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Abstract: The paper deals with the steady-state response of a 
feedback control system to the canonical inputs. For its character
ization it seems useful to introduce the notion of accuracy index ~L 
beside the standard notion of loop type v. This index is assumed to 
be equal to the power oft in the analytic expression of the canonical 
input that leads to a finite nonzero deviation between the actual and 
the desired responses. When applied in the control design procedure, 
the accuracy index ~ allows to achieve a steady-state performance 
that is more satisfactory than the one obtainable with reference to 
the loop type only. The conditions under which a single- loop feed
back control system exhibits a prescribed value of~' given the value 
of v, are derived and discussed with particular regard to their ro
bustness. 

Keywords: feedback control systems, steady-state response, ro
bustness. 
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1. Introduction and problem statement 

The concepts of type, error coefficients and steady-state error have long been in 
use in the study of the asymptotic performance of feedback control systems (see, 
e.g., Horowitz, 1963, Melsa and Schultz, 1969, D'Azzo and Houpis, 1988, Sinba., 
1994). Nevertheless, they have been reconsidered with attention in the recent 
literature, see, e.g., Weiss (1995). In the following, some further rem arks about 
the loop error (actuating signal in the ANSI nomenclature, ANSI, 1963) and the 
difference between the desired output and the actual output (deviation, ANSI, 
(1963) will be made. The two quantities obviously coincide when reference is 
made to the elementary control configuration of Fig. 1, where the controlled 
variable c(t) is expected to track the reference input r(t). 

m(t) c(t) 
f--.---

Figure 1. Unity-feedback control system: C and lP' represent, respect ively, the 
controller and the process ; a(t) and m(t) are, respectively, the actuating signal 
and the manipulated variable. 

Instead, the deviation differs from the actuating signal a(t) in the more 
general configuration of Fig. 2, where, besides the forward-path controller C, 
a (stable) prefilter lF and a feedback-path element lHI are present; the parallel 
dashed-line path in the same figure accounts for the desired relationship lDl 
between the reference signal and the controlled variable; sometimes, lDl does not 
correspond to a constant equal to .1 • 

This paper deals with linear time-invariant models of the system component 
parts, which can then be described by the transfer functions relating their input 
and output Laplace transforms. Specifically, the t ransfer functions associated 
with blocks lF, C, lP' and lHI will be denoted by F(s ), Gc(s), Gp(s) and H(s). 
Therefore, by letting: 

G(s) := Gc(s)Gp(s) , (l) 

the overall transfer function becomes: 

W(s) ·= F(s)G(s) 
· l + G(s)H(s) 

(2) 
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Figure 2. Nonunity-feedback control system with prefilter: lF and lHI represent , 
respectively, the prefilter and the feedback-path element; JI)) accounts for the 
desired relation between r(t) and c(t), and d(t) is the deviation according to 
the ANSI terminology; z(t) is an (equivalent) disturbance acting on the process 
output. 

The actual controlled output c(t) is influenced both by the reference signal 
r(t) and by the (equivalent) disturbance z(t) . The controlled output does not 
coincide, in general, with the output cd(t) of block JI)), which is related to r(t) 
via the "desired" transfer function: 

TXf ( ) ·= Cd(s) 
v1 d s . R(s) , (3) 

where La.place transforms are indicated, as usual, by the capitals of the sym
bols representing time functions. The transform D(s) of the deviation d(t) is 
obviously: 

D(s) = C(s)- Cd(s) . (4) 

In fact, the design specifications usually refer to D(s) and not to A(s), 
which differs from D(s) due to the presence of a prefilter and that of a feedback 
element accounting both for the output transducer and for the feedback part 
of the controller. Note, by the way, that some authors include in the process 
transfer function those of the power amplifiers and actuators on the one side 
and those of the measuring devices on the other: in this case, the controlled 
output is actually the transducer output whose physical nature is the same as 
that of the reference signal r(t). Clearly, the gain of the transducer transfer 
function depends on the choice of the units of measure. 
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The above viewpoint naturally suggests to contrast the steady-state proper
ties related to the loop with those related to the entire system. Jn this regard, 
type is a loop property depending solely on the number of integrators in the loop, 
whereas the possibility of annihilating the output offset (limt_,00 d( t)) depends 
on the overall control system. 

