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Abstract: This paper is devoted to the regularization of quasi­
variational inequalities. The quasi-variational inequality is consid­
ered with multivalued operator. The operator involved is taken to be 
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1. Introduction 

Throughout the paper, unless the contrary is stated, B denotes a real reflexive 
Bana.ch space and B* be its topological dual; ( · , ·) the associated pairing and 
11 · 11 stands for the norm in B as well as in B*. Let D c B be non empty, closed 
and convex. Consider the multivalued operators F : D(F) <;;; B =::::+ P(B*) 1 

and K: D =::::+ P(D), where for each u E D the set K(u) is uonempty, closed and 
convex, the functional cp : B ----+ ~and f E B* be arbitrary. The symbols " ----+ " 

and "--'" are used to specify the strong and the weak convergence, respectively. 
1 By the notation P(A ), we represent the so-called power set of A, i.e. t he set of all of its 

subsets. 
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The present study is concerned with the following problem: find y E K(y) 
and F E :F(y) such that 

(F-f,x-y) 2: zp(y)-zp(x), \:fx E K(y). ( 1) 

The above problem is referred to as a quasi-variational inequality (for short, 
QVI) and any element y E n satisfying the above conditions is said to be a 
solution to QVI(l). We shall denote by S(QVI), the set of all solutions to 
QVI(l). 

Special Cases: 
(A): If the operator :F(·) is single-valued, zp == 0 identically, then QVI(l) 

recovers the following QVI: find yE K(y) such that 

(:Fy- f,x- y) 2: 0, \:fx E K(y). (2) 

The above problem was introduced by Bensoussa.n and Lions (! 973) in connec­
tion with a problem of impulse control. However, a more general treatment of 
the above problem was initiated by Mosco (1976). 

(B): If the operator :F( ·) is single-valued, zp == 0 identically and K(u) == 
0; \:fu E 0, the QVI(l) collapses to the problem: find yE 0 such that 

( :Fy- f , X- y J 2: 0, \:fx E 0. (3) 

The above problem is the celebrated Variational Inequality (for short, VI) in­
troduced by Stampacchia (1964). 

(C) : If\:fy En, K(y) is closed and convex cone with apex at the origin, zp == 0 
identically, then the QVI(l) collapses to the generalized Quasi-cornplementarity 
system: find y E 0 such that 

yEK(y), FE:F(y)nK*(y), (F,y) = 0, (4) 

where J(*(y) denotes the (positive) polar of K(y). If K(u) == n identically, then 
(4) recovers the usual (nonlinear) Complementarity System (see lsac, 1993). 
The equivalence between QVI(l) and (4) can be found in Giannessi (1997b), 
where a more general QVI has been studied. 

In recent years the theory of QVI and VI has emerged as an important 
branch of applied and industrial mathematics. This theory provides us with 
a convenient mathematical apparatus for uniformly studying a. wide range of 
problems arising in diverse fields as structural mechanics , elasticity, economics, 
optimization etc. (see for instance the books of Baiocchi and Capelo , 1984, and 
Kinderlehrer and Stampacchia, 1980). 

A great number of results for QVI(1) are avai lable, when either the domain 
n is bounded or the operator :F(-) satisfies certain coerciveness conditions (see, 
for example a survey article by Harker and Pang, 1990, and references cited 
in Giannessi, 1996, 1997a, b). However, many engineering, economic and sto­
chastic models lead to QVI (in particular to VI) with non-coercive operators 
defined on unbounded sets. 
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We briefly touch upon a problem of such nature: LetS ~ ~N be a non empty, 
bounded and open with smooth boundary r. 
Consider the problem: find u(x), with x E S , such that 

N 

A(u) = - 2::: Di A(x, u, 'Vu) + Ao(x, u, 'Vu) 
i=l 

The boundary conditions for (5) a.re a.s follows: 

u > T(u) 

Xa (u) > 0 

Xa (u)(u - T(u)) 0 

on r 
on r 
on r 

f, in 

where T(-) is the obstacle on the boundary r and is defined as : 

T(u(x)) = h(x)- [xau(z)f..L(z)dfz· 

(5) 

(6) 

(7) 

(8) 

Here h( ·) and f..L( ·) are given on r a.nd Xa is the conorma.l derivative related to 
A. 

The above problem describes the temperature distribution (stationary) in­
side a. material with thermally semipermeable boundary. This is for the case 
when the exterior temperature varies proportionally to certain average of the 
heat flux crossing the boundary. For a concrete description of the above problem 
the reader is referred to Garroni and Gossez ( 1983). 

In the present situation it is of interest to consider the case when (5) has no 
lower order terms, that is, (5) is in the form: 

N 

A(u) = - 2::: D i A(x, u, Y'1L) = f, in ~· 
i= l 

Unfortunately, in this case, for certain source terms, a. solution may fail to exist ; 
this is due to the lack of coerciveness. 

For VI's there have been many efforts to handle the lack of the coerciveness 
condition by a. suitable regularizat ion of the non-coercive problem. The centra.] 
idea. of these methods consists in regulari zing the non-coercive probl em by sup­
plying a. 'nice' operator which, along with the non-coercive operator, provides 
the desired properties. The present contribution is a.n extension of these ideas 
for the treatment of QVI with non-coercive operators. 

