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Abstract: In this report, the problem of testing for a differ-
ence between conditional variance functions (or volatilites) of two
independent nonlinear time series is investigated by means of an ex-
tensive simulation study. Empirical results on the properties of the
test proposed confirm the test’s validity. at least for some tvpes of
heteroscedasticity as contrasted with homoscedastic errors as well as
for some types of differences in heteroscedasticity. Moreover, inter-
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1. Introduction
Let
Xi = MXi—1) +6(Xi1)e (1)

be an autoregressive model, where Xo = &g and (¢ )72, is a sequence of i.i.d. ran-
dom variables such that the ¢;'s are independent of the sigma-field (X, Xy,...
ovy Xg—1). Clearly,

E(X¢| X1 =2) = Mx)
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and, with o3 = Var(e;),
Var(Xi| Xi—1 = ) = 12(2) = 62(2)ad.

The conditional variance or volatility becomes homoscedastic if 4(+) is a con-
stant; in general, it is heteroscedastic,

The problem of identification and, to some extent. testing of nonlinear
and/or heteroscedastic time series has received much attention in the last decade.
For excellent surveys see Tjestheim (1994) and Tong (1995); see also Tong (1990)
for a relatively early but fundamental treatrient of nonlinear time series. An
analysis of ARCH (Autoregressive Conditionally Heteroscedastic) models can
be found in Gouriéroux (1997). For recent developments in nonparanietric es-
timation of A(-) and 62(-)a3, see in particular Hoffman (1999), Neumann and
Kreiss (1998), Hardle and Tsybakov (1997), and the literature there for related
earlier work. Tn Hoffman (1999), wavelet threshold estimators for both A(-) and
62(-)o have been investigated. In Neumann and Kreiss (1998), estimators for
A(+), based on local polynomial estimators (LPI’s) have been dealt with using
their strong approximations to LPE’s for corresponding regression models. In
this way, bootstrap methodology for nonparametric autoregressions has been
simplified and, hence, bootstrap confidence bands and (composite) goodness-
of-fit supremum-type tests have been provided for A(:) as well. Hirdle and
Tsybakov (1997) used local polynomial (its to estimate the conditional variance
function.

Regressogram estimators for cumulative versions of A(+) and 6%(-)o3 (Subsec-
tion 2.3 below), along with corresponding confidence bands and some goodness-
of-fit tests, have been given by McKeague and Zhang (1994). Recently, Hafer
and Herwatz (1999) have examined empirical properties of several testing proce-
dures for autoregressive dynamics of order one (against pure noise null hypoth-
esis) and Liero (1999) has proposed a nonparametric test of homoscedasticity
against heteroscedasticity for the nonlinear regression problem.

The main goal of this report is to investigate small-sample properties of
methods for distinguishing between models which are given by the same con-
ditional mean function A(-) but differ in conditional variance fimetions 62(-)od.
Thus, in contrast to goodness-of-fit type tests, where the model is known exactly
under a simple null hypothesis or it is known up to a parameter in case of a
composite null hypothesis, we aim at tests of homogeneity of two autoregressive
models (actually, we are interested in testing homogeneity, i.e.. equality. of two
conditional variance functions). Our study relies on simulations for samples of
size 500, whose size we consider small to medium i one samples romn a time
series starting from a fixed initial valne. More precisely, when deciding on the
sample size, we aimed at obtaining clear distinguishability of hypotheses under
scrutiny. Our preliminary simulation studies (not reported here) showed that
rather similar results can be hoped for for, say, samples of size 400 and still
meaningful but much weaker results for samples of size 300,
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Omne way to obtain a test for a difference between such models is to construct
a confidence band for the difference between two conditional variance linctions
in the two-sample problem with two independent time series (which have or
have not identical conditional mean functions). Under the hypothesis of equality
of conditional variance functions, the confidence band should include the zero
function. If either the band’s upper bound goes negative or the band’s lower
bound goes positive, the two conditional variance functions are likely to be
different. In Section 3 we study empirical properties of tests based on this idea.

Section 2 begins with presentation of the models studied. Except for models
Cminus and E, they are either borrowed from or are heteroscedastic variations
of the models discussed by Auestad and Tjostheim (1990) and McKeague and
Zhang (1994). Following the latter of those papers, estimators of cumulative
versions of the conditional mean and variance functions are nsed to construct
the confidence bands neededl.