In the following sections, the relations between the two properties are ana
lyzed. To this purpose, it turns out to be useful to introduce, beside the stan
dard notion of type, a new index characterizing the asymptotic system accuracy 
( a.s.a.). 

2. Loop type and accuracy index 

From the linearity assumption , the controlled output is the sum of two terms, 
depending on R(s) and Z(s), respectively: 

C(s) = CR(s) + Cz(s) (5) 

with 

CR(s) := W(s)R(s) (6) 

and 

Cz(s) := Wz(s)Z(s), (7) 

where 

1 
Wz(s) = 1 + G(s)H(s) (8) 

Therefore, by taking (3) into account, D(s) in (4) can be expressed a.s: 

D(s) = DR(s) + Cz(s) (9) 

with 

DR(s) := [W(s) - li\ld(s)] R(s). (10) 

It is usual to develop the a .. s.a. analysis with regard to the canonical inputs 
and disturbances, whose transforms are 

1 
sq+l' q = 0,1' 2, . . . . (11) 

By limiting first attention to the component D R ( s) of D ( s), and assuming 
that W(s) and Wd(s) are BIBO stable (so that the (unique) pole of R(s) in 
the origin is not a pole of W(s)- Hld(s)), then DR(s) can be decomposed into 
a steady-state (or asymptotic) component DR.,., ( s) and a transient component 
DR,.(s) as: 

(12) 
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where the denominator of DR, .• (s) is sq-H, Dorato, Lepschy and Viaro (1994). 
In order to analyse the steady-state performance, it is particularly useful 

to consider the Ma.cLa.urin series expansions of the relevant transfer functions 
because of the link between the behavior at t = oo of time functions and that 
at s = 0 of their transforms (final-value theorem) . In this way, it is very easy 
to derive conditions regarding the system accuracy; they will theu be converted 
into conditions on parameters of greater interest for the designer, like Bode 
gains and time constants. · 

To this purpose, let us denote the MacLaurin expansions of lF ( s) and H ld ( s) 
as: 

(1 3) 
i=O 

00 

(14) 
i=O 

From (10) with R(s) = 1/sq+l we get: 
00 

(] 5) 
i=O 

and, thus, the asymptotic component corresponds to: 

L
q ai - di ao - do a1 - d1 aq - dq 

DR (s) = --. = + + ... + , .. sq+l-t sq+l sG s 
i=O 

(1 6) 

whose inverse transform is the polynomiaJ: 
tq tq-l 

dR.Jt) = (ao - do) I+ (a1 - di) ( _ 
1 

)' + · · · + (aq- dq), 
q. q . . 

t > 0. (17) 

It follows that, in order for dR, , ( t) to be finite, the following q conditions must 
he satisfied: 

ai=di, i = 0,1, .. . ,q-l. (18) 

In this case, the offset in the response to r(t ) = ~' t 2 0, is given by: 

dR,. := dR(oo) = aq- dq (19) 

which is zero if and only if, in addition to (1 8), aq = dq . 
When Wd(s) is a. constant d0 , the above conditions on the expansion coef

ficients of W ( s) can easily be converted into conditions on the numerator and 
denominator coefficients of the expression of W ( s) as a ratio of polynomials: 

n-1 

LPiSi 
W(s) = ..:..,i:_,..::o __ 

Lqisi 
i=O 

(20) 
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In fact, equations (18) and (19) become, respectively: 

i = 0, 1, .. . 'q- 1, (21) 

and 

(22) 

Similarly, concerning the disturbance-dependent component Cz(s) of D(s), 
by expressing W z ( s) as 

