and ' )'.\ (-), 
where 

!4(x) = Va.r((Xt- >-(x)) 2 1Xt-l = 1:). 

All these estimators are neeclecl to c:onstruct t lw conflclencc baJids , which a.rc 
describecl in Subsection 2.3. 

AU in all, our simulation res11lts coll firm tbe validity of tlH~ <lpproach pro­
posed. Incleecl, the suggestecl m ethod of testing for a diffen' JI CE' lwtwec11 the 
condit iona.l va.ria.nce functions bas proved trul y promising a.lreacly for sma li to 
medium samples and it deserves fur t her stucly. To t he b est. of onr know leclge the 
metbod is new. For its possible a.ppliea.Lions one can c:onfcr , e .g ., Tong ( 1090) 
and McKea.gue and Z hang ( I 994). 

2. Models and estimators eonsiciered 

2.1. Autoregressive models 

In this stucly, the fo llowing bomosceclast ic moclcl s are taken iT1t.o eonsidcra.tion. 
In all tbe model s except in model E, we assume th <1t Et ~ N(O. 0.0 l ) . 

Model A. (Linear a.utoregressive, AR(I)) 

Xt = 0. 8Xt-] +Et· 

Model B. (Exponential an toregressive) 

Xt = (0.8- l. l exp{ -30Xf-d )Xt-1 +Et · 
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Model C. (Threshold autoregressive) 

Xt = 0.8Xt-JI{Xt-l >O}- 0.3Xt-JI{Xt-l:::; O} + Et. 

Model Cminus. 

Xt = -0.8Xt-l l{Xt- 1 >O}+ 0.3Xt-II{Xt-l:::; O} + f.t. · 

Model D. (R.an dom coefficient autoregress ive) 

with Et independent of Et and O'(Xo,Xl, . .. , Xt-d, and assuming va.Jue 0.25 
with probability 1/2 and value - 0.25 with probability 1 /2. 

Model E. (Discontinuous) 

X _ 2sgnXt-l 
t - 3+1Xt-ll +Et 

where Et"" N(O , 0.52 ). 

In the origina.l version of model B, as introduced by A nesta.d and Tj0stheim 
(1990), the factor in the exponent is 50, not 30. We have usecl the latter factor to 
get a function whose nonlineari ty is more appa.rent. It should a.lso be noted tha.t 
model D does not bel011g to the class of a.utoregressive models but is a special 
ca.se of the hidden Markov cha.in models. Tt is, bowever , worth c:onsideration, 
since its conditiona.l mean fnnction is the same as tha.t of model C. Tbe la.st of 
the models is interesting dne to its di scontinui.ty at zero. 

Models A, B, ... ,E will be referred to as the prima! ones. ]n adclition, two 
modifications of each of these models will be consiclered, to be referred t.o as 
primed models and double-primed models, respectively. 

Primed models are obta.ined by indueling errors of the form o(X1_ 1 )f.1, where 

r i f X< -] - . ' 
o(x) = 2x + 2, i f -l < X:::; O, 

-2x + 2, i f 0 <X< l , 
o, i f x2:: 1. 

Double-primed models a.re obtainecl by inclnding ARCH-like errors with 

It is wortb observing that , wit hi n each t ri p Ie o f model s ( consist.ing o f a prima! 
model, primed model and double-primed model) , tbc conditional mcau f11nction 
is the same but tbe conditiona.l va ria.nc:e functions a.re diff'erent . Tn order to 
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o b tai n the latter l i t suffices to use formula (l) for farnil i es A l B, C and E , and 
to note that model D can be written as 

(2) 

where a.ll the >-(·) and 8(-) a.re known. The resulting conditional vari<mce func­
tions a.re as follows. For a.ll the models except model D, the variance of the 
primal model is cr0 , of the prirned model is 82 (:r)cr6 and of tbe double-primed 
model is (l+ (l- x) 2 )cr6. For model D we have, respectivelyl cr6 +(i / 16).>-2 (x), 
82 (x)cr6 + (1/16).>-2 (x) and (l+ (1 - xj2)aij + (J / 16).>-2 (x). 

