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1. Introduction 

Statistical quality control (SQC) was developed in the early 1920s in the United 
States. At that time it was applied for quality inspection of items produced in 
large quantities. Basic ideas of SQC have been developed more or less in parallel 
with the ideas of statistical testing, and therefore, some notions used in SQC 
have their counterparts in the theory of statistical tests. Moreover, numerous 
practical successes of SQC methods have been used as the confirmation of the 
applicability of the theory of statistical tests. 

For many years the methods of SQC have been used in an industrial environ­
ment where a frequency interpretation of such terms as, for example, producer's 
risk and consumer's risk seemed to be rather obvious for the majority of statisti­
cians. Therefore, well defined notions of the theory of statistical tests have been 
used for the design of the parameters of SQC procedures. However, in the 1950's 
some specialists in SQC noticed that the procedures of SQC should rather be 
designed taking into account the economic consequences of their usage. An im­
portant stream in the SQC theory developed and resulted in numerous papers 
on this subject. Main results concerning economic optima.lity of the acceptance 
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sampling procedures were summarised in the book of Hald (1981). Important 
results connected with the optimal (from an economic point of view) design of 
the statistical process control (SPC) were published in the book of von Collani 
(1989). One of the most general models used for this purpose has been presented 
in Hryniewicz (1992a). 

The economic approach to design of SQC procedures has been heavily criti­
cised by many statisticians. The main opponents of that approach have pointed 
out serious problems with the precise assessment of involved costs. They have 
not realised, however, that exactly the same criticism may be applied to the so 
called "statistical" approach, as there exists a very straightforward relationship 
between supposedly well known statistical requirements, and unknown costs. 
Therefore, precise statements about required values of the statistical charac­
teristics of SQC procedures are as well founded as similar statements about 
economic consequences of the application of these procedures. This may lead to 
a conclusion that it is advisable to declare the requirements for the statistical 
characteristics of SQC procedures in a "soft" way. 

SQC procedures have been applied mainly for quality control of items pro­
duced in production processes. In such a case it is relatively easy to specify 
whether inspected items are conform or not conform to the stated technical 
requirements. However, methods of quality control become more frequently ap­
plied for quality inspection of such objects as documents, service procedures, 
etc. In all these cases precise description of quality of inspected items may 
be rather difficult. We also face the same problem when quality of inspected 
items is assessed by users. Therefore, there is a need to allow for an imprecise 
description of the quality of inspected items. 

The arguments presented in the preceding paragraphs show rather clearly 
that there is an urgent need to propose another approach to statistical quality 
control that takes into account inherently imprecise quality requirements and 
the possibility of the imprecise description of inspected items. Attempts to fulfil 
this need are not numerous and theoretical results related to these problems 
have been published only recently. In this paper we give a rather comprehensive 
review of existing results. Moreover, we propose some new results which broaden 
the applicability of classical SQC procedures to such practical situations that 
cannot be dealt with by the existing statistical procedures. 

Statistical procedures of SQC can be roughly divided into two groups: pro­
cedures for acceptance sampling, and procedures for statistical process control 
(SPC). In the second section of this paper we describe the acceptance sampling 
procedures. First, we briefly recall some basic concepts of classical approach to 
the acceptance sampling. Then, we show how to design acceptance sampling 
plans when the requirements for risks involved are relaxed and when both risks 
and quality requirements are expressed in an imprecise way. Finally, we present 
the most general case, where not only the requirements are imprecise, but the 
quality data are imprecise as well. The third section of the paper is devoted to 
the statistical process control. First, we present the notion of a classical She-
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whart control chart and then we suggest two types of control charts that may 
be used for in the presence of vague data. 

2. Acceptance sampling 

2.1. Classical sampling plans by attributes 

Suppose that a lot of size N has been submitted for inspection. We observe a 
random sample of n items X 1 , ... , Xn taken from the lot described as follows 

xi= {
0 
1 

if the item is conforming 
if the item is nonconforming ' 

i = 1, ... ,n. 

The observed total number of nonconforming items in the sample is 

n 

(1) 

(2) 

In the case of the simplest, though the most popular, single sampling plan by 
attributes , the decision whether to accept or to reject the whole lot depends 
on the relationship between d and a critical number c, called the acceptance 
number. More precisely, if d :::; c then we accept the whole lot, otherwise, i.e. 
if d > c then we reject the lot . Thus, any single acceptance sampling plan by 
attributes may be completely described by an ordered pair (n, c) . 

It is worth noticing that a single sampling plan by attributes is equivalent 
to a hypothesis testing for the critical quality level e0 . Namely, we consider a 
statistic d from the hypergeometric distribution, i. e. d"" Hy(N, D , n), where D 
denotes the number of nonconforming items in the lot. If the ratio N is small 
(say, fj :::; 0.1) and the sample size N is large enough, then we can use the 
binomial approximation, i.e. d"" Bin(n, e), where e = ~ is the proportion of 
nonconforming items (also called fraction nonconforming). Thus, our sampling 
plan is equivalent to testing hypothesis H : e :::; e0 against the alternative 
hypothesis K: e >ea. 

