
Dedicated to 

Professor Jakub Gutenbaum 

on his 10th birthday 

Control and Cybernetics 

voL29 (2000) No. 1 

An electric network chain with feedbacks 

by 

Henryk G6recki 

Institute of Automatics 
University of Mining and Metallurgy (AGH) 
Al. Mickiewicza 30, 30-059 Cracow, Poland 

Abstract: In the paper an R , L , C, G electric network chain 
with feedba.cks is considered. The formulas for the transfer function , 
for its poles and for the integral square error va.l ue are given . 

Keywords: electric network chain , poles, transfer function, Par­
seva.l's formula. 

1. Introduction 

In this paper the chain composed of n equal elements of the R , L , C, G-type 
is considered. Each element of the chain is closed by feedback, dependent on 
voltage. The appropriate gain is denoted by K . The last port is loaded by a. 
resistance Ro. 

By applying La.pla.ce transformation to the Kirchhoff 's laws for the elemen­
tary system we obtain 

(uk - uk- d + ik(R + sL) + K(uk- uk-1) = 0, fork = 1, 2, ... , n (1) 

ik- ik+l - uk(G + sC) = 0, fork= 1, ... ,n 

. Un 
~n+l = -R 

·0 

(2) 

(3) 

where u0 is a. given value, and Un is an output voltage. Evidently, the values Uk 

and ik are the functions of the complex variable s. 
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2. The transfer function 

Figure l. 

By putting k + 1 in place of k in the equation (J) we obtain 

1-l. GORECKI 

(uk+l- uk) + ik+I(R + sL) + K(uk+l- 'ttk) = 0, fork= l , 2, ... , n -1(4) 

Upon eliminating currents ik- ik+ 1 from equation (2) and using equations (1 ), 
(3) and ( 4), we obtain the following relation between the voltages: 

-uk-1 + A(s)uk- Uk+l = 0, k = 0, 1, 2, ... , n- 1 

[ 
R + sL ] 

-un-1+ A(s)-1+ Ro(l + K) Un=O, k = n 

where 

A(s) = (G+sC)(R+sL) + 2 . 
l+K 

For the unloaded chain the resistance Ro = oo, and the current ·in+l = 0. 
The recurrent relation ( 4) can be written in the matrix form : 

(5) 

(6) 

(7) 

A(s) -1 0 0 0 0 UJ 

1' 1 -1 A(s) -1 0 0 0 1l2 

0 -1 A(s) 0 0 0 1l3 

r 0 0 0 A(s) -] 0 'lLn-2 0 
0 0 0 -1 A(s) -1 ?l•n-l 0 
0 0 0 0 -1 B(s) 1ln 0 

where: 

R+sL 
B = A(s)- 1 + Ro(l + K) (9) 

Let Tn(s) denote then x n matrix presented by (8). 
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The determinant 

(1 0) 

is the polynomial of the 2n-th degree. 
Applying Cramers method to the matrix equation (8) we find that 

( ) Mn-k(s) ( ) 
Uk s = Mn(s) uo s fork= 1,2, ... ,n ( 1]) 

(which may be proved by inspection), where 

) 
def ( Mo(s = 1, Mt = B(s), M2(s) = A(s) · B s)- 1 . (12) 

The transfer function of the chain is equal to 

H(s) = un(s) = _ 1_ 
ua(s) Mn(s) 

(13) 

3. The poles of the transfer function 

It can be observed that for the determinants of the matrix Tn ( s) the following 
recurrent relation is fulfilled 

Mn(s)- A(s)Mn-l(s) + Mn-2(s) = 0, n = 2, 3,4, ... (14) 

The polynomial Mn(s) satisfying equation (14) can be presented as a. function 
of the index n in the following form 

( 15) 

where r 1 ( s) and r2 ( s) are the roots of the characteristic equation 

(16) 

and the coefficients c 1 ( s) and c2 ( s) satisfy the initial conditions 

(17) 

It is convenient to introduce the notation: 

A(s) = 2cos cp(s) . (18) 

Using (18) we can write the roots of the equation (16) in the form: 

r1,2 = cos[cp(s)] ± i sin[cp(s)] . (1 9) 
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The substitution of (18) and (19) into (17) gives 

. . R+sL 
cos <p + ~ sm <p - 1 + Ro ( 1 + K) 

cl = 
2i sin <p 

(20) 
. . R+sL 

cos<p- ~ sm<p - 1 + Ro(1 + K) 
c2 =-

2i sin <p 

We can assume sin <p i= 0 because the roots of the equation (16) are different in 
general. Returning to (15) with substitution (19) and (20) we obtain that 

. . R+~ . 
Mn = sm[(n + 1)<p(s)] - sm[n<p(s)] + Ro(1 + K) sm[n<p(s)] 

sin<p(s) 
(21) 

In what follows we will consider the particular case, when the chain is unloaded, 
i.e. R0 = oo. 

3.1. Unloaded chain: R0 = oo 

In this case the formula (21) has the simpler form: 

cos [(2n+ 1) <p(s) ] 
Mn = sin[(n + 1)<p(s)]- sin[n<p(s)] = 2 

0 
sin <p( s) [ <p( s) ] 

cos - 2-

(22) 

The complex number s is a solution of equation M no ( s) = 0 if and only if there 
exists an integer k = 1, 2, .. . , n such that 

2k - 1 
<p(s) = --n fork= 1,2, ... ,n. 