00 

Wz(s) = L:.>isi, (23) 
i=O 

and setting Z (s) = 1/ sq+l, from (7) we get 

00 

Cz(s) = .l:zisi-q-1 , (24) 
i=O 

so that the conditions for its asymptotic component: 

-1 Zi 

[ 
q l cz, , (t) = £ ~ sq+1-i (25) 

to be finite and different from zero are: 

i = 0, 1, .. . 'q- 1, (26) 

and 

cz := cz(oo) = z __;_ 0. s . ., q r (27) 

This clearly implies that W z ( s) has a zero of multiplicity q in the origin . 
On the basis of the previous considerations concerning the offset dR.,

8 
i;1 the 

response to canonical reference inputs, it seems useful to introduce the following 
notion of accuracy (or a.s. a.) index: 

DEFINITION 2.1 The a. s. a. index fJ is the power of t in the time-domain ex
pression: 

t > 0, (28) 

of the canonical reference signal that gives rise to a finite nonzero offset dR.,.,. 
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According to (18) and (19), the index J-L coincides with the number of con
secutive coefficients ai that are equal to the corresponding coefficients di . 

Obviously, for canonical input signals characterized by powers oft less than 
J-i the steady-state deviation is (identically) zero, whereas for powers greater 
than J-i the deviation tends to infinity. 

Let us recall that the looptype is usually defined as the multiplicity v of 
the pole at s = 0 of the loop transfer function . Since in control systems the 
feedback-path transfer function H(s) does not contain poles (or zeros) in the 
origin, the above definition concerns the forward-path transfer function G( s) 
only. 

It follows that the type coincides with: 
- the multiplicity of the zero at s = 0 of the transfer function between the input 
to the loop (the reference signal r( t) in Fig. 1 or the prefilter output r' ( t) in 
Fig. 2) and the comparator output a(t) (the actuating signal), and 
- the power oft in the analytic expression of the canonical loop input giving rise 
to a finite nonzero steady-state value of a(t). 

Indices J-i and v are equal in the ca.se of the unity-feedback system of Fig. 
1, where it is implicitly assumed that VJ"!d ( s) = d0 = 1 . They may not coincide 
for the system represented in Fig. 2, because F(s), H(s) and lVr~(s) are not 
necessarily equal to 1 . 

As far as the design problem is concerned, J-i can be considered as a specifi
cation and v as a tool for achieving the desired value of J-L. Therefore, the ease 
of J-i < v is not of interest. On the other hand , stability considerations often 
limit the value of v, which motivates the search for methods to obtain J-L > v. 

For instance, by assuming VT!d(s) = 1, index J-i can be made equal to 1 with 
v = 0 by setting: 

or: 

F(O) = 1 + G(O) 
G(O) ' 

G(O)- 1 
H(O) = G(O) ' 

H(O) = 1, (29) 

F(O) = l , (30) 

since, according to the final value theorem, in both cases the asymptotic value 
w _1(oo) of the step response is: 

w_l(oo) = 1iV(O) = F(O)G(O) = 1 = VT! (0). 
l + G(O)H(O) . . d 

(31) 

Obviously, not all methods for achieving the desired value of J-L are equally 
robust . For example, (29) or (30) are no longer satisfied if th e Bode gain Gp(O) 
of the process (and thus G(O)) varies whereas, if Gc(s) introduces a pole at s = 0 
and F(O) = H(O) = 1, then we have J-i = v = 1 independently of Gp(O). 

In this regard, however , it might be argued that index J-L becomes zero if the 
considered pole of Gc(s) is not exactly in the origin. This happens in practice 
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due to the limitations in the physical reaJizability of controllers, Dorato et al. 
(1 999), Keel and Bhattacharyya (1 997), and the necessity of meeting other 
design requirements. Specifically, if the for ward-path transfer function of a. 
unity-feedback system without prefilter is: 

Gt:(s) = __!S_G'(s) , 
s+c 

instead of 

G(s) = K G'(s), 
s 

G'(O) = l, c > 0, 

then the output offset for a. unit step input becomes: 

c 
dRs,(c) =- c+ K ' 

(32) 

(33) 

(34) 

whose diagram ha.s a. slope equal to _ l at c = 0. 
This situation does not substantia1fy differ from that occurring when the 

nominal forward-path transfer function is 

G(s) = KG'(s), G'(O) = 1, (35) 

(so that v = 0) if F(O) = 1 and the feedback-path transfer function ga.i n is set 
to 

H(O) = K -1 
K 

(so that, according to (30) , 1-1 = 1). 