2.2. Estimators 

The following two well-known types of nonparametric estimators have been 
used to estima.te conditiona.J mea.n functiou: kernel estima tor a.JJcl LOWESS 
estima.tor. The former is of the form 

~(x) = 
_l '\"n-l X. J( ( x-X.;) 
n-l 0J=l J+l h 

l. L:n- f{ (x-X.;) 
n J - l h 

(3) 

where X 1 l X 2 l ... l Xn a.re the observa.tions, h is the bauclwidth or smoothing 
fa.ctor and K(·) is the kernel. In our simulations, the Gaussiau kernel was taken, 
i.e., K(x) = (27r)- 112exp( -~x2 ). For a discussion of a.symptotic properties of 
kernel estima.tors see Tj0stheim (1994) and references there (thronghout this 
pap er, we skip asymptotic considera.tions, sin ce our interes t lws been focused 
on sma.ll- to medium-size sa.mples). In the simulations, either a ba.ndwidth of 
fixed width was used (chosen a priori by tria[ and error) or its width vvas chosen 
a.da.ptively, na.mely, the k-nea.rest neighbour (k - nn) approach was used to 
determine h loca.lly for ea.ch x. 

The locally weighted seatter plot smoothing ( or LO\VESS for short) esti­
ma.tor belongs to the family of LPE's. More preeisely, in om implementations, 
it is a. locally linea.r estimator based on weighted lea.st squares fits over local 
neighbourhoods of observations. The task is to estirnate t he regression function 
from the sample ((Xi, Xi-Il)i=2 on a fixecl interval [a, b] . For any given sample, 
we choose a= min{Xi}i=l and b= max{X.;}f= J· For each fixecl observation (or 
design point) Xi, its neighbourhood N(Xi) is constituted as iuclucliug k = 0.3n 
nearest observations to Xi . Then, for each Xi and neighbourhood N(Xi ), ob­
servations in N(Xi) are a.ssigned weights using the tri-cnbe weight function: 

W ( IXi- Xj[) 
i::..(Xi) ' 

where W(u) = (l-u3 ) 3 for u E [O, 1) and IV(v,) =O otberwise, audi::..( X;) is the 
largest clistance between X i and another observation in N (X;) . NO\V' for each 
Xi, ~(Xi) is obtainecl using the weightecl lea.st squares fit over N(X;). For x 



38 .L (; \V II-\. J. l<ORO NAC I..:I '""'J . \ lll ';L i\' JCZUh 

clifferent from the observecl poiuts (or clesign points), 5,(::r) can Iw uh t.iJi necl , for 
exa.mple, via. interpola.tion. T n our simul<d;ions, tl1e S-Ph1s irnpk nlelli.aiion of the 
LOWESS estima.tor was used (for a. genern.l deseription and asyrn ptll t·ic. analysis 
o f the estima.tor , a.s well as for those o f i ts mul Lidimensional cou lJ terparL \mo w n 

a.s LOESS , see, e.g. , Fan and Gijbels (199G)). 
Both kernel a.ncl LOvVESS estimators can in turn he appliecl to l.Jt tild est i­

ma.tors of the conclitional va.riance functi on ; 2 (-). Tn generał, esi.imaLion of t.his 
function ca.n be performecl in a.t lea.st two wa.ys . Tbe first is of 1 he fol low iug 
general form 

(4) 

where ~ refers to a.n estima.tor o f eoneli t i ona.! ex pecta.tion 1weded. T he sec:ond 
a.pproa.ch to estima.ting 1 2 (-) c:onsists in comput ing a11 estimat.e of t he regression 
function from the sa.mple 

(5) 

Estima.tors ba.secl ou ( 4) are referrecl !.o as I\1 ( or K 1-fixccLh ) cstim ators 
if kernel estimators a.re used to esLima.te tllc two conclitional cxpect.at ioi1S re­
quired, and as 11 if instea.d LUWESS est imat.ors are userl (t.he J'orms of ::;ui table 
estima.tors are not given here, since tbey can be obtain ecl by triviall y modiJ'ying 
corresponcling estimators of >,(-); e.g., as regards l.;:ernel est.irn ators, it snffices 
to note tha.t the estima.tor given by (3) is a kernel est.im ator for regress ion 
),(x) = E(Xt\Xt-t = x). 