In Subsection 2.2, we get results on estimation of A(-), in particular, on
how different estimators behave for homoscedastic as opposed to heteroscedastic
errors. Also, we get results concerning different estimators of 52(+) and 44(:),
where

ya(@) = Var((Xe — M2))*| Xooq = 2).

All these estimators are needed to construct the confidence bands, which are
described in Subsection 2.3.

All in all, our simulation results confirm the validity of the approach pro-
posed. Indeed, the suggested method of testing for a difference between the
conditional variance functions has proved truly promising already for small to
medium samples and it deserves further study. To the best of onr knowledge the
method is new. For its possible applications one can confer. e.g., Tong (1990)
and McKeague and Zhang (1994).

2. Models and estimators considered
2.1. Autoregressive models

In this study, the following homoscedastic models are taken into consideration.
In all the models except in model E. we assume that ¢; ~ N(0.0.01).

Model A. (Linear autoregressive, AR(1))

XE = U.S.Xt_l + €.

Model B. (Exponential autoregressive)

X, = (0.8 —1.1exp{—30X2 ,}) X1 + €.
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Model C. (Threshold autoregressive)
Xy = 0.8X{_-11{X¢-1 > 0} e 0.3X1_.,.]I{.Y;__] < U} + €.

Model Cminus.
Xg = —O.S.Xt_lf{,)(t_] = 0} + 03X, I{}(g_] < D} + €.

Model D. (Random coefficient autoregressive)
Xe=(1+6&)0.8X;1I{X;—1 >0} —03X, 1 I{X;—1 <0}) +¢

with € independent of €, and o(Xg, X;,...,X;—1), and assuming value 0.25
with probability 1/2 and value —0.25 with probability 1/2.

Model E. (Discontinuous)

_ 2sgnXi—; ;
34+ | X1 !

where ¢, ~ N(0,0.52).

Xy

In the original version of model B, as introduced by Auestad and Tjostheim
(1990), the factor in the exponent is 50, not 30. We have used the latter factor to
get a function whose nounlinearity is more apparent. It should also be noted that
model D does not belong to the class of autoregressive models but is a special
case of the hidden Markov chain models. It is, however, worth consideration,
since its conditional mean function is the same as that of model C. The last of
the models is interesting due to its discontinuity at zero.

Models A, B,...,E will be referred to as the primal ones. In addition, two
modifications of each of these models will be considered, to be referred to as
primed models and double-primed models, respectively.

Primed models are obtained by including errors of the form §(X;_1)e;, where

0, if 2<-1,
2e+2, if —-1<z<0,
—2x+2, f 0<az<l,
0, i w1y

d(z) =

Double-primed models are obtained by including ARCH-like errors with

5(}{5_1) =+/1+ (I - X;._1)2.

It is worth observing that, within each triple of models (consisting of a primal
model, primed model and double-primed model), the conditional mean function
is the same but the conditional variance functions are different. In order to
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obtain the latter, it suffices to use formula (1) for families A, B, C and E, and
to note that model D can be written as

Xt = (1.+e"t)/\(th_)-l—é(Xt_.)eh (2}

where all the A() and &(-) are known. The resulting conditional variance func-
tions are as follows. For all the models except model D, the variance of the
primal model is og, of the primed model is §2(2:)o2 and of the double-primed
model is (14 (1 —z)?)o3. For model D we have, respectively, 3 + (1/16)\*(z),
62(z)og + (1/16)A%(z) and (1 + (1 — 2)?)ad + (1/16)A% ().

2.2. Estimators

The following two well-known types of nonparametric estimators have been
used to estimate conditional mean function: kernel estimator and LOWESS
estimator. The former is of the form

— ﬁz;‘;l' X1 IC (ETTX')
AMz) = Iy K (#_) i (3)

where X, X5,..., X, are the observations, h is the bandwidth or smoothing
factor and K (-) is the kernel. In our simulations, the Gaussian kernel was taken,
ie., K(z) = (2m)"*2exp(—32?). For a discussion of asymptotic properties of
kernel estimators see Tjostheim (1994) and references there (throughout this
paper, we skip asymptotic considerations. since our interest has been focused
on small- to medium-size samples). In the simulations, either a bandwidth of
fixed width was used (chosen a priori by trial and error) or its width was chosen
adaptively, namely, the k-nearest neighbour (k — nn) approach was used to
determine h locally for each =.