2n+ 1 
(23) 

Substituting (23) into (18) and taking into account (7) we obtain the set of 
equations 

2 2 2k- 1 7r 
LCs +(CL+ RC)s + GR + 4(1 + K) sin -

2
--. -

2 
= 0, 

n+l 

fork= 1,2, ... ,n, 
(24) 

for all roots of the polynomial M no ( s). For every k = 1, 2, ... , n we have two 
roots - slk and S2k· 

It is evident that the whole system is always stable forK 2: -(1 + ~GR) . From 
(13), (22) and (24) we find that the transfer function of the unloaded chain 
Ro=oois 

H(s)=fr 1+K 
LC(s - slk)(s- s2k) · 

k = l 

(25) 
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4. Integral square error 

From the Pa.rseval's formula. we can calculate the integral 
oo joo 

J2 = j £
2(t)dt = 2~j j H(s) · H( - s)ds (26) 

0 -joo 

where c(t) is the impulse response of the chain. 

4.1. Unloaded chain: Ro = oo 

Since H(s )H( -s) is a. rational function, we can apply the method of residues. It 
is well known that if N ( s) and P( s) are analytic functions in a. neighbourhood 
of a. points* and if N(s*) f 0, P(s*) = 0 and P'(s*) f 0 then 

Res (N(s)) = N(s*) (27) 
s. P(s) P'(s*) 

Let us assume that all the poles of H(s) are single, or, equivalently, that for 
each k = 1, 2, .. , n the equation (24) has two different solutions s1,k f s2,k· We 
use formula. (27) for H(s) · H(-s) = N(s)/P(s), where 

N(s) =H(-s)cos [<p;s)] , (28) 

P(s) = cos [(2n + 1) <p;s)] , (29) 

and cos[cp(s)] = ~A(s). We calculate the derivative: 

P'(s) = -
2
n;lsin [(2n + l)cp~s)] d;~s) = 

. [2n + 1 ] d A(s) (2n + 1) sm - 2- cp(s) 
(30) 

d s 4sincp(s) 

2k - 1 
We use the equa.lities cp(s1,k) = cp(s2,k) = 

2
n + 

1
1r. Finally, if the system is 

stable (for all poles R.esn < 0), we can write 

2 n 

h = LLRes[H(s)H(-s)] = 
Slk 

l=l k = l 

l+KL2 
Ln (-1) 2k-lH(-slk) . 2k-l 2k-]1f 

= 4-- · SU1--7fCOS ---
2n + 1 2LCs1k + GL +RC 2n + 1 2n + 1 2 ' 

l=l k = l . 

provided that sl,k f s2,k· 

(31) 
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4.2. Chain with load Ro 

In this case it is not possible to obtain the solution of equation Mn(s) = lrin 
the closed analytical form. 
For calculation of the integral square error it is not necessary to know the roots 
of polynomial (21) . 
We present now a method which is described in Gorecki (1993) and based on 
the knowledge of the coefficients of the polynomial M n ( s). 
It is easy to prove by induction (see Jesmanowicz and Los, 1972) that 

[n- 1/ 2] +[ R+sL _ 1] "'(-1)k( n-k-1 )(2 cos[<p(s)])n-2k-1 
R 0 (1 + K) ~ k 

k=O 

where [x] denotes integer of x. 
Using relation (18) we can write 

[n-1/2] +[ R+sL _ 1] L (-1)k( n-k - 1 )An- 2k- 1(s) . 
R0 (1 + K) k=O k 

(32) 

(33) 

For calculation of powers of An(s) we can use (7) and the well known formula 

where: 

An(s) = [LCs
2 + (GL + RC)s + (GR + 2 + 2K)] n 

(1 + K) 
(34) 

and a 1, a2, a3 are nonnegative integers which fulfil the condition a 1 +a2 +a3 = 
n. 
Assuming as before that H ( s) is a rational fun ction 

H( ) = N(s) 
8 

P(s) 
(35) 



An electric network chain with feedbacks 

where 
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(36) 

(37) 

the coefficients ai and bi are real, and ao is non-zero, we can calculate the 
integral square error (26) using a method described in G6recki (1993). 
The integral Jz can be calculated from the formula 

Jz=(-1t-1b.n-1, 
aob.n 

(38) 

where 

a1 ao 0 0 0 0 0 
a3 a2 a1 ao 0 0 0 

b.n = a5 a4 a3 a2 0 0 0 
(39) 

0 0 0 0 an an-1 an-2 
0 0 0 0 0 0 an 

is the Hurwitz determinant, which for a stable system is positive and 

N1 ao 0 0 0 0 0 
N3 a2 a1 ao 0 0 0 

b.n-1 = 
N5 a4 a3 a2 0 0 0 

( 40) 

Nn-1 0 0 0 an an-1 an-2 
Nn 0 0 0 0 0 an 

( 41) 

for r = 1, 2, ... , n . 

Remark 1 
In our case the formula (37) is very simple 

N(s) = 1, because b1 = b2 = ... = bn-1 = 0 and bn = 1 . 

For that reason 
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According to this the first column of the determinant (40) is equal (0, 0, ... , 0, lf. 
Remark 2 
In a very special case with the adjusted load impedance, when this impedance 
is equal 

Ro + sLo = R + sL 

we obtain from formula. (9) that 

B(s) = A(s) . 

According to this, formula. (20) takes the form 

cos r.p + i sin r.p 
Cl=-

-2i sin r.p 

cos r.p - i sin r.p 
C2 = 

-2i sin r.p 

a.nd formula (21): 

Mn = _ sin[(n + l)r.p(s)] 
sin[r.p( s)] 

br 
r.p( 8 ) = N + 1 ' k = 1,2, ... ,n 

with obvious further consequences. 
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