Analogously, estimators ba.secl on (5) a.re referred to as K2 <1lld L2 , respec­
tively; in this case, estimators of the same type have been used for esti rnating 

' ? both >-(-) and t.hen E((Xt- A(2:)HX1_ 1 = 2:). In fact., a simpl e algelJra shows 
that estima.tor K2 can be clisregarded: if in (3) the elenorni na.t.or i s replaced by 

_1_ 'fJ((x-Xj), 
n-l h 

j=l 

t he "new" kernel estima.tor obta.inecl , wbicb is asympt.otica.ll y st. rictly 0)qui valent 
and pra.ctically always equivalent to t he "old" one, provides the same estirnate 
as Kl. Accordingly, in the sequel, only esti .mator K I is taJ-cen into ac:connt. 

Confidence band for the c:onditiona.l va.ri ance function requires Hl l estirnate 
of the fourth conditiona.l momeut , 

/4(x) = Va.r((Xt- A(x)) 2 
\ X1-1 = x) . 

Perha.ps the most natura.! or t he most immeclia.te ca.nclidates for an est imator of 
14 ( ·) a.re the following t.wo estimators: 

(G) 
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where ;y2(x) is an est imator of t be concli t ioual vuriance fnn etion, and a regression 
function estimator ba.secl on the sampl e 

(7) 

Tbe ra.tiona.le behind estima tor (6) is elear , wbiJe that for estim c1tor (7) follows 
from the fact that, for famili es A, B, C and E, 14 (x) = E(((X 1 - J\(;.t:)) 2 

-

1'2(x)) 2) l X t -J = .:r). One more re<lson to considcr t he latt.er cst.im at.or wi ll be 
given in the next section . 

In order to int rocluce one mor e ca.ncliclat.e for a 11 estimat.or o f ~1 4 ( · ), l et u s 
observe fi.rst that for famili es A, B, C, and E (reca. ll that. the Et are nonnaJ and 
hence t he las t equa.lity foll ows) 

1'4(x) = E({o (Xt -dc:t} 4 l Xt -1 = :r)- bz(:r)} 2 

(8) 

AnaJogously, using (2) and performing sorne elementary cakulati orJs we get for 
fa.mily D 

l'4(x) = E((EtA(x) + ó(Xt- 1 )c:L)4 l Xt-1 = x)- b2(:r)} 2 

(9) 

Fina.ll y, let us observe tha.t for rnoclels from farni li es A , B. C and E 

Thus, in view o f (8) and (9), the following conservativc estim<~tor cau a.lso be 
proposcel 

(l O) 

Before eonelueling this subsection we will fo rward one rnore relllark. Confi­
dence bancis o f our interest require a.lso t h at a s tat.ionary murgi Jlil l density o f 
the observa.tions X 1• be estima.ted . A uatural estima.tor is, of course, t he usual 
kernel estimator with smoot h kernel fnn er.ion. Since the estimator appea.rs in 
the formula.s belowin the clenominator , we modify it slight ly tomakei t. bounded 
awa.y from zero. Na.mely, we use t he estirn a. Lor of t.he form 

g(x) = ma.x{g(x), 0.05} , 

where 

~(x) = _l t J( (x- Xj)' 
nh h 

j=l 

J( is the Gaussia.n kernel and h is t be same ba.ud width as t ha.t in (:)). 
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2.3. Confidence bands 

For any two independent time series, let the estimators of their conditional mean 
and variance functions be ~ and ;:y2 for one series and 5. and ,.:Y2 for the other. 

As has been already mentioned in the Tntroduction, the confidence bancis 
to be clealt with are based on cumulative versions of the conditionaJ mean and 
variance functions, 

A(-)= 1· .>-(x)dx 

and 

r(-) = 1' /2(x)dx, 

where, as usual, 12(x) = Var(XtiXt-l = x) andais an appropria.tely chosen 
point in the state space (we restrict ourselves to estima.tion and testing on some 
interval [a, b]). 