Although there are also double, multiple and sequential sampling plans, 
further on by a sampling plan (or a plan, for short) we will understand only a 
single acceptance sampling plan by attributes. 

The problem of designing a plan is to find such two numbers n and c that 
certain requirements concerning that plan are fulfilled. Traditionally, we specify 
four parameters: producer's quality level el, consumer 's qua.lity level e2, pro­
ducer's risk 6 and consumer's risk (3 (where (3 < 1 - 6). Then, assuming that 
binomial sampling is appropriate, the sample size n and the acceptance number 
c (c:::; n) are the solutions of 

{ 
P(el) = 1- 6 
P(e2) = (3, 

(3) 
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where P( B) denotes the probability that a lot of quality (} (i.e. a lot with fraction 
(} nonconforming) will be accepted. 

Usually (3) cannot be realised since both n and c must be integers and 
a desired plan does not exist. Therefore, following requirements are adopted 
instead of (3): 

{ 
P(B1) 2: 1 - 8 
P( 82) ::; (3. 

(4) 

There are often many plans (n, c) which satisfy (4). Hence we need a criterion 
for choosing optimal sampling plan. The most popular optimality criterion is 
that based on minimizing the sample size. We say that a plan (n* , c*) satisfying 
(4) is n-optimal if n* ::; n for all plans (n, c) satisfying (4). The problem of 
determining optimal sampling plans was considered by Guenther (1 973), Hald 
(1967, 1977, 1981), Jeach (1980), and Stephens (1978). 

For more details concerning acceptance sampling we refer the reader to 
Schilling (1982). 

2.2. Sampling plans with relaxed risks 

In practice it is not essential that risks and quality levels be exact - it suffices 
that they are close, in some sense, to the desired values. Thus we face two 
important problems: 

(a) how to describe these relaxed conditions on risks and quality levels? 
(b) how to design the optimal plan for relaxed risks and quality levels? 

Single sampling plans by attributes with relaxed risks were first discussed 
by Ohta and Ichihashi (1988). They have reformulated the plan design prob­
lem as a fuzzy mathematical programming one. Ohta and Jchiha.shi considered 
generalized conditions (3) 

(5) 

where the symbol 3:! stands for an approximate relation treated as fuzzy equality 
associated with fuzzy numbers corresponding to expressions of the type: "about 
5", "approximately between 51 and 52", etc. 

Let J.LA ( 5) and J.LB (/3) describe a grade of satisfaction with a sampling plan for 
actual producer's risk 5 and actual consumer 's risk {3, respectively. Thus, more 
precisely, we can consider two fuzzy sets A and B with membership functions 
J.LA, J.LB : [0, 1] -+ [0, 1], respectively, for modeling risks, where 1 represents 
full satisfaction while 0 corresponds to complete lack of satisfaction. Examples 
of producer's risk are given in Fig. 1. Function given in Fig. la describes 
risk corresponding to the statement: "about 5", while function given in Fig. 
lb describes risk corresponding to the statement: "rather smaller than 8 but 
surely not greater than 52 " or "approximately smaller than 5". Note tha.t the 
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1 11----

(a) (b) 

1 1 

1 ........• 

(c) (d) 

1 1 

Figure 1. Examples of membership functions corresponding to producers' risk 

function given in Fig. le corresponds to the traditional model (3): producer's 
risk is equal to 8, while the function given in Fig. ld corresponds to the model 
( 4): the risk is smaller than 8. 

Now the problem of designing an optimal sampling plan satisfying (5) re­
duces to finding such (n, c) that maximize 

min {J.LA(8(n, c)), J.LB(f3(n, c))}. (6) 

Recently, Kanagawa and Ohta (1990) considered generalized conditions ( 4) 

{ 
P(Bl)~l-8 
P(Bz)</3, 

(7) 

where the symbols > and <: stand for approximate inequalities treated as fuzzy 
inequalities associated with fuzzy numbers corresponding to expressions of the 
type: "rather greater than 1 - 8", "slightly less than {3", etc. (see Fig. 1 b). 
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2.3. Sampling plans with relaxed risks and quality levels 

Various economic and technological factors must be taken into account while 
defining fh, fh, b and (3, which makes it difficult for producers and consumers 
to uniquely specify these four main factors. Determination involves careful and 
complex negotiations between producers and consumers, especially for e1 and 
ez. Thus, to relax the rigidity of the conventional design, let us also consider 
relaxed quality levels. 

In the case of relaxed both risks and quality levels we have to consider 
following conditions: 

(8) 

where P('"" e) denotes the probability that a lot of relaxed quality close (in some 
sense) to e will be accepted. 

For designing plans satisfying conditions given above Tamaki, Kanagawa 
and Ohta (1991) tried to apply the modal theory of Dubois and Pra.de (1983) . 
Using the possibility and necessity measures they transform problem (8) into 
a following fuzzy mathematical programming problem with modal constraints: 
minimize n subject to 

(9) 

where ~1 and ~2 are modal procedures on producer's and consumer's side, 
respectively, while v1 and v2 are lower limits on these measures. Unfortunately, 
it seems that this method involves too much subjectivity connected with the 
choice of the modal measure (necessity, possibility, etc.) and determination of 
additional limits for these measures. Therefore , Grzegorzewski (1 998c, 1999a) 
proposed a different method for designing plans with relaxed both risks and 
quality levels based on Arnold's approach to fuzzy hypothesis testing (Arnold, 
1996). 