The rest of the paper is organized a.s follows: In t he next section , we recall 
some results a.nd concepts to be used throughout the paper. Section 3 presents 
certain auxiliary results and existence theorems. Some of the resul ts of this 
section are applicable for the regularization of VI with more general class of 
operators. Section 4 focuses on the regul arization of QVI. 
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2. Preliminaries 

In order to make this paper self contained , we briefly set forth below some 
definitions and results which we use here. For more details, the reader is referred 
to Kluge (1979) and Zeidler (1990). 

Let Z denote a real reflexive Banach space, Z* be the topological dual of Z , 
( ·, · ) z the associated pairing, and 11 · 11 z be the norm in Z as we] l as in Z* . 

. For a multiva.lued opera.tor2 A from Z to Z*, the set V(A) := {·n E Z : Au =/= 

0} denotes the (effective) domain of A. We write it as A: V(A) =l P(Z) . We 
denote by R(A) := UuED(A)Au and Q(A) := { [ u, v] E Z x Z *; u E V( A), v E 

Au} the range and the graph of the operator A, respectively. 

DEFINITION 2.1 Let A: V(A) <;;; Z =l P(Z*) and [x,x*],[z,z*] E Q(A) be 
arbitrary. The operator A is said to be: 
( i) monotone, iff 

(x* -z*,x-z)z ~ 0; 

( ii) strictly monotone, iff 

(x*-z* ,x-z)z > 0, onlyif x=f=z, 

( iii) strongly monotone, iff there exists a. constant c > 0 such that 

(x* -z*,x-z)z ~ c ll x-z ll ~; 

( iv) maximal monotone, iff the graph of A is not contained in the graph of any 
other monotone operator with the same domain . 

DEFINITION 2.2 An operator A : V(A) <;;; Z =l P(Z*) is sa.·id to be u.pper­
semicontinu.ous (for short, u.s. c.) at x E V(A), if! for any open neighbourhood 
V of A(x) there is a.n open neighbourhood U of x such that Au C V for each 
u E U. The operator A is said to be u.s.c., iff 'it is v .. s.c. a.t every point of its 
domain. 

The following definition of pseudo-monotone operator is due to Browder and 
Hess (1974). It generalizes the concept of a single-valued pseudo-monotone 
mapping, which was initially given by H. Brezis (see Zeidler, 1 990). 

DEFINITION 2.3 An operator A : V(A) <;;; Z =l P(Z*) is said to be pseudo­
monotone, iff the following three conditions are fu~filled: 

(PM1) : For each x E Z , the set Ax be nonempty, bounded, closed and 
convex. 

(P M2) : If { [ Xn, x~ ]};:o=l C Q(A) be such that 

Xn ---' x a.s n ___, oo and lim sup (x~,Xn- x)z < 0; 
n -+ oo 

2 Henceforth the term operator means a rnultivalued operator. 
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then for each y E Z there exists x* (y) E A( x) with the property that 

lim inf (x~,xn-Y)z 2 (x*(y),x-y)z. 
n->oo 

(P M3) : The restriction of A to any finite dimensional subspace M of Z is 
weakly u.s. c. as an operator from M to Z*. 

REMARK 2.1 It is evident from the condition (PM1) above that the domain 
of the operator A must be the whole space. 3 It is well known that a maximal 
monotone operator defined on the whole space is pseudo-monotone. 

Let us consider the following condition: 
(PM4) : For each xo E Z and each bounded subset M1 of Z, there exists a 

constant m(M 1 , x0 ) such that 

(x*,x- xo)z 2 m(MJ,xo) , 'v'[x*,x] E Q(A), x E M1. 

It has been shown by Kenmochi (1 974) that the conditions (P Ml) (P M2) and 
(PM4) imply (PM3). It is not difficult to verify that the condition (PM4) is 
satisfied by all monotone operators defined on the whole space. 

DEFINITION 2.4 Let cp : Z ___.. ~. The functional cp is said to be: 
( i) proper, iff it takes nowhere the value -oo and is not identically eq·ual to +oo; 
( ii) sequentially lower-semicontinuous (for short, l. s. c.), iff 

lim Yn ___.. y ===> lim inf c/J(Yn) 2 cp(y); 
n~oo n---+oo 

( iii) convex, iff 

cp(tx+(l-t)z):Stcp(x)+(l-t)cp(z); 'v'x,zED(cp), tE [0,1], 

(iv) strictly convex, iff cp is convex and 

2cp[(x + z)/2] < cp(x) + cp(z). 

We conclude this section by recalling a fixed point theorem. For the proof the 
reader is referred to Kluge (1979). 

THEOREM 2.1 Let C C Z be convex and weakly closed, S : C =l P(C) be such 
that 'v'u E C, S(u) =/= 0 closed and convex, and the graph Q(S ) be weakly closed. 
Assume that either the set C or S (C) be bounded. Then S has at least one fixed 
point in C. 

3 Jt is possible to define the concept of pseudo-monotone operator on proper subsets; see 
for example Browder and Hess (1974) where pseudo-monotone opemtors are a lso defined on 
convex sets. 
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3. Auxiliary results and existence theorems 

Consider the following VI: find yE C and F E :F(y) such that 

(F-f,x-y} 2:: <p(y)-<p(x), VxEC. 