(36) 

A variation of the forward-path transfer function gain from K to K(l +g), 
with H(O) still given by (36), causes the output offset correspouding to a. uni t 
step input to become 

(37) 

whose slope at Q = 0 is *, so that the effects of small gain variations are 
equivalent to those of smaWvariations of in the position of the pole considered. 

Similar considerations could be made with reference to the disturbance
dependent component of the steady-state deviation. 

3. Conditions to achieve the desired accuracy index 

The purpose of this section is to give condit ions on F(s) , G(s) and H (s) under 
which a. system of type v exhibits accuracy index J--l > v. T hese conditions 
immediately follow from the relations: 

ai = di, i = b, 1, ... , 1-1- 1, 

al-' =/= dl-', 

(38) 

(39) 
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derived in the previous section. 
We shall refer to the power series expansions: 

00 

F(s)=Lfisi, ( 40) 
i = O 

1 A 1 ~ ' 
G(s) = ~G(s) = ~ L..,;gis\ 

s s 
i=O 

( 41) 

00 

H(s) = Lhisi, (42) 
i = O 

where F(O) = fo :/= 0, G(O) = go :/= 0 and H(O) = ho :/= 0, because this choice 
minimizes the number of parameters involved; in the next section , however, the 
conditions will be referred to parameters that are more meaningful from the 
designer's viewpoint, like time constants and Bode gains. 

The expressions of the expansion coefficients ai of (1 3) in terms of the ex
pansion coefficients f i, gi and hi can easily be obtained, e.g. by resorting to the 
Pade technique (see Appendix A). 

Here, we only consider the most interesting cases, i.e., the case of H'd(s) = 1 
and F(s) = 1 and the case of Wd(s) = 1 and H(s) = 1, with v = 0, 1, 2. 

Table 1 provides the constraints relating parameters hi to parameters gi for 
obtaining the desired value of ~i 2': v when F( s) = l. 

v=O v=l v=2 

J.i = O (ho:/=1 - g~) - -

ho = 1 - ..L ho = 1 
J.i=] 

go 

(h1 :/= -do) ( hl i= ~) 
-

ho =l- ..L ho = 1 ho = 1 
JL 2': 2 

go 
hl = ~ hl = _ .l hi = 0 go . go 

Table 1. Conditions on parameters hi to achieve the desired accuracy index J.i , 
given the loop type v . 

Note that, if the inequalities between round brackets are not satisfied , the ac
curacy index increases. Therefore, the number of "true" constraints is equal to 
J.i (independently of the value of v) as well as to the number of parameters hi 
that are present in the constraint equations. 
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11 v=O v = 1 v=2 

1-(.!..+ho) 
J-1-=0 .110 - -

g'o+ho 

.q.-h, -C'0 +hl) J-1-=l !IQ -

(fo"+ho)~ 

"" 4 h ~- - 2 - (_!_ +h?) J-1-=2 UQ 9Q 91 1 
( 1 r ~ - ),2 

iiO+ho 
go ~ 

Table 2. Steady-state deviations dR.,
8 

for the case of F( s) = 1. 

The nonzero offset dR.,., in the response to the relevant input (i.e. , the step 
for J-1- = 0, the ramp for J-1- = 1, etc.) is given in Table 2. 