Suppose we have two functions )11 , .\2 : [0, 1] ___, [0, 1], where .\1 (et) describes 
grade of satisfaction with a sampling plan for actual producer's quality level 
e1 while .\2 ( e2 ) is a grade of dissatisfaction with a plan for actual consume~s 
quality level e2 . Of course, we can also consider the membership fun~yon ,\z 
corresponding to consumer 's satisfaction with given quality level, where ,\2 (e) = 

1- ..\2 (e). According to Arnold's generalized probabilities of type I and type II 
errors, respectively, we get following conditions for the plan with fuzzy quality 
levels: 

b(n, c) 

(J(n,c) 

sup {(.\1 (e)- >-z(e))(l- P (e)) } :S: (j 
liE61 

sup {(..\2(e)- ..\J(e))P(e)} :S: (3, 
liE62 

(10) 

(11) 
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where 8 1 = {0 E [0, 1]: A1(0) > Az(O)} and 8z = {0 E [0, 1]: AJ(O) < Az(O)}. 
Thus for the general case of a plan with relaxed both risks and quality levels 

we can rewrite conditions (8) as 

{ 
8(n, c)<8 
f3(n, c)<f3. 

(12) 

Since we may get many plans satisfying our requirements we need an opti­
mality criterion for choosing the best plan. We suggest to use for that purpose 
the following function 

S(n,c) = min {J.LA(8(n, c)), p.s(f3(n, c)), ~(n)}, (13) 

where~ : N -> [0, 1]. Here, as before, J.LA(8) and J-is(/3) describe grade of 
satisfaction with a sampling plan ( n, c) for producer's risk 8( n, c) and consumer's 
risk f3(n, c), while ~(n) describes a grade of satisfaction with a sample size n. 
This function, called satisfaction function, seems to be more appropriate than 
(6) because it takes into account not only risks but sample size as well. Such a 
function was also used by Kanagawa and Ohta (1990). Hence, from now on our 
optimality criterion is based on maximizing satisfaction function S(n, c). We 
say that a plan (n*,c*) satisfying (12) is MS-optimalif S(n*,c*) 2 S(n,c) for 
all plans (n,c) satisfying (12). 

Theoretically, one may choose any functions J-iA, J.LB and ~· However, in 
practice, these functions should fulfill a few regularity conditions. For example, 
it is clear that both producer and consumer would be satisfied with a plan with 
no risk and their grades of satisfaction would decrease if their risks 8 and f3 
increased. On the contrary, the grade of producer's satisfaction A1 ( 0) would 
decrease while the grade of consumer's dissatisfaction Az ( 0) would increase as 
(;I increases. The grade of satisfaction with a sample size would decrease as n 
increases. Moreover, there exists such an integer no that the inspection with a 
sample of size greater than no would be unprofitable. 

It can be shown that under quite general and natural assumptions on func­
tions J.LA, p.8 , A1 , Az and~ the MS- optimal sampling plan exists (see Grze­
gorzewski, 1998c, 1999a). In his papers Grzegorzewski also published a detailed 
algorithm for designing MS -optimal single-sampling plan by attributes. 

2.4. Sampling plans for vague data and requirements 

In the previous sections we have considered only those generalisations of sin­
gle sampling plans where such requirements for the proba.bilistic characteristics 
of the sampling plans as producer 's risk 8, consumer's risk /3 , producer's risk 
quality (;11 , and consumer's risk quality 02 , have been relaxed in comparison to 
similar requirements formulated in a classical setting of the statistical quality 
control. It could be interesting, however , to go a step further , and to allow 
quality data to be expressed in an imprecise way. Such a generalisation might 
have been especially useful in cases of quality data concerning fully qualitative 
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quality characteristics. In the case of such data we often face difficulties with the 
univocal qualification of inspected items as "conforming" or "nonconforming". 
This difficulty arises also from difficulties with a precise definition of quality 
requirements based on an imprecise notion of client's satisfaction. In such cases 
it seems to be worthwhile to consider inspected items not only as "good" or 
"bad", but also as "almost good" , "quite good", "not so bad", etc. 