Let S(VI) be the set of all solutions to VI(9). 
We begin with the following: 

(9) 

PROPOSITION 3.1 Let CC B be nonempty, closed and convex .. :F: D(:F) ~ B =t 
P(B*) be maximal monotone and satisfy 4 intD(:F) ::2 C, <p : B --+ ~be proper, 
convex and l.s. c .. Then, y E C is a solution to VI (9), iffy is a sohltion to the 
following system: find y E C wch that 

(F*-f,x-y) 2: <p(y)-<p(.T); VxEC, VF*E:F( x ). (1 0) 

Proof. "Only if". Let y E C be a solution to VI (9). By the definition of 
monotonicity of the operator :F, Vx, \fy and \IF* E :F(x), \IF E :F(y) , we have: 

( F* - F, X - y ) 2: 0; 

and then: 

( F*, y - X ) < ( F, y - X ) 

< (f,y-x ) + <p(x) -<p(y). 

The above inequality can be written as 

(F*-j,x - y) 2: <p(y)-<p(x). 

That is , y E C is a solution to VI(lO). 
"If ". Let y E C be a solution to VI ( 1 0). Consider an ar l>i Lrary z E C and 

a sequence { tn}~=l 1 0 with tn E ]0, 1], n EN. The convexity of C implies that 
Zn := (1 - t n)Y + tnz E C. Let Fn E :F(zn) · At x := Zn, the inequality (1 0) 
becomes: 

By exploiting the convexity of <p and dividing both sides by t,.,, the above in­
equality implies: 

By the local boundedness of a monotone operator at every interior point of 
its domain, we infer that the sequence {Fn }~=l is bounded and hence by the 
reflexivity of the space B (and hence also of the dual B*) it is weakly compact 
(as n ___. oo). Therefore a.s tn 1 0, Zn ___. y and Fn ___, F(z) . By the maximal 
monotonicity, we deduce F(z) E :F(y). 

4 Here the notation int E, represents the interior of the set E. 
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Therefore, for each z E C, there exists F(z) E F(y) such that 

(F(z)-f,z-y);::: tp(y)-tp(z). 
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This, in view of Proposition 3.3 below, implies that there exists FE F(y) such 
that 

(F-f,z-y);::: tp(y)-tp(z), YzEC , 

which shows that y is a. solution to (9). This completes the proof. • 
REMARK 3.1 The above result is an extension of the class·ic Minty Lemma (see 
Kinderlehrer and Sta.mpa.cchia., 1980) to the mv.ltivalued VI. The formv.lation 
(10) is known as Minty Variational Inequality (faT short, MVI) for VI (9) and 
plays a very prominent role in issues such as regulaTization and penalization. 

REMARK 3.2 The 'Only if' part requires neither the convexity of the functional 
nor the condition that F be maximal and satisfy int D(F) ;;2 S1; the 'If' paTt 
does not require the monotonicity of F. The assumpt·ion that tp is l.s. c. is to 
make Proposition 3.3 applicable. For the same purpose, we have also imposed the 
maximal monotonicity ofF to deduce that F(y) is nonempty, closed, convex and 
from the condition that intD( F) ;;2 S1 we have deTived the ( local) bov:ndedness 
ofF(·). 

PROPOSITION 3.2 Assume that the hypotheses of Proposition 3.1 hold. Then, 
the set of all solutions to VI(9) is closed and convex. 

Proof. Let us assume that S(VI) /0, otherwise the statement is trivially true. 
For z E C, define a. functional 

Hz(·) = tp(·)- tp(z)- (F*- f,z - · ) 

where F* E F(z). 
From the fact that tp is convex and l.s .c., we infer that the functional Hz is 

also convex and lower-semicontinuous. 
Hence, the set {x : Hz(x) ::; 0} is closed and convex. However , in view of 

the preceeding result 

S(VI) = nzEc{x: Hz(x)::; 0}. 

Clearly S(VI) is closed and convex. This completes the proof. • 
PROPOSITION 3.3 Let C <;;; B be nonempty, closed and conve.T, C* <;;; B* be 
nonempty, closed, convex and bounded, tp : B ----> !R be proper, convex and l. s. c., 
and y E C be arbitrary. Assume that joT each x E C there exists 1;* (x) E C* S1lch 
that 

( x*(x), x- y) ;::: tp(y) - tp(x). (11) 

Then, there exists y* E C* such that 

(y*,x-y);::: tp(y)-tp(x) ; YxEC. (12) 
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Proof. Let the conclusion of Proposition 3.3 be false . Then, for each x* E C*, 
there exists at least one x E C such that 

(x*,x-y) < ~.p(y) -<p(x). (1 3) 

Let x E C be arbitrary. We define: 

Sx:= {x*EC*: (x*,x-y) < ~.p(y)-cp(x)}. 

We infer that for each x E C, the corresponding set Sx is open (in the weak 
topology of the space B*).5 Since the space B* is reflexive, the set C* is weakly 
compact and hence we can always extract a finite set {x1,x2, . . . ,xn} ~ C, so 
that the corresponding sets {51 , 5 2 , ... , Sn} constitutes a finite covering of C*. 

Let A1 , A2 .... , An be a partition of unity such that each A.;, i = I , 2, . .. , n , 
is a continuous function on C* ( again in the weak topology) and satisfies 0 < 
.-\ :<; 1, l::~=l Ai(x*) = 1, V x* E C*. 