The locally weighted scatter plot smoothing (or LOWESS for short) esti-
mator belongs to the family of LPE's. More precisely, in our implementations,
it is a locally linear estimator based on weighted least squares fits over local
neighbourhoods of observations. The task is to estimate the regression function
from the sample ((X;, X;—1)) on a fixed interval [a,b]. For any given sample,
we choose a = min{ X;}*; and b = max{X;}"_,. For each fixed observation (or
design point) X, its neighbourhood N(X;) is constituted as including k = 0.3n
nearest observations to X;. Then, for each X; and neighbourhood N(X;), ob-
servations in N(X;) are assigned weights using the tri-cube weight function:

| X — Xl
w ()
where W (u) = (1 —u®)? for u € [0,1) and W (u) = 0 otherwise, and A(X;) is the

largest distance between X; and another observation in N(X;). Now, for each
X;, A(X;) is obtained using the weighted least squares fit over N(X;). For z
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different from the observed points (or design points), Ala) can be obtained, for
example, via interpolation. In our simulations. the S-Plus implementation of the
LOWESS estimator was used (for a general description and asymptotic analysis
of the estimator, as well as for those of its multidimensional counterpart. known
as LOESS, see, e.g., Fan and Gijbels (1996)).

Both kernel and LOWESS estimators can in furn be applied to build esti-
mators of the conditional variance function 42(+). In general, estimation of this
function can be performed in at least two ways. The first is of the following
general form

Fa(z) = B(X? | Xim1 = x) - (A(2))% (4)

where ~ refers to an estimator of conditional expectation needed. The second
approach to estimating y2(+) consists in computing an estimate of the regression
function from the sample

((Xe — M2))?, Xem1)is. (5)

Estimators based on (4) are referred to as K1 (or Kl-fixed_h) estimators
if kernel estimators are used to estimate the two conditional expectations re-
quired, and as L1 if instead LOWESS estimators are used (the lorms of suitable
estimators are not given here, since they can be obtained by trivially modilying
corresponding estimators of A(:); e.g.. as regards kernel estimators, it suffices
to note that the estimator given by (3) is a kernel estimator for regression
A(.’L‘) = E(Xt ng_l = ZI")

Analogously, estimators based on (5) are referred to as K2 and L2, respec-
tively; in this case, estimators of the same type have been used for estimating
both A(-) and then E((X;, — A(z))2|X:_1 = ). In fact, a simple algebra shows
that estimator K2 can be disregarded: if in (3) the denominator is replaced by

1 et 13-".}:‘:_.'
n—ng( h )1

the “new” kernel estimator obtained, which is asymptotically strictly equivalent
and practically always equivalent to the “old” one, provides the same estimate
as K1. Accordingly, in the sequel, only estimator K1 is taken into account.

Confidence band for the conditional variance function requires an estimate
of the fourth conditional moment,

74(z) = Var((X, — M2))? | Xi=1 = 2).
Perhaps the most natural or the most immediate candidates for an estimator of
~4(+) are the following two estimators:

Fa(z) = B((Xy = X@))" | Xem1 = ) = {Fa(2)}2, (6)
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where 32 (2) is an estimator of the conditional variance function, and a regression
function estimator based on the sample

(X = A=) = F2(2))%, Xem1 )i - (7)

The rationale behind estimator (6) is clear. while that for estimator (7) follows
from the fact that, for families A, B, C and E, 4(z) = E(((X; — Ma))? —
vo(2))?) | Xt—1 = z). One more reason to consider the latter estimator will be
given in the next section.

In order to introduce one more candidate for an estimator of ~y(-), let us
observe first that for families A, B, C, and E (recall that the €, are normal and
hence the last equality follows)

va(z) = E({8(Xe)e}! | Xomy = 2) = {72(2)}?

= 3'(2) e} — {6*(2)3)® = 208" (2). ®)
Analogously, using (2) and performing some elementary calenlations we get for
family D

va(z) = B(EM @) + 6(Xi—1)&) | Xeot =) — {72(2)}?

= 20884 () + 0.2502 N2 (2)0% (). (9)
Finally, let us observe that for models from families A, B. C and E

Var(X? | Xi—1 = 2) = 2050 (z) + 40322 (z)% ().