It seems quite natural that in the case of imprecise qualification of the quality 
of inspected items there is also no need to define quality requirements in a precise 
way. Sampling plans in a such general setting have been considered so far only 
in Hryniewicz (1992b,1994). In Hryniewicz (1994) it is assumed tha~t the quality 
of each inspected item is described by a family of fuzzy subsets of a set {0, 1} , 
with the membership function defined as f-Lo/0 + f-LI/1, where 0 :::; J..to, J..t 1 :::; 1, 
such that max{f-Lo, 1-Ld = 1. When an inspected item "in general , fulfils quality 
requirements" we represent the result of its quality assessment as a fuzzy set 
with the membership function 1/0 + f-Ldl. When this item surely fulfils the 
requirements its quality is expressed as 1/0 + 0/1. On the other hand, if an 
inspected item "in general, does not fulfil quality requirements" we represent 
the result of its quality assessment as a fuzzy set with the membership function 
f-to/0 + 1/1. A completely nonconforming or defective item is described by a. 
fuzzy set with the membership function 0/ 0 + 1/ 1. It is worthwhile to note that 
this definition of quality is fully equivalent with the quality assessment by a. 
single number a E [0 , 1]. In such a case a membership function can be expressed 
as 

( ) = { min [1, 2 (1- a)], x = 0 
1-L x min [1, 2a], x = 1 · (14) 

Let us assume that in the result of a quality inspection of n items in n1 cases 
the quality of inspected items is characterised by a fuzzy set of the type /-Lo ,i/0 + 
1/ 1, i = 1, .. . , n1 , and in n2 = n-n1cases by a fuzzy set of the type l /O+ J..lJ ,j/1, 
j = 1, ... , n2. Without loss of generality we may assume that these items 
are ordered in such a way that 0 :::; f-Lo, 1 :::; /-L0 ,2 :::; . . . :::; J..to,n 1 :::; 1, and 
1 > /-Ll,l ;::: /-Ll,2 ;::: · · · ;::: /-Ll,n2 ;::: 0. 

For the so defined results of inspection the total number of inspected non­
conforming items cannot be expressed as an integer number (as in a classical 
setting) but is described as a fuzzy set. To find its membership function we 
treat the test result for each inspected item as a pseudo-fuzzy number with a 
membership function given by (14). Then we apply the rules for the addition 
of fuzzy numbers arriving at the following formula for the membership function 

J = /-Lo,I/0 + f-Lo ,2/1 + ... + f-Lo,nJ(nl - 1) + 1/nl + 
+1-LI ,I/(nl + 1) + ... + /-Ll ,n2 /(nl + n2) . (15) 

It is rather clear that the calculation of a fuzzy total number of nonconform­
ing items J according to (15) is quite easy. In practical cases for the majority 
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of inspected items we have either J.Lo,i = 0 or J.LJ.,j = 0, so it is always possible 
to represent din a more compact way (e.g. in a computer code). 

Let us assume now that not only quality data are expressed in an imprecise 
way, but probabilistic characteristics (require~ents) of a sampling plan, namely 
01, 02 ,8 and /3, as well. To simplify calculations assume that these requirements 
are expressed as the following fuzzy sets: 

01 = 1/Pl,O + Vl,l/Pl,l + ... + VJ.,ml/Pl ,ml + 0/Pl,mi+ll 
82 = 1/P2,0 + V2,J./P2,1 + · · · + V2,m2/P2,m2 + Ojp2,m2+1' 
0 = 1/P3,0 + VJ,J./P3,1 + · · · + VJ,m3/PJ,m3 + 0/P3,m3+1' 
/3 = 1/P4,0 + V4,J./P4,1 + • • • + V4,m 4 /P4,m 4 + O/p4,m•+b 

(16) 

where 0 < Pi,O < ... < Pi,m;+l < 1, 1 > Vi,l > ... > Vi,m; > 0, mi E N, 
i E { 1, 2, 3, 4}. To find a single sampling plan, i.e. a sample number n, and 
an acceptance criterion (a critical number c) we propose to use an appropriate 
modification of a procedure proposed by Hald (1981) for the design of single 
sampling plans with a sufficiently large sample size n. 

Let us introduce the following quantities: 

q1 = 1- o1, 
q2 = 1- o2, 
k1 = -0.5 + (1/6) (ql- 01) (uf- 8 -1), 

k2 = -0.5 + (1/6) (q2- 82) ( u~- 1) , 
(17) 

where u-y is a quantile of 1 order from the standard normal distribution. For 
precisely defined quality requirements Hald (1981) proposed to find a sample 
size n as the solution of the following equation 

rounded to the nearest integer. The critical number of nonconforming items in 
a sample c is calculated as 

rounded to the nearest integer. 
In case of imprecise quality requirements the values of 81, 82,8 and /3 in 

(18) and (19) should be changed into their fuzzy equivalents. However, it does 
not seem to be appropriate to propose a fuzzy sample size n , i.e. to allow a 
certain possibility of varying its value. Therefore, we propose to calculate n 
from (18) using p1,o,P2,o,P3,o and P4,0 instead of 81 , e2,J and /3, respectively. 
Taking into account that by taking PJ,o,P2 ,0,P3 ,0 and P4,0 instead of 81, 82,0 and 
f3 we formulate a more severe quality requirements, the computed sample size 
n is surely not too small. 
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The fuzzy critical number c can be calculated by "fuzzyfying" the expres­
sion (19). Using the well known extension principle, and the definition of fuzzy 
addition and fuzzy multiplication (see e.g. Klir and Yua.n, 1995, or Zimmer­
mann, 1985, for reference) we obtain a fuzzy set c = {to/c0 + ... + ftM/c'M, 
where c0, ... , c'M are certain real numbers. In the next step we round the values 
of cro, .. . , c'M to their nearest integer values arriving at the set of integer values 
{eo, ... , cm}· Now we define the value of the membership function for each num-
ber from {eo, ... , Cm} as the maximum of the values of the membership function 
for all those numbers from the set { c0, ... , c'M} that have been rounded to this 
integer number. As the result of applying this procedure we obtain the fuzzy 
critical number of nonconforming items in a sample of n items as the following 
fuzzy set: 

c ={to/eo+ ftd(co + 1) + ... + ftm/(co +m). (20) 

