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Abstract:It is shown that the reachability and controllability
of positive 2D linear systems are not invariant under the state-
feedbacks. By suitable choice of the state-feedbacks the unreachable
positive 2D Roesser model can be made reachable and the control-
lable positive 2D Roesser model can be made uncontrollable.
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1. Introduction

The reachability and controllability are the basic concepts of modern control
theory (Kaczorek, 1985, 1993, Klamka, 1991, 1993). The overviews of recent de-
velopments in reachability and controllability of 2D linear systems can be found
in Klamka (1988, 1991, 1999), Kaczorek (1998). The positive (non-negative)
2D Roesser type model has been introduced in Kaczorek (1996) and its reach-
ability and controllability have been considered in Kaczorek (199G, 1998). The
spectral and combinatorial structure and asymptotic behaviour of 2D positive
system has been investigated in Fornasini and Valcher (1995, 1996) and recent
developments in 2D positive system theory are given in Fornasini and Valcher
(1997). It is well-known, Kaczorek (1993), that the reachability and control-
lability of the standard linear systems are invariant under the state-feedbacks.
Similar results are also valid for standard 2D linear systems (Kaczorek, 1993).
It has been shown (Kaczorek, 1999) that the reachability and controllability
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of positive linear 1D systems are not invariant under the state-feedbacks. To
the best author’s knowledge the reachability and controllability of positive 2D
linear systems with state feedbacks have not been considered yet. In this pa-
per it will be shown that the reachability and controllability of the positive 2D
linear systems described by the Roesser type model are not invariant under the
state-feedbacks.

2. Necessary and sufficient conditions for the reachability
and controllability of positive 2D linear systems
Let Z4 :={0,1,2,...} and R}*™ be the set of real matrices of the dimensions

n X m with nonnegative entries (R} := R:‘_“)‘ Consider the 2D Roesser model
(Roesser, 1975),

h y
o | | A Ar i + iy (1)
T i1 Aoy Ao Ty By !
T
y*ij = 10102] 1;? + D'i.‘,‘jj, ?,_} € Z.{. (2)
ij

where xi—? € R™ and zf; € R™ are the horizontal and vertical state vectors at
point (1, j), respectively, u;; € R™ is the input vector, y;; € RP is the output
vector and Ay, € R™*™ By € RM>™ Cp € RP*™ k.l = 1,2,D € RP*™,
The model (1) is called internally positive (shortly positive) if for all boundary
conditions

ah €RP,j€Z, and g €RP i€ Zy (3)
h
—_ [/ i

and all u;; € RT,4,5 € Z, we have a;; = [ ij;’" ] € R} ,n = ny + ny and
2

Yij € Ri for all 4,7 € Z. It is easy to show, Kaczorek (1996) that the model
(1) is positive if and only if

A A By ]
A= € Rnxn‘B — e Rnxm.
A9 Aao + 2 N
C = [C1C2) € RE*™,D € RE*™ (4)

The transition matrix T}; for (1) is defined as follows, Roesser (1975), Kaczorek
(1985)
I, (the identity matrix) for i=j=0
Tiyj =4 TioTi-1,5 + T T for 4,5 >0(2+j#0) (5)
T;; = 0 (the zero matrix) for ¢ <O0or/and j <0
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where

Al A

Tho =
10 0 0

0 0
To1 =
e [ Asr Ann 1

From (4) it follows that the transition matrix T;; of the positive model (1) is a
positive matrix, T;; € R™" for all 4,5 € Z,.

DEFINITION 2.1 The positive model (1) is called reachable for zero boundary
conditions (2) (ZBC) at point (h,k),(h.k € Z,,h,k > 0) if for every x5 € R?
there ewists a sequence of inputs u;; € R for (i,7) € Dy such that xpy, = x5,
where

Dpp:={(i,7) € Zy x 24 :0<i<h,0<j<k and i+j#h+k} (6)

DerFINITION 2.2 The positive model (1) is called controllable to zero (shortly
controllable) at point (h,k),(h,k € Z, h.k > 0) if for any nonzero boundary
conditions

zh; ERP,0<j<k and zfpe RP*,0<i<h (7)
there exists a sequence of inputs w;; € R for (i,j) € Duy such that xp, = 0.