Similarly, Table 3 provides the conditions on the parameters fi of the pre61ter 
transfer function F(s) when H(s) = l. The corresponding offsets are given in 
Table 4. 

v=O V= 1 v = 2 

J-1-=0 (to¥ 1 +;a ) - -

fo = l +;a fo = 1 
J-1-=l (h ¥ - ~) (h ¥- ;a) -

J-~-=2 
fo = 1 +do fa= 1 fo = 1 
h =_.g. .fl = - ;0 h = 0 9o 

Table 3. Conditions on parameters fi to achieve the desired accuracy index J-1-

given the loop type v . 

Concerning the robustness of the above conditions, it should be noticed that 
it is usually possible to assign precise values to the fi lter and controller param
eters fi and hi, whereas parameters gi depend on the process a.ncl their values 
are often uncertain. If, however, the process is time-invariant, the controller 
parameters can be calibrated once for all. 
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v = O \ v = ] \ v=2 \ 

f.L = O fog_o- Qo- 1 
1 +go 

- -

f.L=l gl + !JgO. ] 

go(l +go) h - go -

f.L=2 gogz - gr + hg5. h+f4 f?- .l 
gg(1 +go) g[) - go 

Table 4. Steady-state deviations dR
8

., for the case of H(s) = 1. 

The previous considerations concern the situation in which Wd(s) = l. If 
this is not the case, from the power series expansion of Hld ( s) and relations (38), 
it is also possible to obtain conditions similar to those in Tables 1 and 3, and 
the corresponding offset values. 

For instance, if it is required to attenuate high-frequency noise, reference 
could be made (see, e.g., Netushil, 1 978) to: 

whose 3 dB pass-band is B = ~. For such a. Wd(s), we have: 
L.1fTd 

so that, if F(s) = 1, the conditions for obtaining f-l 2': 2 with v = 1 are: 

h0 = 1, 
] 

h1=Td -- , 
go 

instead of those given in Table l. 

(43) 

( 44) 

( 45) 

(46) 

4. Constraints on parameters of more practical interest 

As already said, in most practical cases it is preferable to translate the conditions 
on the power series expansion coefficients of the relevant transfer functions into 
conditions on parameters having a more direct physical meani ng, e.g., time 
constants and Bode gains. 

To this purpose, reference will be made to the control scheme of Fig. 2 with 
Hld (s) = F(s) = l. Let the process transfer function be approximated by: 

( 47) 
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as is often done in standard design procedures, and assume t hat the forward
path controller transfer function is: 

( 48) 

and the feedback-path transfer function is: 

H(s)=KHl+Tns . 
1 +Tds 

( 49) 

Expression ( 48) particularizes to: 
the transfer function of a P (proportional) controller for v = 0 and T 1 = T2 = 0, 
that of a PD controller for v = 0, T1 ol 0 and T2 = 0, 
that of a PI controller for v = 1, T1 ol 0 and T2 = 0, and to that of a PID 
controller for v = 1, T1 ol 0 and T2 ol 0. 

Table 5 provides the values of the steady-state deviat ion dR_,_, for tbe com
binations of practical interest of indices ~i and v ; Kc represents the Bode gain 
of the forward-path transfer function, i.e.: 

(50) 

v = O V=} 

~=0 
Ka - 1 - KaKu -

1 +KcKH 

~=1 
T1 + T2- ~6. +T} + ~Td- TnHKc - 1} KcKu (Td- Tn)- 1 

J?c Kc 

Table 5. Steady-stat e deviations dR,, in terms of the parameters characterizing 
functions Gp(s) , Gc(s) and H( s) . 

From Table 5 the conditions for obtaining the desired value of the accuracy 
index ~ ' given v, can also be derived by setting to zero the relevant expressions. 
For example, to obtain ~ = 1 with v = 0, it is necessary to ann ihilate the 
numerator of the offset corresponding to ~i = 0 and v = 0: 

Kc - 1 - KcKH = 0, 

from which: 

Kc-1 
KH =--

Kc 

(51) 

(52) 
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To obtain f-l = 2 with v = 0, besides (51) , the following conditi on must be 
satisfied: 

(53) 

from which 

Td _ Tn = 6. + T- (T1 + Tz). 
Ka -1 

(54) 

Since usually Ka > > 1, if 6. + T > T1 + T2 we can choose Tn = 0 so that 
H(s) is simply a. first-order low-pass filter. 