In case of a. sampling plan with a fuzzy critical (acceptance) number c and a 
fuzzy number of nonconforming items d, given by (20) and (1 5), respectively, an 
appropriate decision has to be made by a comparison of these two fuzzy sets. In 
case of precisely defined quality requirements and precise quality data. we reject 
the hypothesis about good quality of inspected items when the inequality d > c 
holds. However, in the case of fuzzy sets the relation d > c is not univoca.lly 
defined. Therefore, in order to apply the proposed procedure we have to define 
precisely how we understand this relation. There are many methods proposed 
for comparison and ranking of fuzzy sets which may be used for this purpose. 
An extensive simulation experiment with the goal of finding a method which 
seems to be appropriate in the area of quality and reliability tests has been 
described in Hryniewicz (1992b). From among many compared methods, the 
comparison based on the NSD index by Dubois- Prade (1 983) seems to be the 
best, as in this case the fraction of obviously wrong decisions observed in the 
simulation experiment was the smallest one. Let us recall that for any fuzzy 
numbers A and B with membership functions {LA and {tB , respectively, we can 
evaluate the degree of necessity to which the relation A > B is fulfilled 

Ness(A >B)= 1- sup min{ftA(x), {ts(y)} . (21) 
x,y:xS,y 

If we apply this approach in practice we have to calculate the value of the NSD 
index for the relation d > c. When this value is large enough (in most practical 
situations it has only to be greater than zero) we decide to reject the hypothesis 
about good quality of inspected items. Otherwise, the data do not give sufficient 
evidence for the rejection of the hypothesis. 
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UCL 

CL 

f ········································ ·· ······························ .... 
I LCL x 

Figure 2. A typical Shewhart control chart 

3. Statistical process control 

3.1. Shewhart control charts 

Statistical process control ( SPC) is a collection of methods for achieving con­
tinuous improvement in quality. This objective is accomplished by a. continuous 
monitoring of the process under study in order to quickly detect the occurrence 
of assignable causes and undertake the necessary corrective actions. Although 
many SPC procedures have been elaborated, Shewhart control charts are still 
the most popular and widely used SPC tools. 

Let us consider a so called x control chart for monitoring the process level. 
The chart contains three lines: a center line (CL) corresponding to the process 
level and two other horizontal lines, called the upper control limit ( UCL) and 
the lower control limit (LCL), respectively. When applying this chart one draws 
samples of fixed size n at specified time points , to then compute an arithmetical 
mean of each sample and plot it as a point on the chart. As long as the points 
lie within the control limits the process is assumed to be in control. However, 
if a point is outside of the control limits (i.e. below LCL or above UCL) we 
are forced to assume that the process is no longer under control. One will 
immediately intervene in the process in order to find disturbance causes and 
undertake corrective actions to eliminate them. A typical control chart is shown 
in Fig. 2. 

Besides the x chart there are other charts for monitoring the process level, 
charts for monitoring the spread of the process (like R or s charts) , the chart 
for the proportion of nonconforming units (p chart), the chart for the number 
of nonconformities per physical unit ( u chart), etc. There are also more sophis­
ticated control charts which take into account not only present sample outcome 
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but the preceding samples, like CUSUM charts or EWMA charts. A detailed 
description of the design and application of these control charts can be found 
in Montgomery(1991), Western Electric (1 956), etc. 

3.2. Control charts for vague data 

The traditional SPCtools were constructed for exact data (real numbers) . How­
ever, sometimes we are not able to obtain exact numerical data but we deal with 
imprecise or even linguistic data. To use classical control charts in such situa­
tions we should compress these vague observations to exact data, but by doing 
this we often lose too much information. Thus, it seems reasonable to use fuzzy 
sets for modelling vague or linguistic data and then to design control charts for 
these fuzzy data.. Control charts for linguistic variables have been developed 
by Wang and R.az (1988, 1990), R.az and Wang (1990), and Kanagawa, Tamaki 
and Ohta (1993). Then, Hoppner (1994) and Hoppner and Wolff (1995) pro­
posed a fuzzy-Shewhart control chart for monitoring the process level. Their 
charts are designed for very particular cases and have many drawbacks (see 
Grzegorzewski, 1997b), and so cannot be recommended for applications. In 
this paper we present a fuzzy control chart due to Grzegorzewski (1997c) and 
propose a new fuzzy control chart based on the necessity index. 