A matrix A € R™" is called the generalised positive permutation matrix
(GPPM) or monomial matrix if and only if it has only one positive entry in
each row and column and the remaining entries are equal zero. In Kaczorek
(1996, 1998a, b) the following necessary and sufficient conditions for reachabil-
ity and controllability have been proved:

THEOREM 2.1 The positive model (1) is reachable for ZBC at point h,k if and
only if there exists a GPPM R, consisting of n linearly independent columns of
the reachability matriz

Rk == [Mnk, Mh—1,ks Mp k—1,..., Mo1, Mio] (8)
where

B

Mij :=Tio1, [ 0

0
Big= 9
+ g1 |: B") ] ( )
and Ty; is defined by (5).
THEOREM 2.2 The positive model (1) is controllable if and only if the matriz

A is a nilpotent matriz, i.e.

Iz — A = |
det[ Sl 2| o g (10)

—Ag In,ze — Ao
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3. Reachability of positive linear systems with feedbacks

To simplify the notation we assume that m = 1 (the single-input systems)
and the matrices A and B of the positive model (1) have the canonical form,
Kaczorek, 1985, 1998,

0 1 0 0 0 0 0
0 0 1 o 00 0 0 0
AI]'—‘ ,A12= f
0 0 0 : 1 0 O 0
a; az as Qn, 1 0 0
0
0 ail a2 a]‘ul
Bi=|: |,4a= az G2 ... G2,
? a'n-)_l a’nz'z ves pgng
by I B s 0 0 b
B, 0 1 ... 0 0 b
Agg = ery owws s e | o Bg = (11)
bﬂzf'[ 0 U R 0 1 bnz—l
by O 0 ... 0 0 b

where a; > 0,ap; > 0,bp Z0fork=1,...,n9,l=1,...,n.
Consider the system (1) with the state-feedback

h
L .
i
where K = (K, K], K; € RV™ Ky € RY™ and v;; € R™ is a new input
vector.
Substitution of (12) into (1) yields

e =
[ li“’j } = A, xff' ] + By (13)
Ti5+1 L Zij
where
_ _ I A+ B1Kq, A]g-{—BlKg
Be=d b BR=| 2 0 BeRy, Ant Bk (14)

The standard closed-loop system (13) is reachable (controllable) if and only if the
standard 2D Roesser model (1) is reachable (controllable), Kaczorek (1993). Tt is
easy to show that if at least oneof @y #0,l =1,...,ny or by #0,k = 1,...,n2,
then the condition of Theorem 2.1 is not satisfied and the positive model (1) is




Reachability and controllability of 2D positive linear systems with state feedbacks 145

not reachable at point (n1,m5). To simplify the calculations let us assume that
ny = 3 and ny = 2. In this case using (11), (5) and (8) we obtain

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
T]o = ay ag asz 1 0 =T0| = 0 0 0 0 0 5
0 0 0 0 0 iy 12 a3 b‘} 1
0 0 0 0 0 21 e d93 b-g 0
0 0 0 0 0
0 0 0 g D
Ty = ThoTo1 + T Tho = an a2 a13 3 I T (R
aja13  a +arzaz aip+azaz a0
ajazz ag) +agzaz Az +agzaz az O
0 0
0 0
Mm:[ 1]: 1 ,Mm=[ ]: 0
0 0 B b
0 b
0
0
M11=T01{ 01]+T19[B }‘: by |,
a3
23
0 0
1 0
B - 0
M20=T10{ 01}= a3 .MozZIm[B ]: 0
0 . b? + bg
0 by by
0 0 0 0 0
0 0 0 1 0 s
[M]g,M()l,Mll,Mgg,ﬂ/,{gg,...] —= 1 0 b] as 0 (]5)
0 b agz 0 b% + by :
0 bg ass 0 b] bg

It is easy to see that the matrix (15) does not satisfy the condition of Theorem
2.1 1if a; # 0,1 = 1,2,3. Let the positive system (1) with (11) be unreachable at
point (n3,m2). It will be shown that there exists a state-feedback gain matrix
K such the closed-loop system (13) is reachable at point (1, n2).