Thus, in view of (8) and (9), the following conservative estimator can also be
proposed

= o wd ; DIV2 v L o— )12
Fa(z) = E(X; | Xp—1 = 2) = {E(XF | Ximr = -'1‘}_} . (10)
Before concluding this subsection we will forward one more remark. Confi-
dence bands of our interest require also that a stationary marginal density of
the observations X, be estimated. A natural estimator is, of course, the usual
kernel estimator with smooth kernel function. Since the estimator appears in

the formulas below in the denominator, we modify it slightly to make it bounded
away from zero. Namely, we use the estimator of the form

() = max{g(z),0.05},
where

= 1 s Lz —X;
g(a:)—;EZIx< = ),

i=l

K is the Gaussian kernel and / is the same bandwidth as that in (3).




40 J. CWIK, J. KORONACKI and J. MIELNICZUK

2.3. Confidence bands

For any two independent time series, let the estimators of their conditional mean
and variance functions be A and 7o for one series and X and 79 for the other.

As has been already mentioned in the Introduction, the confidence bands
to be dealt with are based on cumulative versions of the conditional mean and
variance functions,

Am=£}@@

and
r() = [ pa(z)dz,

where, as usual, v2(z) = Var(X:|X:—1 = z) and a is an appropriately chosen
point in the state space (we restrict ourselves to estimation and testing on some
interval [a,b]).

Let for any z € [a, b

M@:fi@@-/i@m
It follows from McKeague and Zhang (1994) that under appropriate conditions

the asymptotic 100(1 — a)% confidence band to test for a difference between
two conditional mean functions should have the form

A(z) £ con™V2(H(B)Y2(1 + :—)
where

v = [T 30, [P,

o) = [ T+ [ Tgae

g, g are estimators of stationary marginal densities of the two series and ¢, is a
constant depending on the confidence level 1 — a, e.g.,

1 —al ca

0.9011.133
0.9511.273
0.991.552

In turn, let for = € [a, b

D(z) = /:'?(s)ds - /: 7(s)ds.




Testing for a difference of conditional variances 41

Then, it again follows from McKeague and Zhang (1994) that (under the same
conditions as before if Xq = z¢ is fixed) the asymptotic 100(1 — a)% confidence
band to test for a difference between two conditional variance functions should
have the form

Pe) + on=Y/2(F(b))1/2 @

I'(z) £ cq (Z(b))"/=(1 + f(b))
where

PN 716  J4(s) A

o= [ g+ [ e

and 94, 74 are corresponding estimators of v4(z) for the two series considered.

Again, we omit stating assumptions under which the asymptotic results of
McKeague and Zhang are valid. However, a few comments are in place here.
First, McKeague and Zhang considered only histogram estimators for marginal
densities and histogram-like estimators (or regressograms) for A(-) and ya(-),
all these with nonadaptive (i.e., deterministic or fixed in advance) bandwidth h
(satisfying conditions nh? — oo and nh? — 0 as the sample size n — o0). Still,
e.g., Theorem 23.2.1 in Shorack and Wellner (1986) indicates that the given
confidence bands remain valid if, in particular, kernel estimators considered in
Subsection 2.2 are used with the same h as that for the regressograms and
histograms.

Second, the results of McKeague and Zhang do not carry over to the case
with kernel estimators which have variable bandwidths, let alone to the case
with the LOWESS estimator. At the same time, some way of locally adapting
bandwidths and neighbourhoods to data is strongly recommended in practice,
in particular when sample sizes are small to moderate. Moreover, well-known
analytical results for k& — nn kernel estimators and LPEs also provide a reliable
justification for consideration of these estimators within the context of current
investigation.

3. Simulation results

In this report, we confine ourselves to the case when two independent time series
have the same conditional mean function. The reason is that the procedure to
distinguish between two models consists in fact of two stages. First, equality of
two conditional mean functions is tested and, if the hypothesis of their equality is
not rejected, the two models are tested for a difference between their conditional
variance functions.

In order to construct reliable confidence bands, all the suggested estimators
of A(+), 72(+) and ~4(-) had to be evaluated beforehand. In all simulations,
samples of size 500 were taken and the starting value Xy was always set at
0. For any given sample X1,..., X500, the estimation interval was taken to be
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[a,b] with @ = min{X;}?% and b = max{X;}?%. (All the simulations, including
generation of random samples, were performed using S-Plus 5.)