When, instead, v = l, the accuracy index can take the value 2 if: 

This condition can be satisfied, e.g., by either: 

l 
KH = Ka, Tn = 0, Td = ] , 

or: 

1 
Td = -. 

Ka 

(55) 

(56) 

(57) 

Of course, the above conditions hold in practice if the first expansion coeffi
cients of ( 4 7) coincide with the corresponding coefficients of the act ual process 
transfer function. If this is not true, the accuracy index decreases but t he devi
ation is usually much smaller than that corresponding to H ( s) = 1, as shown in 
the following section; moreover, it can still be annihilated by slightly modifying 
(calibrating) the relevant controller parameters . 

5. Sensitivity considerations 

Let us refer to Fig. 2 with F(s) = Wd(s) =land v = 0. 
When H(s) = 1 and the forward-path gain K a changes from k a to ka(1 + 

(!), the deviation d R . , becomes 

l 
(58) 

instead of 

A l 
dRs s =- ' l 

l+Ka 
(59) 

which is not appreciably different form (58) for small values of(!. 
If, instead: 

(60) 



64 A. FERRANTE, W. KRAJEWSKI, A. LEPSCHY, U. VIARO 

the deviation, which for Kc = Kc is equal to zero, for Kc = Kc(J +g) becomes: 

- 0 
dR,. (Q)=- ~~ ~ . 

-Q + Kc + QKc 
(61) 

Since Kc is usually large, the value (61) is about f2 times the value (58). For 
instance, if Kc = 10 and f2 = -0.2 , we get: 

~ 1 
dR ---•• - 11' 
~ 1 

dR (-0.2) = --
ss 9' 

- 1 
dR (-0.2) = --. ... 41 

Value (64) is about 0.2 times values (62) and (63). 

(62) 

(63) 

(64) 

It follows that, by keeping H(s) equal to (60), the accuracy index ~Lis no 
longer 1 if Kc changes, but the resulting deviation is much smaller than the 
one with H(s) = 1. 

Similar considerations can be made to obtain ~L = 2 with v = I , even if in 
this case H(s) cannot be a. constant, i.e., Td i- Tn in (55). 

More demanding constraints must be met when ~ - v > 1. For instance, to 
obtain~ = 2 with v = 0, the parameters of H(s) must be linked not only to 
Kc but also to the parameters characterizing the dynamics of the forward path. 
Among these, the controller parameters T1 and T2 can be realized accurately, 
whereas the process parameters /::, and T are usually uncertain. 

6. Improving the accuracy index by gain adjustment 

As previously seen, the value of the a .. s.a. index of a type-0 system can be 
brought to 1 by properly calibrating either the prefilter gain KF or the ga.in 
KH of the feedback element. However, if the forward path gain Kc = KcKp 
is, or becomes, different from its nominal value, index ~ decreases to 0 (even 
if the resulting system offset is small compared to that of the system without 
prefilter). 

This suggests resorting to an adaptive scheme for suitably modifying the 
prefilter gain. Such a solution, however, would imply process identification, 
which is generally not convenient, Ilchmann (1993). 

Here, we outline a different solution based on the knowledge of the instan
taneous values of a(t) a.nd c(t), whose ratio tends asymptotically to the actual 
forward path gain (assuming stability). 