Let

If:[‘_ﬂ']_,—agj.._,-—ﬂ,n“-—],[]:___,[_}] (16}
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For (11) and (16) the matrix (14) has the form
= = Zl] :ZI2
A=A+ BK = [ L (17)
where
0 0 0
_ 0 1 0
An=An+B1 K= | ... +
0 0 1
ag as Gy
0 0 1 0 0
0 0 0 1 0
[—ag,—al,...,—am]:
0 0 0 0 1
1 0 0 0 0
0 0 0 0
B 0 0 0 0
Ao = A1g + B Ky = v w + [-l Ul)l: (18)
0 0 0 0
1 0 0 1
0 0 0
0 0 G a1 a2 (Ll”]
e , _9,1 = Ag + Byl = %2 s e +
0 0 0
0 0 0 pal  ngp2 pany
El:; ay;y  ajz a,,
y ['_‘G'O! —ay, y i, ] . i “2. !
b,,;z Gny1 Gny2 Tnyn,
by 1 0 0 0
. by 0 1 0 0
Agg = Ags + Bo (s = sae wwn | =
bpo—1 00 0 1
bnz 0 0 0 0
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by 0 1 0 0

% 0 0 3 0
1 0...0]=] ... ...

0 0 0 |

bn, 0 0 0 0

If the assumptions of the canonical form are satisfied, Kaczorek (1985, 1998),

then it can be shown that @y > 0 for k = 1,....,n9.0 = 1,....1n;. Now we
shall show that the closed-loop system with (18) and by = by = --- = by, =
0,bn, # 0 is reachable at point(ni,n2). Using (17), (5) and (9) we obtain

B g . ; :
My = [ 01 ] = e,, (n1- th column of the n x n identity matrix)

B sl B
M20=Tw[ 0] ]=6n,—1,---=ﬂfi’mn=Tm '[ 0' ]Z-‘-’-l,

0 0
Moy = [ Bs } = b, €2, Moz = Ton [ By } = bnyen—1,"+, (19)

Mon, = Tg2™? [ Bﬂ2 ] = bp,€n; 41
Note that in this case the matrix

[Mio, Mao, ..., My 0, Mo1, Moz, . .., Mon,| =

[ ngimtiyionv 8y B By s Bt Bimg Ber 41
is GPPM and by Theorem 2.1 the positive system (1) with (I17) and by = by =
vor = bp,—1 = 0,bn, # 0 is reachable at point (n;,n2). In the case when by # 0

for k = 1,...,ny the calculations in the proof are more complicated. Therefore,
the following theorem has been proved:

THEOREM 3.1 Let the positive system (1) with (11) be unreachable at the point
(n1,m2). Then the closed-loop system (13) with (17) is reachable at the point
(n1,m0) if the state-feedback gain matriz K has the form (16).

From Theorem 3.1 we have the following important corollary.