Let for any x E [a , b] 

A(x) = 1x ~(s)ds -1x 5.(s)ds. 

It follows from McKeague and Zhang (1994) that under a.ppropriate conditions 
the asymptotic 100(1 - a)% confidence band to test for a difference between 
two conditional mea.n functions should have the form 

where 

A jx i'2(s) jx ..:Y2(s) 
H(x) = a g(s) ds + a g(s) ds, 

g, g are estimators o f stationary marginal densities of the two series and c"' is a 
constant depending on the confidence level 1 -a, e.g., 

l-a C a 

0.90 1.13.:: 
0.95 1.272 
0. 99 1.552 

In turn, let for x E [a, b] 

f(x) = 1x i'(s)ds -1x ,.:Y(s)ds. 
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Then, it again follows from McKeague and Zhang (1994) that (under the same 
conditions as before if Xo = xo is fixed) the asymptotic 100(1- a)% confidence 
band to test for a difference between two conditional variance functions should 
have the form 

where 

i(x) = r ~4 (s) ds + r ~4 (s) ds, 
la g(s) la g(s) 

and i 4 , ,:Y4 are corresponding estimators of 14 (x) for the two series considered. 
Again, we omit stating assumptions under which the asymptotic results of 

McKeague and Zhang are valid. However , a few comments are in place here. 
First, McKeague and Zhang eonsiciered only histogram estima.tors for marginal 
densities and histogram-like estimators (or regressograms) for .A(-) and 120, 
all these with nonadaptive (i.e ., deterministic or fixed in advance) bandwidth h 
(satisfying conditions nh2 ___, oo and nh4 ___,O as the sa.mple size n___, oo). Still , 
e.g., Theorem 23.2.1 in Shorack and Wellner (1986) indica.tes tha.t the given 
confidence bands remain valid if, in particular, kernel estimators considered in 
Subsection 2.2 are used with the same h as that for the regressograms and 
histograms. 

Second, the results of McKeague and Zhang do not carry over to the case 
with kernel estimators which have variable bandwidths, let a.lone to the case 
with the LOWESS estimator. At the same time, some way of loca.lly adapting 
bandwidths and neighbourhoods to data is strongly recommended in practice, 
in particular when sample sizes a.re small to moderate. Moreover, well-known 
analytical results for k - nn kernel estimators and LPEs also provide a reliable 
justification for consideration of these estimators within the context of current 
investigation. 

3. Simulation results 

In this report , we confine ourselves to the case when two independent time series 
have the same conditional mean function . The reason is that the procedure to 
distinguish between two models consists in fact of two stages. First, equa.lity of 
two conditional mean functions is tested and, if the hypothesis of their equality is 
not rejected, the two models are tested for a difference between their conditiona.l 
variance functions. 

In order to construct reliable confidence bands, all the suggested estimators 
of .A(·), 12 (·) and 14 0 had to be eva.luated beforehand. In all simulations, 
sampies of size 500 were t aken and the starting va.lue Xo was always set at 
O. For any given sample X 1 , ... ,X5oo, the estimation interva.l was taken to be 
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[a, b] with a= min{Xi}f~~ a.nd b= ma.x{Xi }f~~. (All the simulations, including 
generation of random sa.mples, were performed using 8-Plus 5.) 

Kernel estimators with fixed h were always chosen to have h = 0.1 for 
families A, B, C and D, and h = 0.3 for famiły E. For kernel estimators with 
k - nn bandwidth, k was always equal to 0.3n, with n being the sa.mple size. 
Near the boundaries of the [a, b] interval, however, bandwidth h of the k- nn 
kernel estimator was modified in order to avoid undesirable bonndary effects. 
The k - nn ruJe was applied for x E [a+ 0.26 , b- 0.26], where D. = b- a, while 
for x E [a, a+ 0.26) and x E (b- 0.26], neighbourhoods of length equal to that 
of the neighbourhood of the closest point in [a + 0.26 , b- 0.26] were taken. 