We define a mapping J : C* ----> C such that 

n 

J(x*) = L Ai(x*)(xi)· 
i=l 

From the fact that J(x*) is a convex combination of the elements Xi with 
(weakly) continuous coefficients, we deduce that J(-) is also (weakly) continu­
ous. 

We have 
n 

(x*,J(x*)-y) ( x* , L Ai(x*) x.;- y) 
i = l 

n 

i=l 
n 

< ~.p(y)- L ,\(:r*) ~.p(xi)· (14) 
·i= l 

By exploiting the convexity of the functional cp(-), we deduce that 

n 

~.p(J(x*)) :<; L Ai(x*) ~.p(xi)· 
i=] 

This, when combined with (14), yields 

(x*,J(x*) - y) < ~.p(y)-~.p(J(x*)). (15) 

To finish the proof, we now establish the impossibility of (15). 

5If <p(x) = oo, we take the corresponding set to be empty. 
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We define two mappings, namely: <P : C ::::::; P(C*) and \1! : C* ::::::; P(C*), 
which are related by the following relation: 

w(x*) := <P(..J(x*)), (16) 

where the mapping (!) assigns to each x E C, the set 

<P(x) := {x* E C*: (x*,x- y) 2 <p(y) - <p(x) }. 

Clearly, V x E C, the set (!) ( x) is non empty, closed and weakly cornpaet (clue to 
the boundedness of the set C*). The mapping <P is u.s.c., when C* is supplied 
by the weak topology, see Browder (1968). 

In view of (16), Vx* E C* , the set l!i(x*) is nonempty, closed, convex and 
weakly compact and the mapping W is u.s.c. (in the weak topology of the set C*). 
Consequently, by the Tychonov Theorem, see Theorem 4 in Browcler (1968), \V 
has a fixed point, that is, there exists x* E \If ( :r*). 

This confirms the existence of x* E C*, such that 

( x*, ..J(x*)- y) 2 <p(y)- <p(..J(x*)), 

which contradicts (15) (since the relation (15) is , indeed, valid V x:* E C*). This 
completes the proof. • 

We give an existence theorem for (9). 

THEOREM 3.1 Let :F: B::::::! B* satisfies (PM1) , (PM2) and (PM4) of Defi­
nition 2.3, C <:;;;; B be nonempty, closed and convex and <p : B ----> ~ be proper, 
convex and l. s.c .. Assume that one of the .following conditions hold;;: 

(a) The set C is bounded. 
(b) There exists x 0 E C such that <p(x0 ) < oo and 

. f ( F, x- xo) + <p(x) 
lll ---t 00 

FEF(x) llxll as llx ll ----> oo, Vx E C. 

Then, for a given f E B*, there exist yE C and FE :F(y) s1Lch that 

(F-f,x-y) 2 <p(y)-<p(x); VxEC . 

Proof. The proof is given in Theorem 4 .1 and Proposition 4.1 in Kenmoehi (1 97 4). 

We turn to the solvability of QVI (1). Let V En be arbitrary. 
Consider the following Parametric Variational Inequality (for short, PVI)6 : 

find yE K(v) and FE :F(y) such that 

(F-f,x-y) 2 <p(y)-<p(x), Vx E K(v). (17) 

Define a mapping (multivalued, in general) r : S1 c B ::::::; P(S1) sueh that for 
each V En, r(v) is the set of all solut ions to the PVI with pa.rameter v. 

We have the following: 
6 Here v is the parameter. 
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THEOREM 3.2 Let n c B be nonempty, convex and closed, r : n =t P(n) be 
such that VuE n, f(u) is nonempty, closed, convex and the graph Q(r) is weakly 
closed. Assume that either the set n is bounded or the set r(r2) is bounded. Then 
the set S ( QVI) is nonempty. 

Proof. Follows from Theorem 2.1 and the obvious observation that 

yE S(QVI) yE r(y). (18) 

REMARK 3.3 The above result is interesting in the sense that ·it does not impose 
conditions on the data (:F, f, cp). However, Propositions 3.:1 -3.2 and Theorem 3.1 
give conditions under which r( u) is nonempty, closed and conve.T. 

REMARK 3.4 In view of Theorem 3.1 it ·is easy to check that the coerciveness 
condition (b) assures the existence of a ball BR(O) with radius R > 0, sttch that 
no point outside the ball is a candidate for solut·ion. Th·is leads to the equiva­
lence of the condition that f( u) is bounded and the condition that a coerciveness 
condition analogous to (b) of Theorem 3.1 holds for all x En. 
In the following result we discuss the wea.k-closedness of the graph Q(r) . 

PROPOSITION 3.4 Let for the operator :F : B =t B* the condition (P M2) of 
Definition 2.3 be valid, the functional cp : B -----> ~ be pro peT, convex and l. s. c .. 
Assume that the following three conditions hold: 

( i) For each X E n the set :F (X) is bounded. 
(ii) For {vn};::='=l c n such that Vn ----" V as n _____.. oo, the fo llowing Telation 
holds: 7 

w -lim K(vn) t:;; K(v) t:;; s-lim K(vn)· (19) 

(iii) For a sequence {zn }k=l --> z as n --> oo, in the sense of (19) , the 
following relation holds: 

lim sup cp(zn) ::; cp(z). (20) 
n->oo 

Then, the graph Q (f) is weakly closed. 