Kernel estimators with fixed h were always chosen to have h = 0.1 for
families A, B, C and D, and h = 0.3 for family E. For kernel estimators with
k — nn bandwidth, k was always equal to 0.3n, with n being the sample size.
Near the boundaries of the [a, b] interval, however, bandwidth h of the k — nn
kernel estimator was modified in order to avoid undesirable boundary effects.
The k — nn rule was applied for z € [a+0.2A,b—0.2A], where A = b—a, while
for z € [a,a+0.2A) and z € (b— 0.2A], neighbourhoods of length equal to that
of the neighbourhood of the closest point in [a + 0.2A,b — 0.2A] were taken.

The estimators were evaluated by comparing their Empirical Integrated
Squared Errors,

1 2 2
BISE = 2 ;(f(xs) = f(@:))%,

where the z;’s are equidistant points in [a, b], #{z;} is the number of points x;
in [a,b], f(-) is a function to be estimated, and f(-) is its estimator. Actually,
for each model considered, 200 repetitions of the experiment were conducted,
i.e., 200 sets of samples were generated, and estimation of each of the functions
of interest was performed for each sample. In this way, for each model and
each function of interest, densities of EISE (based on 200 repetitions) for each
estimator were obtained. In all cases, #{z;} was taken to be equal 100.

Let us note that kernel estimators with fixed h were used only for com-
parative purposes. Indeed, in practice, when the true underlying density is
unknown, the bandwidth should be chosen adaptively, without human inter-
vention. However, in a simulation study, one can take the fact that one knows
the true density to his or her advantage. In particular, an optimal (or near to
optimal) bandwidth can be found by trial and error. Results obtained using
estimators with bandwidths thus determined can then be used as a reference for
those obtained using adaptive methods. Clearly, adaptive estimators should be
required to provide results similar to those obtainable by using estimators with
(nearly) optimal bandwidths.

Let us begin by briefly discussing the results obtained for the estimators of
A(-). In this case, a brief discussion will suffice, since estimation of the condi-
tional mean function is by far the simplest problem to deal with in this study.
In general, all the estimators proved reliable in all cases with the LOWESS esti-
mator being superior to the two kernel estimators. The k —nn kernel estimator
performed worst, except for example E when it performed equally well as the
LOWESS estimator. Except for example E, heteroscedasticity had seemingly
no effect on the performance of the LOWESS estimator. Rather surprisingly,
reliability of the kernel estimator with fixed h was improved by switching from
homoscedastic to heteroscedastic errors.

Results for the estimators of 72(+) and 4 () are summarized in Figs. 1-3 for
the former function and in Figs. 4-6 for the latter. In the figures, K1 stands




Testing for a difference of conditional variances 43

Model A - Variance.
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Figure 1. Estimating conditional variance functions in family A: Distributions
of EISE for K1-fixed_h, K1, L1 and L2

for the k — nn kernel estimator and Kl-fixed_h for the kernel estimator with
fixed bandwidth. K1w6 (L2w6) stands for estimator (6) of v4(-) with K1 (L2)
as the estimator of A(-). Analogous convention applies to estimator L2w7 (and
to other estimators referred to in the sequel). In the figures, only the results for
families A, B and C are given, as the other follow essentially the same pattern.

Given that the k — nn kernel estimator proved reliable as an estimator of
A(+) (albeit inferior to the other two estimators) and taking into account results
presented in Figs. 1-3 and 4-6, one concludes that it is estimator K1 which
should be recommended for use in constructing confidence bands. It also follows
from Figs. 1-3 that estimator L1 is unacceptable — the bulk of the density of
EISE for estimator L1 lies in fact outside of the supports of the densities for
other estimators (note that the densities for L1 estimator required sometimes a
different scale than that for other estimators). Estimator L2 is better than 1.1
as an estimator of yo(+), but it leads to unacceptable results if it is used to build
an estimator of v4(+), regardless of whether one relies on estimator (6) or (7).

Comparison of the properties of L1 and L2 estimators (see (4) and (5))
suggests that using the LOWESS estimator in (10) can hardly lead to acceptable
results (it seems that “centering” an estimator, as done in (5) by subtracting A(-)
from X;, may improve LOWESS estimation). This conjecture was confirned by
simulations (not reported here). By the same token, it could be believed that
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Model B - Variance.