The estimators were eva.luated by comparing their Empirical Integrated 
Squared Errors, 

where the Xi 's are equidistant points in [a, b], #{ xi} is the number of points Xi 

in [a, b], f(-) is a function to be estimated, and](-) is its estimator. Actually, 
for each model considered, 200 repetitians of the experiment were conducted, 
i.e. , 200 sets of sampies were generated , and estimation of each of the functions 
of interest was performed for each sa.mple. In this way, for each model and 
each function of interest, densities of EISE (based on 200 repetitions) for each 
estimator were obtained. In all ca.ses, # {x;} was taken to be equal 100. 

Let us note that kernel estimators with fixed h were used only for com­
parative purposes. lndeed, in practice, when the true underlying density is 
unknown, the bandwidth should be chosen adaptively, without human inter­
vention. However, in a simulation study, one can take the fact tha.t one knows 
the true density to his or h er advantage. In particular, an optima! ( or nea.r to 
optima!) bandwidth can be found by tria! and error. R.esults obtained using 
estimators with bandwidths thus determined can then be used as a reference for 
those obtained using a.daptive methods. Clearly, a.daptive estima.tors should be 
required to provide results simila.r to those obtainable by using estim ators with 
(nearly) optima! bandwidths. 

Let us begin by briefly discussing the results obtained for the estima.tors of 
>{). In t his case, a brief discussion will suffice, s ince estimation o f t he eoncli­
tiona.l mea.n function is by far the simplest problem to deal with in this study. 
In generał, all the estimators proved relia.ble in all cases with the LO"WESS esti­
ma.tor being superior to the two kernel estima.tors. The k - nn kernel estimator 
performed worst , except for example E when it performed equally well as the 
LOWESS estimator. Except for exa.mple E, heteroscedasticity had seemingly 
no effect on the performance of the LOWESS estimator. Ra.ther surprisingly, 
reliability of the kernel estimator with fixed h was improved by switching from 
homoscedastic to heterosceda.stic errors. 

Results for the estimators o f / 2 ( ·) and /4 (-) are summa.rized in Figs. 1-3 for 
the former function and in Figs. 4-6 for the latter. In the figures, K1 sta.nds 
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Model A- Variance. 
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Figure l. Estimating conditiona.l variance functions in famiły A: Distributions 
of EISEfor K1-fixed_h, KI, LI and L2 

for the k - n n kernel estima.tor and KJ -fixed_h for the kernel estima.tor with 
fixed bandwidth. Kiw6 (L2w6) standsfor estima.tor (6) of 14 (-) witb KI (L2) 
as the estimator of .A(-). Ana.logous convention a.pplies to estima.tor L2w7 (and 
to other estima.tors referred to in the sequel). In tbe figures , only the results for 
families A, B and C are given, as the other follaw essentially the same pattern. 

Given that tbe k - nn kenwl estimator proved reliable as a.n estimator of 
.A(·) ( albeit inferior to the other two estimators) and taking in to account results 
presented in Figs. 1-3 and 4-6, one eoneludes that it is estimator KI which 
should be recommended for use in constructing confidence bands. It a.lso follows 
from Figs. 1-3 that estima.tor L1 is una.ccepta.ble - the bulk of the density of 
EISE for estimator LI lies in fact outside of the supports of the densities for 
other estimators (note that the densities for Ll estimator required sometimes a 
different scal e tha.n that for otber estima.tors). Estima.tor L2 is better tha.n L l 
as a.n estimator of 1 2 (-), but it lea.ds to una.ccepta.ble results if it is used to build 
a.n estima.tor of 14 (-), rega.rdless of whether one relies on estima.tor (6) or (7). 