Proof. Let [yn, vn] E Q(r) be such that Yn ----" y and Vn --' v as n --> oo . We 
claim that [y, v] E Q(f). 

Indeed, by the definition , Yn E K( vn) and there exists Fn E :F(yn) such that 

(21) 

In view of the hypothesis (19), and the condi t ion that Yn E K(vrJ, we infer, 
firstly, that y E K(v) and, secondly, that for each w E K(v) t here exists Wn E 
K( vn) such that Wn -----> w as n --> oo . 

7 For a sequence of sets { ICn }~=l' we define: 
w -limiCn := {y: Yk -" y , Yk E JCk, where {.ICk} k'= l is a subsequence of {.ICn}~= l }; 

s - lim ICn := {y : Yn ---> y, where Yn E ICn} . 
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Let Xn E K ( vn) be such that Xn --+ y as n --+ oo. 
Arranging z := Xn in (21) , we obtain 

which implies 

n-+oo n-+oo 
lim sup [ 'PXn - 'PYn ] 

n-+oo 
< lim sup [ rpxn - 'PY ] + 

n-+oo 

lim sup [ 'PY - 'PYn] 
n-+oo 

From the hypothesis (20), we have 

lim sup [ 'PXn - 'PY] ::; 0, 
n-+oo 

and from the condition that r.p ( ·) is l. s.c., we get 

lim sup [ 'PY - 'PYn] ::; 0. 
n-+oo 

Combining the above two estimates with (22), we obtain 

limsup(Fn , Yn- Xn)::; 0, 
n-+ oo 

which further leads to 

limsup( Fn, Yn - y) < lim sup ( Fn, Xn- y) 
n---+oo n ---+ oo 

< 0. 
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(22) 

From the condition (PM2) of Definition 2.3, we get to the conclusion that for 
an arbitrary x E K(v) s;;; B, there exists F(x) E F(y) such that: 

liminf ( Fn,Yn-x ) ?:': (F(x), y-x ). 
n-+oo 

Since ( f , Yn - x) --+ ( f, y - x) as n --+ oo, we have 

liminf(Fn -f, yn -x) ?:': (F(x) - f ,y - x). 
n-+oo 

(23) 

For x E K(v), it is always possible to find Xn E K(vn) such that Xn --+ x a.s 
n --+ oo. 

Therefore, we have 

lim inf ( Fn - f, Yn - X) < 
n-+oo 

lim sup ( Fn - f, Yn - X) 
n-+oo 

< lim sup ( Fn - f, Yn - Xn) + 
n-+oo 
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lim sup ( Fn - f , Xn -X) 

< limsup [ cp(xn) - cp( yn)] 

< limsup[ cp(xn)- cp(x)] + 

limsup [cp(x)- cp(yn] 

< cp(x) - cp( y) . 

By substituting the above estimate into (23) , we reach the conclusion that for 
an arbitrary x E JC(v), there exists F(x) E F(y) such that: 

( F(x) - f, x- y ) ~ cp (y) - cp(x). 

Since the above estimate is derived for an arbitrary x E JC(v), we conclude that 
it is, indeed, valid '1/x E JC(v). 

An application of Proposition 3.3 yields that there exists F E F(y) such 
that 

(F- f,x - y ) ~ cp(y)- cp(x); 'llxEJC(v) . 

This implies that [y, v] E Q(r). The proof is complete. • 
4. Regularization 

In the present section, we assume that neither the set D C B is bounded nor 
the operator F satisfies a.ny sort of coerciveness condition. In this situation , as 
it is evident from the discussion made in the previous section, the QVI(I) may 
fail to have a. solution. Also the existence theorems, available in the literature, 
become inefficient in this situation. 

In order to handle the present situation, we intend to employ the so-called 
Browder-Tikhonov regularization method. 

We assume that instead of the exact data. (F, f, cp) only the noisy data 
(Fcxn, ff3n,tp'YJ are available. Here {an }~=l• {f3n }~= l and bn}~= l are se­
quences of positive rea.ls . 

Let { En}~=l, En > 0, n E N be a sequence of positive rea.ls which is 
(strictly) decreasing and converging to zero. 

The relationship between the exact data. and the noisy dat a. is given through 
the following assumptions: 

Assumption 4.1. There exists a continuous function T : ~+ --> ~+ such 
that 

as• (F(x), Fa.,(x)) :::; anT(IIxll), '1/x E D(F) U D(Fa.,.), 

where a 8.(Q1, Q2 ) is the Hausdorff distance between the sets Q 1 and Q2. 
Assumption 4.2. For f f3, E /3*, we have 

II J- ff3,. 11 :::; f3n · 
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Assumption 4.3. There exists a continuous function 11, : ~+ -----" ~+ such that 

llrp(x)- rp,,(x)ll ~ /n/1,( 11 xll ), 1:/x E D(rp) U D(rp1 ,. ). 