AN

0.0 0.0001 0.0002 0.0 0.0001 0.0002 0.0 0.001 0.002
EISE EISE EISE

K1-fixed_h
0 50000
020000
0 5000

K1
0 50000
020000
0 5000

0.0 0.0001 0.0002 00 0.0001 0.0002 0.0 0.001 0.002
EISE EISE EISE
g
f=]
o = o
0.0 0.0001 0.0002 0.0 0.0001 0.0002 0.0 0.001 0.002
EISE EISE EISE
g g ———
o o (=1
bupd -
- —— | - o
[=] o o
0.0 0.0005 0.0 0.0005 0.0010 0.0 0.002 0.004
. EISE . EISE EISE
Primal Primed d-Primed

Figure 2. Estimating conditional variance functions in family B: Distributions
of EISE for Kl-fixed_h, K1, L1 and L2

Model C - Variance.
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Figure 3. Estimating conditional variance functions in family C: Distributions
of EISE for Kl-fixed_h, K1, L1 and L2
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Model A - The fourth moment.
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Figure 4. Estimating v4(-) in family A: Distributions of EISE for K1w6, L2w6
and L2w7

Model B - The fourth moment.

3 &
k]
0?3 = g
E
sl 3 1L
Oel 2e-6 de-6 0.0 0.00002 0.0000« 0.0 0.00005
EISE EISE EISE
g :
g &
28 g g
po | N &
2 o gt e |
QDHD 20-6 de-6 0.0 0.00002 0.0000« 0.0 0.00005
EISE EISE EISE
g :
M~ § a
§ g
$ L__ g g
2 " /\_\ s T S|
“0e0 206 4e-6 0.0 000002  0.0000¢ 0.0 0.00005
“EISE EISE EISE
Primal Primed d-Primed

Figure 5. Estimating ~y4(-) in family B: Distributions of EISE for K1w6, L2w6
and L2w7
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Model C - The fourth moment.
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Figure 6. Estimating 4(-) in family C: Distributions of EISE for K1w6, L2w6
and L2w7

estimator L2w7 would perform better than L2w6. Unfortunately, as Figs. 4-6
show, it has proved not to be the case. In any case, the disappointing results
for the LOWESS-type estimators are rather surprising and their explanation
requires further study.

As should have been expected, K1w7 performs just as K1w6 does (we still use
the same notational convention). All in all, therefore, we are left with estimator
K1 of 42(-) and we have to choose between K1w6 and K1wl10 to estimate ~4(-).
This final choice is made by a suitable comparison of the procedures to test for a
difference between two conditional variance functions, these procedures obtained
using either K1w6 or K1w10 to construct the confidence bands required. To be
concise, we present our results in the form of suitable tables (see Tables 1-4).

Samples of size 500 (and with zp = 0) from the given models were generated
and 95% confidence bands were constructed over interiors of the supports of
the estimated stationary marginal densities. Proper choice of such interiors
requires some care. First, one has to note that the confidence band is based on
comparing two series and, thus, one has to deal with two supports, one for each
series. Accordingly, for each series, the interval between estimated quantiles
of prespecified orders, ¢ and 1, was constructed and then the intersection of
the intervals for both series was obtained (this intersection to be referred to as
[q¢,qy]). Finally, the confidence band was built over the interval [q@.qu].

Appropriate values for ¢ and ¢ were found empirically, as the tables illustrate
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Model interval intervall interval interval
(q.10,q.90)(q.15,q.85)(q.20,q.80)(Q1,Q3

1A primal, primed 100.0 100.0 100.00  100.0
primal, d-primed 100.0 99.0 100.0 95.0
primed, d-primed| 20.0 48.6 66.0 77.0

B primal, primed 100.0 100.0 100.0 100.0
primal, d-primed wo.d 1000 1000  99.0
primed, d-primed| 92.0 96.8 93.0 93.0

C primal, primed 100.0 100.0 100.0 100.0
brimal, d-primed 92.0 90.8 g7.d 710

brimed, d-primed 89,01 87.6 78.d 574
(C-minusprimal, primed 100.0 100.0 100.0  100.0
rimal, d-primed 100.0 100.0 100.00  100.0

rimed, d-primed 80.0 83.8 80.0 82.0

D rimal, primed 100.0 100.0 100.00  100.0
rimal, d-primed 87.5 86.6 79.00 58.0

rimed, d-prime 81.5 82.2 77.0 61.0

£ rimal, primed 100.0 100.0 100.00  100.0
rimal, d-primed 98.0 96.0 73.0 32.0

rimed, d-primed 97.01 99.8 100.00  100.0

Table 1. Percentages of rejections of the hypothesis of equality of two variances:
K1 estimation with 74 given by (10).