COROLLARY 3.1 The reachability of positive system (1) with (11) is not invari-
ant under the state-feedback (12).
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Example 1
Consider the positive 2D Roesser model (1) with
0 1 . 0 0 0
1 2 :: 1 0 |
A A By
A= N [N (- = | ... 20
{Am Azz] , [B‘z} | (20)
2 3 1 0 5
3 4 5 ¥ |
which is unreachable at point (2,2).
In this case ny =ng = 2,m = 1 and using (16) and (14) we obtain
K=[-1,-2,-1,0] (21)
and
01 00 0 01 0 0
1210 1 ‘ oo o0 o0
As=ArBE= |5 4 5 g [*] 1 |Fb-23-18l=| 1 ¢ o o |22
3 4 2 1 2 10 0 1
Using (5), (9) and (20) we calculate
0 0
_I'Bi|_ |1 0] _10
M10_|: 0 ]_ 0 aMUI_[BQ:l_ 1
0 2
0
[ Bi] 0] |0
MH_Tm_O“'{—T’O[BQ]h I
U o
1 0
i 0 0 0
M20=T10h {}1_: 0 ,Mozf-Tm_Bz]: 0
0 2
Hence the matrix
6 ¢ O (0
1 0 0 0
(Mo, M11, Mag, Moz] = 010 0
0 0 0 2

is GPPM and by Theorem 2.1 the closed-loop system with (22) is reachable at
point (ny,ng) = (2,2).
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4. Controllability of positive linear systems with feedbacks

Consider the positive single-input model (1) with (11) and the state-feedback
(12). According to Theorem 2.2 the positive system is controllable (to zero) if
and only if the matrix A is nilpotent. [t is said that the state-feedback (12)
violates the nilpotency of A if and only if the closed-loop matrix (14) is not
nilpotent. From Theorem 2.2 the following theorem follows:

THEOREM 4.1 The closed-loop system (13) is uncontrollable at point (nq,ns) if
the state-feedback (12) violates the nilpotency of A.

COROLLARY 4.1 The controllability of the positive system (1) is not invariant
under the state-feedback (12).

Example 2. Consider the positive model (1) with

B 3 i 1 0
A Apg 0o 0 - 1 51} 1 ;
= = . s — . 23
bl E R (L -3 e T
. |
0 0 ] 0

In this case ny = 2,n5 = 1 and

zy =1 -1
Inyz1 — Agy —Aiz e .
det{ — Ay, Ty e Al ] = 8 ;8 .,1 = z1%2
22
Using (5) we obtain
01 1 0 0 0 0 0 |
Tio=]0 0 1|, Tu=]0 0 0 |,Too=T%=|0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1>2 and j5=0
T;=10 0 0 [for{ =0 and j>1
0 0 0 >0 and j§>0

and the component of z;; caused by nonzero boundary conditions (3) is, Roesser
(1975), Kaczorek (1985), Klamka (1991),

¢ J 5
xk(z‘,j)=Zr.:_k.,j[ - }+Zﬂ,j_.{“-g-*]zorm-f>z,j>:1
k=0

1433
k0 Ty

and any zy, and 115&.
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Therefore, the system can be transferred to zero by zero input sequence for any
boundary conditions (3) and arbitrary matrix B. Note that if the matrix B
has the form (23) then any nonzero gain matrix K = [k, ko, ks] violates the
nilpotency of the matrix A given by (23) since

0 1 1
A+ BK = ki ko k3+1
ki ko k3
1
If B=| 0 | then we have
0
ki 14k 1+k;
A+BK=| 0 0 1

0 0 0

and for k; = 0 the nilpotency of A is not violated.

5. Extensions and concluding remarks

It has been shown that the reachability and controllability of positive 2D Roesser
type model are not invariant under the state-feedbacks. By suitable choice of
the state-feedbacks the unreachable positive 2D Roesser type model can be
made reachable and the controllable positive 2D Roesser model can be made
uncontrollable. With slight modifications the considerations presented above
can be extended for the multi-input positive 2D Roesser type model and the
positive nD(n > 2) Roesser type models. It is well known, Kaczorek (1983),
that the first Fornasini-Marchesini model, Fornasini and Marchesini (1976), can
be recast in the 2D Roesser model. Therefore, the considerations can be imme-
diately extended for the positive first Fornasini-Marchesini model. Extensions
of the considerations for the positive second Fornasini-Marchesini model, For-
nasini and Marchesini (1978), and general 2D model, Kurek (1985), are also
possible. An open problem is an extension of the considerations for the singular
2D linear systems, Kaczorek (1993).
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