Assumption 4.4. The mappings T , 11, : ~+ -----" ~+ satisfy the following 
estimates: 

limsup T(t) < oo, 
t~oo t 

l
. /),(t) w 0 
lmSUp- < 00 , v t 2': . 
t~oo t 

Assumption 4.5. For n -----" oo 

Consider the following Regularized Quasi-Variational Inequality (RQVI for 
short): find Y1r, E JC(y7rJ and F1r, E :Fcx, (y1r,) such that 

( F7r, +En R(y7rJ - ff3, , X - y1fJ 2': rp1 ,. (y7rJ - rp1 , (x), 1:/x E JC(yrr , ).(24) 

In the above RQVI, the operator R : B -----" B* is the regularizing operator, En 
the regularization parameter and Yrr ,. is the regularized solution to the QVI(l). 
Here the symbol 7rn := (an, f3n, l 'n, En) shows the influence of the error parame­
ters O:n, f3n, 'Yn and the regularization parameter En. 

We denote by SE, (RQVI) the set of all solutions to the RQVI (24) with 
regularization parameter En. 

In the present study, we use the following potential operator as the regular­
ization operator: 

R(x) = V' 11 x!l m, X# 0, R(O) = 0, m> 1. 

Since 

d + t h llm = m 11 x thl lm- l!!:._ ll x + th ll, -llx + dt dt 

it immediately follows that 

R(x) =V' ll x llm = mllxllm- l'V llx ll . 

We claim that the operator R is monotone. Indeed , using the equality 

( \7 11 X 11 ' X) = 11 X 11 ' 
we obtain 

(Rx- Rz, x- z) (Rx, x) + (Rz, z)- (Rx, z) + (Rz, x) 

> m[ ll xllm + llzllmJ- IIRx ll llzii- IIRzll ll xl l 
m[ll xllm + llzllm -llxllm- l llzll-ll zl lm-ll lxll] 

(25) 

(26) 

m( llx ll-llzll ) (ll xll m- l - llz llm- l) (27) 
> 0. 
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Thus, the operator R : B -----+ B* is monotone for rn > J . 
In view of the relations (25) and (26), it is is also evident that R is coercive 

as well. For other interesting properties of this operator the reader is reffered 
to Vainberg (1973). 

In light of the inequality (27), we get the following relations 

(Rx- Rz, x- z) > 
(Rx- Rz, x- z) > 

(m- 1)llxllm-2 (llxll- llz ll) 2
; 

(m- 1)llzllm-2 (llxll- llzll) 2
; 

1 <m~ 2. (28) 

2 ~m. (29) 

In order to get the above inequalities, we have used the following standard 
relationships: 

An - Bn > n Bn-l ( A - B ) ; 

An-Bn > nAn-1 (A -B); 

n ;:::: ] , 

0 < n ~ 

A,B;:::: 0. 

A,B;:::: 0. 

It is well known (see Zeidler, 1990) that every reflexive Ba.nach space (and 
its topological dual space) can be renormed so that in the new norms the space 
and the dual become locally uniformly convex and that the new norms are 
differentiable in the sense of Frechet. Therefore, without any loss to generality, 
we shall assume henceforth that the spaces B and B* are locally uniformly 
convex and the norm 11 · 11 is Frechet differentiable. Therefore, the regularizing 
operator R is well defined. 

THEOREM 4.1 Let Fa, : B =::::+ P(B*) be maximal monotone, D C B be non­
empty, convex and closed, JC : D =::::+ P(D) be such that Vu E D, JC(u) -=/= 0, 
closed and convex, rp"f,., : B-----+ R be proper, convex and l.s.c .. Assv.rne that the 
following three conditions hold: 
(i) For {vn}~=l CD such that Vn---" v as n-----+ oo, the following relation holds: 

W -limJC(vn) <;;; JC(v) <;;; s - limJC(vn) · (30) 

( ii) For a sequence { Zn} ~=l -----+ z as n -----+ oo, in the sense of (30), the following 
relation holds: 

lim sup rp'Yjzn) ~ rp"f, (z). (31) 
n-->oo 

(iii) There exists Xo E nvEolC(v) n intD(rp"f,). 
Then, for n E N and given ff3, E B* the RQVI (24) has a nonempty solution 

set, that is SE,. (RQVI) -=/= 0. 

Proof. In view of Theorem 3.2, it will be enough to show that Vu E D, 1 E, ( u) -=/= 

0 and r En (D) is bounded. 
For this, we show that there exists xo E D such that rp"f,. (xo) < oo and 

f (F+EnR(x),x-xo)+rp"f,.(x) llll w ,. 
in llxll -----+ oo as x -----+ oo, v x E o 6. 

FE:Fa,.,(x) 
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Since cp1 ,.(·) is proper, convex and J.s.c. functional, for each z E intV(cp7 J , the 
subdifferential of cp1 ., at z , denoted by 8 cp1 , (z) 7'= 0. 

Therefore, with z := x 0 as in the hypothesis, we obtain 

cp1 ,(x);:::: cp1 .,(xo) + (x~,x-xo), Vx~Eocp7,.(xo), VxEn~B 

and then: 

'P1 ,(x);:::: 'P,.,(xo) - llx~ llll x-xoll· 

From the monotonicity of FaJ), V FE Fa.,(x) , V FE Fo:,(xo) , we have 

( F, x - xo) 2:: - IIFIIII x - xo 11· 
For the regularizing operator R, we have 

(R(x),x-xo) (R(x),x)- (R(x),xo) 

2:: m [llx llm - llx llm- 1 llxoll]. 
Combining (32), (33) and (34), yields 

(32) 

(33) 

(34) 

(F + En R(x), X- Xo) + 'P,.,. (x) > 71lEn{ llxllm-l- ll :rllm- 2 llxoll}llxll 
+ { 'P1 ., (xo) llxll- 1

} llxl l 
+{ ll x~ll - IIFII } 11.T - xo 11. 