Compa.rison of the properties of LI and L2 estimators (see (4) and (5)) 
suggests that using tbe LOWESS estimator in (J O) ca.n hardly lead to accepta.ble 
results (i t seems that "centering" an estimator, as clone in (5) by suhtract.ing .A(-) 
from Xt, may improve LOWESS estimation). This conjecture was confirmed by 
simulations (not reported here). By the same token, it coulcl be believecl tha.t 
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Model B- Variance. 
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Figure 2. Estimating conditiona.l variance functions in family B: Distributions 
of EISEfor K1-fixed_h, K1 , 11 and 12 
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Model C - Variance. 
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Figure 3. Estimating conditional variance functions in family C: Distributions 
of EISEfor K1-fixed_h, K1, 11 and 12 
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Model A - The fourth moment. 
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Figure 4. Estima.ting 14 (-) in family A: Distributions of EISE for Klw6, L2w6 
a.nd L2w7 

Model B - The fourth moment. 
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Figure 5. Estima.ting 14 (-) in family B: Distributions o f EISE for Kl w6, L2w6 
a.nd L2w7 
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Model C - The fourth moment. 
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Figure 6. Estimating 14 (-) in family C: Distributions o f EJSE for KJ w6, L2w6 
and L2w7 

estimator L2w7 would perform better than L2w6. Unfortunately, as Figs. 4-6 
show, it has proved not to be the case. In any case, the disappointing results 
for the LOWESS-type estimators are ratber surprising and their explanation 
requires furtber study. 

As should have been expected, Klw7 performs just as Kl w6 does (we still use 
the same notationa.l convention). All in all , therefore, we are left with estimator 
Kl of 12(-) and we have to choose between KJ w6 and Kl w] O to estimate /4 (-). 
This fina! choiceis made by a suitable comparison of the procedures to test for a 
difference between two conditional variance functions, these procedures obtained 
using either Kl w6 or Kl w lO to construct the confidence bands required. To be 
concise, we present our results in the form of suitable tables (see Tables 1-4). 

Sa.mples of size 500 (and with x0 =O) from the given models were generated 
and 95% confidence bands were constructed over interiors of the supports of 
the estimated stationary marginal densities. Proper choice of such interiors 
requires some care. First, one has to note that the confidence band is based on 
comparing two series and, thus, one has to deal with two supports, one for each 
series. Accordingly, for each series, the interva.l between estima.ted qua.ntiles 
of prespecified orders, q; and 'lj;, was constructed and then the intersection of 
the interva.ls for both series was obta.ined ( this intersection to be referred to a.s 
[qqy,q'ljl]). Finally, the confidence band was built over the interval [qqy,q'ljl]. 

Appropriate values for q; and 'lj! were founcl empirically, as the tables illustrate 
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interval interva interva interva] 
(ą.l0,q.90) (ą.15,ą.85) (ą.20,ą.80 (Q1,Q3) 

rimal, primed 100. 100. 100. 100. 
rimal, d-primed 100. 99. 100. 95. 
rimed , d-prime 20. 48 . 66. 77. 
rimal, primed 100. 100. 100. 100. 
rimal, d-primed 100. 100. 100. 99. 
rimed, d-prime 92. 96. 93 . 93. 
rimal, primed 100. 100. 100. 100. 
rimal, d-primed 92. 90. 87. 71. 
rimed , d-prime 89 . 87. 78. 57. 
rimal, primed 100. 100. 100. 100. 
rimal , d-primed 100. 100. 100. 100. 
rimed, d-prime 80. 83. 80. 82 . 
rimal , primed 100. 100. 100. 100. 
rimal , d-primed 87. 86. 79. 58. 
rimed, d-prime 81. 82. 77 61. 
rimal , primed 100. 100. 100. 100. 
rimal, d-primed 98. 96. 73. 32. 
rimed, d-prime 97. 99. 100. 100. 

Table l. Percentages of rejections of the hypothesis of equality of two variances: 
Kl estimation with ::Y4 given by (10) . 

(in the tables, Ql and Q3 denote the first and third quartile, respectively). 
Results in the tables are based on repeated simulations of each comparison 
between the models at hand: the results in Table l are based on 500 repetitians 
of each experiment, while those in Table 2-4 are based on 1000 repetitions. The 
results in Tables 1-3 eonceru the test for a difference between the conditional 
variance functions (results on the power of the test are given in Tables l and 
2, and those on the size of the test are given in Table 3). For the sake of 
completeness, in Table 4, results on the size of the test for a difference between 
the conditional mean functions are presented (recall that, within each family of 
models, the conditional means are the same). 