3.2.1. Fuzzy control charts for monitoring the process level 

It is known that there exists a correspondence between control charts and sig­
nificance tests. Thus it seems natural to use a general method for constructing 
fuzzy tests for fuzzy data to design control charts for fuzzy observations. This 
method was proposed by Grzegorzewski (1997a, 1998b) . Control charts for mon­
itoring the process level designed using this method, called fuzzy control charts, 
were also suggested by Grzegorzewski (1 997c) . 

Suppose that the process under consideration is normally distributed. Let 
us first assume that we know the parameters of the process (i.e. its mean m 0 

and standard deviation a) when the process is thought to be in control. In such 
a case the traditional Shewhart x control chart given by lines 

UCL = mo + ul-5/2 Jn , 
CL= mo, 
LCL = mo- ul-5/2 Jn, 

(22) 

is equivalent to the following test cjJ for the two-sided hypothesis testing problem 
H : m = mo against K : m "I mo 

{
0 if mo - 1LJ-&/2 Jn <V < mo + ul-&/ 2 fo' cjJ(Vl, ... ,Vn)= ' 
1, otherwise, 

(23) 
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where vl' ... 'Vn denote a random sample, 'lll-S/2 is the 100(1 - 8 /2) percentile 
of the standard normal distribution and 8 is a significance level (traditionally 
8 = 0, 0027 is accepted). 

If we have no crisp observations, but fuzzy data X 1 , ... , Xn, where each Xi 
E :F N(R) (i.e. Xi is a fuzzy number), then we can test our hypothesis H using 
a fuzzy test cp: (:FN(R))n -+ F({O,l}) with the following a-cuts 

{

{0}, 
{l }, 

'Pa(Xl, ... ,Xn)= {O , l} , 

0, 

where 

if mo E (ITa\ (--,ll)a) , 
if mo E ((•IT)a \ ITa) , 
if mo E (Ha n (•ll)aJ, 
if mo tf_ (Ha U (--,H)a), 

(24) 

and X~ = inf{x E R : J-Lx(x ) 2 a}, XI[ = sup{x E R : {tx (l:) 2 a }. After 
simple calculations we get 

{

1/ 0 + 0/ 1, if mo E ITa= l • 
cp(Xl, . .. ,Xn)= 0/0+1 / 1, if motf-ITa=O, 

J-Ln(rno) / 0 + (1 - {tn(mo))/1, otherwise. 
(26) 

In situation with crisp data we accept hypothesis H if the test st atistic (i.e. 
sample average V) belongs to the acceptance region and reject H otherwise. It 
is easily seen that this reasoning is also t rue for the traditional x control chart, 
since we consider the process in control if the average remains between control 
lines (which correspond to the acceptance region limits) and that the process is 
out of control otherwise. 

In a fuzzy situation the average is no longer a real number but a fuzzy 
number, thus we cannot plot it as a point on a chart. Moreover, a. fuzzy test 
leads to fuzzy decisions. We may get 1/0 + 0/ 1 which indicates that we should 
accept H, or 0/ 0+1/l which means that H should be rejected, but we may also 
get J.-Lo/0 + (1 - J-Lo) / 1, where J-Lo E (0, 1), which can be interpreted as a. degree 
of conviction that we should accept (f-!·o) or reject (1 - {to) the hypothesis H, 
respectively. Thus, unfortunately, we cannot simply generalize the traditional 
control chart into a fuzzy one. In particular, we have to give up control lines in 
the traditional form. 

Grzegorzewski (1997c) suggested to use two complementary graphs to visu­
alize the process inspection based on fuzzy data. On the first graph we plot the 
center line, corresponding to the mean of the process when it can be thought to 
be in control (i.e. mo) and intervals I which symbolize the fuzzy set H, where 
IT = II(X1, . .. , Xn)· Each interval I corresponds to Ha=O· Moreover, we also 
mark lla=l on I . Thus, each interval I is represented by four points, so we 
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CL ........... ·1-------11-----~=--~ 

: ~ : 

\..... ~ c·._f ·_· ·_·_· ·_· -...... ~-----~> 
Figure 3. Construction of a fuzzy control chart 

can denote it as follows I = I (inf IIa=O, inf IIa=l, sup IIa=l, sup IIa=O). This 
construction is shown in Fig. 3. 

On the second graph we plot values which can be interpreted as a de­
gree of conviction that the process is out of control. Precisely, we plot values 
J.Lr(Xr, . .. ,Xn) = 1- J.Lrr(mo) on the graph with at least two lines: p.1 = 0, 
called the zero line, corresponding to the state of control and, so called, critical 
line, J.Lr = ac E (0, 1]. 

If the sample point J,L1 (X1 , ... ,Xn) falls above the critical line it is inter­
preted that the process is out of control. We may also mark an additional 
line, the so called warning line, J.LI = aw E (0, ac) . If the sample result 
J.Lr(Xr, ... ,Xn) falls between aw and ac, there is a suspicion of a disturbance. 
If the next result lies below aw then this suspicion is considered to be disproved. 
Otherwise, if a few successive points faH between aw and ac one will regard 
the suspicion to be justified and take corrective action in order to bring the pro­
cess under control (one can see the correspondence between this approach and 
warning lines in traditional Shewhart control charts). A typical fuzzy control 
chart is shown in Fig. 4. 