Since we are interested in the behaviour of the above inequality as ll xll ____. oo, 
replacement of the term llx- xo 11 by llx 11 will create no trouble, and hence, it 
is enough to study the behaviour of the estimate 

(F +En R(x),x- Xo) + 'P,., (x) 2:: rmn{llxllm- l -llxllm- 2 ll:roll} llxll 
+ { tp-,,. (xo) llx ll -.1 } ll xll 
+{ -llx~ ll - IIFII} II.T II · 

From the fact the above estimate is valid V FE F(:r) , we deduce that 

. f (F+EnR(x),x-xo)+cp1 ,(x) 
111 . ____. oo as 

FEFan(x) llxll llxll ____. oo, V X En. 

The proof is complete. • 
THEOREM 4.2 Along with the hypotheses of Theorem 4.1, assume that F : 
B =:::l P(B*) be maximal monotone, 'P be propeT, convex and l.s.c., Assv.mp­
tions 4.1-4.5 hold and S(QVI) 7'= 0. Then. the sequence {y"" } ~= l· whae 
Y-rr, E SEn (RQVI) is chosen arbitrarily, is v.n:ijoTmly bounded. 

Proof. The validity of the hypotheses of Theorem 4.1 impli es that V n E N, 
SE,. (RQVI) i= 0. Let Yrr,. E SE .. (RQVI), that is 
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where r€, : n =t P(D) is such that it assigns to each V E n the set of all 
solutions to the following Regularized Parametric Variational lnef!uality (for 
short, RPVI): find Y1r, E K.(v) and F1r,. E F(y"'J such that 

( F1r, +En R(y"'J - f/3 .. , x- Y1rJ 2': cp"f., (y'Tr,J - cp,.Jr), lch: E K(v ).(35) 

Since the mapping R , due to the strict convexity of the space B, is strictly 
monotone, we infer from Proposition 2.3 of Gia.nnessi (! 996) that V v E D, the 
set rfJv) is single-valued. 

Since all fixed points of the single-valued mapping r f,. (-) belong to the set 
{rf"(v) : v E D}, it will be enough to show that: for an arbitrary v E D, the 
image f €,, (V) is uniformly bounded. 

From the assumption that S(QVI) =/= 0, it is clear that for every v E D, f(v) 
is nonempty, i.e. there exist at least one y E K.(v) and F E F(y) such that 

( F- j, x- y) 2': cp(y) - cp(x); \:Jx E K.(·v) . (36) 

Let us choose the same v E D in (35) and (36). 
Arranging x := y in (35) and x := y"'" in (36) and summing-up the resulting 

inequalities side-by-side, we obtain 

(F1r, + EnR(y1r,)-ff3,.,y-y1rJ + (F-j,y1r,.-y ) 

> 'P"! .. (y"'") - 'h .. (y ) + 'P(Y) - cp(y1r,.), 

where F1r, E Fa,(Y'TrJ and F E F(y). 
The above inequality can be expressed a.s 

an T(llv ll) IIY1r,.- Yll + 'Yn [~(IIY,-., 11) + ~(llvll)] + f3niiYrr., - :ull 
- ( F,., - F, Y1r,, - Y) + En ( Ryrr.,, Y) > En ( Ryrr.,, Yrr .. ) , 

where FE Fa,(y) . 
Assumption 4.4 assures the existence of constants L i and Jvfi , ·i, = ·1, 2, such 

that 

\:Jt 2': 0. 

Therefore, using these estimates in the previous inequality, we obtain 

f3n IIY,-, - Yll + an [ LI!IYII + M1] + 
En En 

'Yn [LziiY,.,. 11 + L2IIYII + 2Mz] 
En 

+ IIY,-, llm llvll > IIY1r,. llm+l 

The above inequality, in view of Assumption 4.5 , confirms the ex istence of a. 
constant K, such that 

11 rfn(v) 11 = II Y,-,. 11:::; K. 

This completes the proof. • 
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THEOREM 4.3 Assume that the hypotheses of Theorem 4.2 hold. Then. every 

weak limit point of a subsequence 8 {Y6 , }~=l of {y7r ,}~=l ·is a. solntion to 
QVI(l). Furthermore, if QVI(l) is 1miq1t.ely solvable, then the 'Whole seq·u.ence 
{y7r,J~=l converges to the soh&tion. 

Proof. Since the sequence {y7rJ~=l is uniformly bounded, it is wea.kl y compact 
by the reflexivity of the space B. Therefore, it is always possible to extract a 
subsequence {Y6,}~= l from {y7r,J~=l such that Y6 ... ----"'y E B as n --t oo. It 
is evident by the definition of the sequence {Y6 ,J~=l that 'V n E N, Y6, E D. 
Therefore, in view of the weak closedness of the set D we conclude that y E D. 