In all the simulations, confidence bands were calculated at 100 equidistant 
points. The tested hypothesis of equality of two functions was rejected if the rule 
that the band's upper bound should stay positive and the band's lower bound 
should stay negative was violated at least at three points (in all simulations, c0 

corresponding to l- a= 0.95 was used). 
Simulations have shown that already about 200 repetitians suffice to provide 

ratber stable results and there is virtua.lly no differenn~c bHween results for 500 
and 1000 repetitions. Using (6) to obtain ::Y4 (-) has t•róVeadecidedly better than 
relying on (10). Upon the results obtained, the interval [q0.15,q0.85] has been 
found most suitable to build confidence bands. 
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ode! interval interva interval interval 
(q.10,q.90) (q. 15,q.85) (q.20,q.80 (Q1 ,Q3) 

rimal, primed 100. 100. 100. 100. 
rimal, d-primed 100. 100. 100. 99. 
rimed, d-prime 72. 84. 89.1 87. 
rimal , primed 100. 100. 100. 100. 
rimal, d-primed 100. 100. 99. 99. 
rimed, d-prime 96. 97. 96. 93. 
rimal, primed 100. 100. 100. 100. 
rimal , d-primed 100. 99. 99. 95 . 
rimed, d-prime 98. 98. 96.4 89. 
rimal, primed 100. 100. 100. 100. 
rimal , d-primed 100. 100. 99. 99. 
rimed , d-prime 89. 91.1 90. 85 . 
rimal, primed 100. 100. 100. 100. 
rimal, d-primed 99. 99. 98. 93. 
rimed , d-prime 98. 98. 96 . 90. 
rimal, primed 100. 100. 100. 100. 
rimal, d-primed 100. 100. 95. 76. 
rimed, d-prime 99. 100. 100. 100. 

Table 2. Percentages of rejections of the hypothesis of equa.lity of two va.ria.nces: 
Kl estimation with ;:y4 given by (6). 

rimal, prima] 
rimed, primed 
-primed, d-prime 
rimal, prima! 
rimed, primed 
-primed , d-prime 
rimal, prima] 
rimed, primed 
-primed, d-prime 
rimal, prima! 
rimed , primed 
-primed , d-prime 
rimal, prima! 
rimed, primed 
-primed, d-prime 
rimal, pri mai 
rimed , primed 
-·primed , d-prime 

'nterval 
(q.15, 
q.85) 

0.6 
1.6 
0.6 
1.6 
1.2 
1.8 
2.4 
1.6 
1.8 
1.6 
2.0 
l. O 
1.6 
0.4 
2.2 
0.8 
2.2 
0.6 

Ta.ble 3. Percentages of rejections of the hypothesis of equa.Jity of two mea.ns: 
va.ria.nces: Kl estima.tion with ;:y4 given by (6). 
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ode ·nterval 
(q.l5 , 
q.85) 

rimal, primed 0.9 
rimal, d-primed 1.8 
rimed , d-prime 1.7 
rimal, primed 1.6 
rimal, d-primed 1.3 
rimed, d-prime 2.0 
rimal , primed 1.6 
rimal, d-primed 1.9 
rimed , d-primed 1.7 
rimal, primed 0.8 
rimal, d-primed 1.4 
rimed, d-prime 1.4 
rimal, primed 1.0 
rimal, d-primed 1.4 
rimed, d-prime 1.8 
rimal, primed 2.4 
rimal, d-primed 1.9 
rimed , d-prime 3.3 

Table 4. Percentages of rejections of the hypothesis of equality of two means: 
Kl estimation. 
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In summary, the simulation results strongly suggest that t he proposed metbod 
of testing for a difference between the conditional variance functions is surpris­
ingly reliable. Interestingly, the test for a difference between the conditional 
mean functions correctly recognizes equa.lity of the functions also when the eon­
cli tional variance functions differ. 
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