(in the tables, Q1 and Q3 denote the first and third quartile, respectively).
Results in the tables are based on repeated simulations of each comparison
between the models at hand: the results in Table 1 are based on 500 repetitions
of each experiment, while those in Table 2-4 are based on 1000 repetitions, The
results in Tables 1-3 concern the test for a difference between the conditional
variance functions (results on the power of the test are given in Tables 1 and
2, and those on the size of the test are given in Table 3). For the sake of
completeness, in Table 4, results on the size of the test for a difference between
the conditional mean functions are presented (recall that, within each family of
models, the conditional means are the same).

In all the simulations, confidence bands were calculated at 100 equidistant
points. The tested hypothesis of equality of two functions was rejected if the rule
that the band’s upper bound should stay positive and the band’s lower bound
should stay negative was violated at least at three points (in all simulations, ¢,
corresponding to 1 — a = 0.95 was used).

Simulations have shown that already about 200 repetitions suffice to provide
rather stable results and there is virtually no difference between results for 500
and 1000 repetitions. Using (6) to obtain 7,(-) has proved decidedly better than
relying on (10). Upon the results obtained, the interval [q0.15,q0.85] has been
found most suitable to build confidence bands.
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Model intervall intervall interval interval
q.10,q.90)(q.15,q.85)(q.20,q.80 (Q1,Q3

A primal, primed 100.0 100.0 100.00  100.0
primal, d-primed 100.0 100.0 100.0 99.3

primed, d-primed, 72.3 84.6 89.1 87.8

B primal, primed 100.0 100.0 100.0  100.0
primal, d-primed 100.0 100.0 99.9 99.2

primed, d-primed 96.4 97.3 06.2 93.8

C primal, primed 100.0 100.0 100.00  100.0
primal, d-primed 100.0 99.8 99.0 95.5

primed, d-primed, 98.8 98.0 96.4 89.7
C-minugprimal, primed 100.0 100.0 100.0  100.04
primal, d-primed 100.0 100.0 99.9 99.7

primed, d-primed 89.7 91.1 90.9 85.5

D primal, primed 100.0 100.0 100.0  100.0
primal, d-primed 99.9 99.7 98.9 93.9

primed, d-primed 98.7] 98.4 96.1  90.6

14 primal, primed 100.0 100.0 100.00  100.0
brimal, d-primed 100.00  100.0 959 764

primed, d-primed 99.6  100.0 100.00  100.0

Table 2. Percentages of rejections of the hypothesis of equality of two variances:
K1 estimation with 54 given by (6).

Model interval
(q.15,
q.85)
A primal, primal 0.6
primed, primed 1.6
d-primed, d-primed, 0.6
B primal, primal 1.6
primed, primed 1.2
d-primed, d-primed, 1.8
C primal, primal 2.4
primed, primed 1.6
d-primed, d-primed] 1.8
IC-  [primal, primal 1.6
minusjprimed, primed 2.0
d-primed, d-primed] 1.0
D primal, primal 1.6
primed, primed 0.4
d-primed, d-primed| 2.2
I primal, primal 0.8
primed, primed 2.2
d-primed, d-primed| 0.6

Table 3. Percentages of rejections of the hypothesis of equality of two means:
variances: K1 estimation with 74 given by (6).
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ode interval
(q.15,
q.85)
A primal, primed 0.9
primal, d-primed| 1.8
primed, d-primed 1.7
B primal, primed 1.6
primal, d-primed| 1.3
primed, d-primed, 2.0
Ic primal, primed 1.6
primal, d-primed| 1.9
primed, d-primed 1.7
IC-  |primal, primed 0.8
rnimmprimal, d-primed 1.4
primed, d-primed 1.4
D primal, primed 1.0
primal, d-primed| 1.4
primed, d-primed 1.8
E primal, primed 24
primal, d-primed| 1.9
primed, d-primed 3.3

Table 4. Percentages of rejections of the hypothesis of equality of two means:

K1 estimation.




50 J. GWIK, J. KORONACKI and J. MIELNICZUK

In summary, the simulation results strongly suggest that the proposed method
of testing for a difference between the conditional variance functions is surpris-
ingly reliable. Interestingly, the test for a difference between the conditional
mean functions correctly recognizes equality of the functions also when the con-
ditional variance functions differ.
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