Thus, the fuzzy x control chart is designed using the following parameters: 
the center line CL, the zero line, the critical line ac (and possibly, the warning 
line aw ), and a. formula. for determining intervals I (which depend on the math­
ematical model and a given significance level J). In particular, if the process 
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.I" 

"I" 
·I" . 

I" •I-

•I- ·I- I" . ·I-
CL 

..... 

·I- . ... 

a c = lr--~--:----;.--_,_-r------.--­
aw 

• • 
Figure 4. A typical fuzzy control chart 
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is normally distributed with known mean mo and known standard deviation CJ 

then we get 

CL=mo, (27) 

(28) 

If the true standard deviation is not known, then instead of (28) we use the 
following formula to determine I 

I _ ( 1 .;:.._(X )L [n-1] 1 S 1 .;:.._(X )L [n - 1] 1 S - n L... i a=O - t1-8/2 fo a=O, n .L... i a=1 - tl -J/2 fo <>=1, 
·~1 ·~l (29) 

1 "'(X )U [n-1] 1 S 1 "'(X )U [n-1] 1 S ) n L... i <>=1 + tl-J/2 fo a=l' n L... i a=O + tl-<5/2 fo a=O ' 
t=1 t=l 

where t~~-;;~12 is the 100(1 - ~ )-th percentile of the t-distribution with n - 1 
degrees of freedom and Sa is given by the formula (see Kruse and Meyer, 1987) 

(Sa) 2 = (Sa(X1, ... ,Xn)) 2 = 

= n~1 max { LiEA ((Xi)~) 2 
+ I:iE{1 , ... ,n}\ A ((Xi)~ ) 2 -

-~ [ LiEA (Xi)~+ LiE{1, .. ,n}\A (Xi)~ r I A~ {1 , ... 'n}}. 
(30) 
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In practice, we very often do not know the true value of the process mean 
mo. Then, we can estimate it by the grand average of the means 

= 1 k 1 n 

x = k 2); I:xij) 
j=l i=l 

(31) 

of the undisturbed prerun k samples (i.e. samples taken when the process is 

thought to be in control). Since X i~a.lso a. fuzzy number , while CL should 

be a crisp one, we have to defuzzify X (otherwise we can use the fuzzy chart 
described in 3.2.2). Thus instead of (27) we get the following formula for the 
center line 

CL= REP(X), (32) 

where REP: FN(R)---> 1?... is an operator which converts a fuzzy set into a. crisp 
number that can be considered as its representative value. vVe may use different 
operators, such as the fuzzy mode, then-cut fuzzy midrange, the fuzzy median, 
the fuzzy average, the expected value of tbe fuzzy number (see Heilpern, ] 992) 
or the weighted average of the fuzzy number (see Grzegorzewski, l998a). 

3.2.2. Control charts based on NSD index 

As it was stated above, we very often do not know the true value of the process 
mean mo and we have to estimate it. Since fuzzz_ data. are used for the estima­
tion, the estimate is also a fuzzy number. Since X is a fuzzy number, while CL 
should be a crisp one, we have to defuzzify X. Otherwise, we can use another 
fuzzy chart, described below. This chart should be based on a statistical test 
for verifying fuzzy hypotheses with vague data. Such a test was suggested by 
G rzegorzewski ( 1999b). 

The first problem in testing fuzzy hypotheses with vague data is that ex­
pressions like "H: M~ M 0 " or "K: M< M 0", where N10 E FN(R) , have 
no sense, since the family of all fuzzy numbers F N(R) is not linearly ordered 
and such common notions are meaningless until the relation is defined. Thus 
we have to introduce a partial ordering in FN(R) which would be both natural 
and simple to be useful in hypotheses testing. In his test Grzegorzewski utilized 
the well known necessity index of strict dominance (NSD) due to Dubois and 
Prade (1983). The definition of that index is given in equation (21). Dubois and 
Prade proposed also the possibility index of strict dominance and other indices. 
However , we decided to use the NSD index because of its natural interpreta­
tion and effectiveness in solving real-life problems (see, e.g. Hryniewicz, 1992b, 
1994). In his paper Grzegorzewski showed how to construct statistical tests for 
the one-sided and two-sided hypotheses formulated with the help of NSD. For 
the details we refer the reader to Grzegorzewski (1999b). 