To illustrate this approach, we refer to the case of H!d(s) = 1 and to a. unity 
feedback system with v = 0 preceded by a static block whose gain can contin
uously be adjusted. The same procedure can easily be applied to the feedback 
element KH of a nonunity feedback system without prefilter ; less simple is its 
extension to the situation in which ~L = 2 with v = 0. 
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By recalling that, if Kp = 1, in the considered case we have d(t) = c(t) -
r(t) = -a(t), so that: 

1 
(65) 

1+Ka' 

it is clear that the offset cannot be annihilated with Kc finite, whereas by setting: 

1 
Kp = 1 + Ka, (66) 

the overall transfer function W(s) equals l fors= 0, so that dR.,., = 0. 
Since the steady-state value Css := limt_,00 c(t) in the step response is given 

by: 

(67) 

where ass := limt_,00 a(t), it seems reasonable to replace the constant Ka in 
the expression of Kp by its "current approximation": 

c(t) 
k(t) := a(t). 

In this way the gain of the block preceding the feedback loop beeames: 

which, obviously, leads to a nonlinear relation. 

(68) 

(69) 

By taking into account that c(O) = 0 (and c(t) is small when t is small), it 
is necessary to modify the previous equation, e.g. by setting: 

Kp(t) = 1 + ~' c(t) < ka(t), 

a(t) 
KF(t) = 1 + c(t), c(t) > ka(t), 

with a suitable k. 
As an alternative, one may set: 

a(t) 
KF(t) = 1 + r(t), 

so that: 

r'(t) = KF(t)r(t) = r(t) + a(t), 

(70) 

(71) 

(72) 

(73) 

which gives rise to a linear relationship between the system variables: the sub
stitution of c(t) with r(t) is based on the consideration that c(oo) = r(oo) in 
the step response with the chosen system structure. In fact, the last relation 
entails an algebraic loop. If it is replaced by suitably fast dynamic loop , solution 
(72) becomes practically equivalent to integrating a(t); if the stability margin 
is large enough, the stability of the overall system may be guaranteed. 
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7. Conclusions 

The loop type v does not always account in a proper way for the steady-state 
performance of a feedback control system with respect to the canonical inputs. 

It has therefore been suggested to consider, besides the loop type v, the 
accuracy index J.L, which corresponds to the power oft in the analytic expression 
of the canonical input that produces a finite nonzero deviation between the 
actual response and the desired response. 

The conditions for obtaining a prescribed value of J.L 2: v, given the value of v, 
have been given, together with the expressions of the corresponding deviations 
for feedback systems with either a prefilter or a nonunity feedback-path transfer 
function. 

It has been shown that, even if the conditions for obtaining a. value of f.L 
greater than that of v depend on the parameters of the control led process (which 
are often not known precisely or are subject to variations), they are somehow 
robust in that the deviation of the actual response to t~" / p!, t 2: 0, from the 
desired response when such conditions are not exactly satisfied, is appreciably 
smaller than the deviation afforded by the system with {i = v. 

Finally, some considerations have been made concerning the possibility of 
obtaining the desired value of J.L by means of a non-identifier-based adaptive 
scheme. 
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A. Appendix 

From expressions (2), (41), (40) and (42) the transfer function lV (s) can be 
written a.s: 

with: 

00 

W ( S) = ..::i~::.::O:.___ 

L O'.iSi 
i=O 

!3i = 2:: gkfi-k, 
k=O 

i 

ai = oi,v + 2:: gkhi - k> 
k=O 

(74) 

(75) 

(76) 

where oi,v equals 1 if i = v and 0 otherwise. By equating the expressions (74) 
and (13) and employing the classical Pade procedure, the following relations are 
easily obtained for the coefficients of lower order: 

f3o 
ao = -, (77) 

o:o 
!31 f3oo:J 

a1 = - - - 2-, (78) 
o:o o:o 

a
2 

= /32 _ f3oo:2 + !31 o:1 + o:f/3o (79) 
o:o o:6 o:g ' 

!33 f3oa3 + f3J 0:2 + /32o:1 o:f f3J + 2o:l o:2/3o /3oo:f 
a3 = - - + - - (80) 

o:o o:6 o:g o6 . 
When all the relevant transfer functions are rational, the same procedure can 

be used to express coefficients ai in terms of the numerator and denominator 
polynomial coefficients of G ( s), F ( s) and H ( s). 
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