We proceed to show that yE S(QVI) . 
As Y6,. E S,, (RQVI), it satisfies the following two conditions, namely: 

Y6n E K(y6J (37) 

and: for P6,. E Fa, (y6J we have 

(F6n + tnRY6,- f {3,,:r - y6.J 2': <p;y, (y6J -<p"f, (x), 'V."£ E /C(:IJ6J .(38) 

In light of the hypothesis (30) , the above relation (37) implies 

y E /C(y). (39) 

Repeating the use of the hypothesis (30), we get the existence of a sequence 
{zn }~=l such that Zn --t y and Zn E /C(y6J· 

Arranging x := Zn in (38) , we obtain 

(F6,. +tnRY6,- f{3,, Zn -M, ) 2': 'P;y,(:1J6J- 'P"f,.(zn), 

which implies 

limsup(F6, + tnRY6, - ff3,,Y6 ., - zn) < limsup [<p;y, (z,)- <p;y,(y6J] 
n-oo n-oo 

< lim sup[<p(zn)- <p(MJ] + 

lim sup ,:Y.,[fi'.(I IY6, 11)] 

lim sup [<p(zn)- <p(y6J] 
'n----l'OO 

< lim sup [<p(zn)- <p (y)] + 
n-+oo 

lim sup[<p(y)- <p(y6 J] (40) 
'n----l'OQ 

Following the same arguments as in Proposition 3.4, we deduce that 

lim sup ( F6, + tnRY6, - !13,, Y6 ... - Zn) :S 0. 
n-oo 

6Here, if necessary, we replace { CY.n};;:"=1, {.6n };;:"= 1, h n };;:"=1, { En} ;;:"=1 by the cor re~ponding 
subsequences {an};;:"=l' {.8n};;:"=1, {in};;:"=1, {E-;-, };;:"=1 , respectively. 
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This further implies 

limsup(F.6., , Y.6.,- Zn ) < limsup[E"n ii R(:Y.6..JI I + JJn]II Y.6. , -.::n il+ 
n---+oo n -;.oo 

lim sup[an T(IIY.6., 11) IIY.6., - Zn 11 + 

(f, Y.6., - Zn )] 

< 0, 

since all the terms {En, et11 iJn, "fn , ( j , Y.6. .. - y) , llzn- Yll } ------> 0 Cl S n ------> oo 
and the remaining terms are bounded. 

Therefore, we have 

limsup(F.6.n,Y.6., -y ) < limsup ( F.6. , ,Zn-Y ) 
n----+00 n-;.oo 

< 0. 

As the operator F is maximal monotone a.nd V(F) :=::: B, it is pseudo-monotone 
as well. 

Therefore, from the condition (PM2) of Definition 2.3 , we conclude that for 
an arbitrary x E JC(y) S: B, there exists F(x) E :F(y) such that: 

liminf(F.6.,.,Y.6. ,.. -x ) ;:::: ( F(x),y- :r ) . 
n-->oo 

From the fact that ( f, Y.6. , - x ) ------> ( f, y- x ), we eau express the above 
inequality in the form 

liminf(F.6., - f,Y.6., - x) 2': (F(x) - f,y-x). (41) 
n --> oo 

Since x E JC(y) , it is always possible to find x 11 E JC(y.6. J such that :rn ------> x as 
n ------> oo . 

In order to get an estimat e for the term on tbe left hand side in (4.1), we 
consider 

liminf (F.6., - f, Y.6.,- x) < limsup ( F.6.,- f, Yt::., - :r) 
n-->oo Tl------+ 00 

< lim sup ( 1<~, - f, Yt::. , - :t:n ) + 
n ---+oo 

limsup ( FD.,- f,xn -:r) + 
n-> oo 

< lim sup Ctn T( 11 Y.6., 11 )11 Y.6., - Xn 11 + 
n----+ oo 

lim sup En 11 R (Y.6. ,) 11 11 Yt::., - :1:., 11 + 
n -+ oo 

n- oo 

lim sup JJn 11 YD. , - Xn 11 
n-----+oo 



Quasi variational inequalities 1 09 

< lim sup [ cp(xn) - 'P(MJ] + 
n__,oo 

::Yn [ t;, (! lxnll) + K, ( ii YL\, )] 
< lim sup[cp(xn) - 'P(YL:.,)] 

< limsup [ cp(xn) - cp(x)] + 

lim sup [ cp(x) - cp(yL:.J] 
n_,.oo 

< cp(x) - cp(y). 

On substituting the above estimate to (41) , we reach t he conclusion that, for 
an arbitrary x E K(y), there exists F(x) E F(y) such that: 

( F(x ) - f, x- y) 2: cp(y) - cp(x). 

Since the above estimate is derived for an arbi trary x E K(y) , we conclude that 
it is, indeed, valid Vx E K(y). 

An application of Proposition 3.3, yields that there exists F E F(y) such 
that: 

(F- f ,x- y ) 2: cp(y)- cp(x), VxE K(y). 

This together with (39) implies that y E S(QVI). Furthermore if QVI (J) is 
uniquely solvable, then clearly y is the unique limit of any weakl y convergent 
subsequence of {y7T,} ~= l· Therefore we have the (weak) convergence of the 
whole sequence {y7T,} ~=l to y. The proof is complete . • 
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