Since the x control chart is based on the two-sided test for the mean, a 
suitable test on the significance level 6 for hypothesis H : A(m0 ) = A0 against 



Soft methods in statistical quality control 135 

one-sided alternative K : Ness(A(m0 ) -1= A0 ) ~ ~, where~ is a fixed number 
(~ E [0, 1]) and A(mo) E FN(R) denotes a fuzzy perception of the true mean 
m, is 

<P(X ... Xn) = {1 if (Ao_)f_~ < ITf_~ or (Ao)f_~ > Hf_~ 
1

' ' 0 otherw1se, 
(33) 

where (Ao)f_~ and (Ao)f_~ denote the lower and the upper bound of the 1 - ~­
cut of the fuzzy number Ao, respectively, 

IIf_~ = IIf_~(Xl, . .. ,Xn; ~) = inf {t ER: 'v'i E {1 , ... , n} 
:lxiE(Xih-~ suchthat 11"I(XJ, •.. ,xn)::;t}, 

ITf_~ = IIf_~(X1, ... , Xn ; ~)=sup {t ER: 'v'i E {1, ... , n} 
:lxi E (Xih-~ such that 1r2(x1, ... ,xn) ~ t}, 

(34) 

(35) 

and where [n1, 1r2] is two-sided confidence interval for the mean on the confidence 
level 1 - 8. 

One can rewrite equation (33) as follows 

{ 
{ 

- U L 

1 "f (Xh-~ < (Aoh-~ - ( or 
cp'(X1, .. . , Xn) = ' 

1 (X)f_~ > (Ao)f_~ + (, 
0, otherwise, 

(36) 

where ( is a constant depending on a sample size n, confidence level 1 - 8 and 
whether the true variance of the process is known. 

Therefore, by the analogy to classical x control chart, the control lines of 
the new chart are 

{
LCL = (Ao)f_e- (, 
UCL = (Ao)f_~ + (. (37) 

However, now, instead of the center line CL, we have a center area CA, where 

(38) 

The inspection with our new chart looks as follows: At the beginning one chooses 
a significance level 8 and a required value of the necessity index ~- Then he 
draws a sample X1 , .. . , Xn of a fixed size n at specified time points, computes 
the arithmetical mean X, determines interval I corresponding to (1- ~)th cut 
of X, i.e. 

(39) 

and plots it on the chart. If the whole interval lies outside the control limits 
(i.e. below LCL or above UCL) it is interpreted so that the process is no longer 
in control. If the interval intersects one of the control limits it is a warning. An 
example of the inspection with this control chart is given in Fig. 5. 
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UCL 

CA 

LCL 

Figure 5. A control chart based on NSD index 

In practice, we always estimate A0 by the grand average of the means. Then, 
assuming that the process is normally distributed with unknown standard de­
viation we get the following formulas for the chart 

=L =u 
CA= [(Xh-~, (Xh-~], 

where 

(X)f_~ = k~ ~~=1 ~7=1 (X;i)f_~, 
(X)f_~ = k

1
n ~~=1 ~7=1 (X;i )f_~' 

( 40) 

( 41) 

(42) 

and r is the gamma function (see Hoppner, 1994, or Hoppner, Wolff, 1995). 
It is worth noting that using the NSD index we can construct not only the 

x-type control charts, but the EMWA charts or charts for parameters other 
than the ones of location. 
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4. Conclusions 

Statistical procedures described in this paper may be used in many practical 
cases where we have to deal with imprecise information described in a fuzzy 
form. However, only in few cases the proposed fuzzy statistical procedures may 
be used without special problems. The level of usefulness of those stat istical 
procedures varies in different areas of applications. It seems that, as of now, the 
applications in the area. of acceptance sampling are more mature, and closer to 
real applications. The design methods that are used for single sampling pl ans in 
the presence of fuzzy risks and fuzzy quality requirements are described precisely 
and could be directly used in practice. Relaxation of requirements for risks and 
quality indices seems to be rather natural, an d there are no substantial obstacles 
for the implementation of the proposed methods. The situation looks different, 
however, when we have to deal with fuzzy data. . First of all, despite the fact 
that everybody agrees that some data. may be presented in an imprecise way 
there is no agreement how to describe the imprecise results of experiments. The 
solution proposed in Section 2.3 is the simplest possible, and - as a. matter of 
fact- may be considered as a crisp one. If quality data are presented in a really 
fuzzy form we still need appropriate simple methods to cope with this problem, 
and further theoretical results are welcome. 

In case of the statistical process control (SPC) the situation is even more dif­
ficult. SPC methods, such as control charts, are widely used in practice because 
they are extremely simple. Moreover, even for users who do not understand the 
statistical background of these procedures, it is relatively simple to understand 
their practical meaning. Unfortunately, this is not true in the case of fuzzy 
control charts. The description of data. is much more complicated Lha.n in a 
crisp case, and the statistical basis for many of these procedures seems not to 
be very sound. Only these fuzzy control charts that can be described as cer­
tain statistical tests have a sufficient theoretical background . Another serious 
problem stems from the fact that fuzzy control charts are not so easy to use 
in practice. It seems to us that from among many proposals only fuzzy con­
trol charts the ones presented in Subsection 3.2 of this paper have simple and 
intuitive interpretation. 

Fuzzy approach to the problems of statistical quality control has been de­
veloped during the last ten years. In comparison with the long history of the 
traditional SQC it is a rather short period. Therefore, only few important prob­
lems have been appropriately addressed. From the analysis of fuzzy statistical 
procedures, presented in this paper it is rather obvious that much has to be 
done if we want to implement the proposed procedures in practice. Future 
work should be directed not only at theoretical problems but at the practical 
implementation of the procedures proposed as well. 
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