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1. Introduction 

The reachability and controllability are the basic concepts of modern control 
theory (Kaczorek, 1985, 1993, Klamka, 1991, 1993). The overviews of recent de­
velopments in reachability and controllability of 2D linear systems can be found 
in Klamka (1988, 1991, 1999), Kaczorek (1998). The positive (non-negative) 
2D Roesser type model has been introduced in Kaczorek (1996) and its reach­
ability and controllability have been considered in Kaczorek (1996, 1998). The 
spectral and combinatorial structure and asymptotic behaviour of 2D positive 
system has been investigated in Fornasini and Valcher (1995 , 1996) and recent 
developments in 2D positive system theory are given in Forna.sini and Valcher 
(1997). It is well-known, Kaczorek (1993) , that the reachability and control­
lability of the standard linear systems are invariant under the state-feedbacks. 
Similar results are also valid for standard 2D linear systems (Kaczorek, ] 993). 
It has been shown (Kaczorek, 1999) that the reachability and controllability 
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of positive linear 1D systems are not invariant under the state-feedba.ckso To 
the best author's knowledge the reachability and controllability of positive 2D 
linear systems with state feedbacks have not been considered yet. In this pa­
per it will be shown that the reachability and controllability of the positive 2D 
linear systems described by the Roesser type model are not invariant under the 
state-feed backs 0 

2. Necessary and sufficient conditions for the reachability 
and controllability of positive 2D linear systems 

Let z+ := {0, 1, 2, 0 0 o} and R~Xm be the set of real matrices of the dimensions 
n x m with nonnegative entries (R'.f- := R~xl)o Consider the 2D Roesser model 
(Roesser, 1975), 

( 1) 

(2) 

where x?j E Rn1 and xij E Rn2 are the horizontal and vertical state vectors at 
point ( i, j), respectively, Uij E Rm is the input vector, y;..i E RP is the output 
vector and Akt E Rn,xn 1 ,Bk E Rn,,xm,Ck E Rpxn 1··,k,l = 1,2,D E Rpxmo 
The model (1) is called internally positive (shortly positive) if for all boundary 
conditions 

h Rn1 · z x 0 j E + ,J E + and x~0 E R~2 , i E Z+ (3) 

and all Uij E R+,i,j E Z+ we have Xij = [ ~~] E R'.f_,·n = n 1 +nz and 
xij 

Yij ER~ for all i,j E Z+o It is easy to show, Kaczorek (1996) that the model 
(1) is positive if and only if 

A= [ ~~: ~:~lE R~xn,B = [~:l E R~xm, 
C = [C1C2] E R~xn,D E R~xm (4) 

The transition matrix Tij for (1) is defined as follows, Roesser (1975), Kaczorek 
(1985) 

r,, ~ { 
In (the identity matrix) for i=j=O 

TlOTi-l,J + T01Ti,j-l for i,j 2: O(i + j f 0) (5) 

Tij = 0 (the zero matrix) for i < 0 or/ and j < 0 
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where 

y 10 := [ ~11 

From ( 4) it follows that the transition matrix Tij of the positive model (1) is a 
positive matrix, Tij E R'.'j_xn for all i,j E Z-1-. 

DEFINITION 2.1 The positive model (1) is called reachable for zero boundary 
conditions (2) (ZBC) at point (h, k), (h, k E Z -1- , h , k > 0) if for every x 1 ER+ 
there exists a sequence of inp'Uts 'Uij ER+ for (i,j) E Dhk sv.ch that Xftk = x 1 , 
where 

Dhk:={(i,j)EZ-t-xZ+:O:Si:Sh,O:Sj:Sk and i+jf=h+k} (6) 

DEFINITION 2.2 The positive model (1) is called controllable to zero (shortly 
controllable) at point (h, k) , (h, k E Z-1- , h, k > 0) ~f for any nonzero boundary 
conditions 

(7) 

there exists a sequence of inputs 1Lij E R+ for ( i , j) E Dhk sv.ch that Xhk = 0. 

A matrix A E Rnxn is called the generalised positive permutation matrix 
(GPPM) or monomial matrix if and only if it has only one positive entry in 
each row and column and the remaining entries are equal zero. Tn Kaczorek 
(1996, 1998a, b) the following necessary and sufficient conditions for reacha.bil­
ity and controllability have been proved: 

THEOREM 2 .1 The positive model ( 1) is Teachable for ZB C at point h , k if and 
only if there exists a GPPM Rn consisting of n linear-ly ·independent colv.mns of 
the Teachability matrix 

(8) 

where 

[ 
Bol ] Mij := Ti-l,j + Ti ,j-1 (9) 

and Tij is defined by ( 5). 

THEOREM 2. 2 The positive model ( 1) is controllable ·if and only if the matrix 
A is a nilpotent matrix, 2. e. 

(1 0) 
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3. Reachability of positive linear systems with feedbacks 

To simplify the notation we assume that m = 1 (the single-input systems) 
and the matrices A and B of the positive model (1) have the canonical form, 
Kaczorek, 1985, 1998, 

I : 
1 0 0 0 0 
0 1 0 0 0 

Au = , A12 = 
0 0 1 0 0 

a1 az a3 anl 1 0 

0 
0 

[ an 
a12 al n l 

j B1 = ,A21 = 
a21 a22 a2nl 

0 an21 an22 a n2nl 
1 

bl 1 0 0 

n . B,~ 
h 

bz 0 1 0 bz 

Azz = 
bn2-l 0 0 0 bn2 - J. 

bn2 0 0 0 bn2 

where az ~ O,akz ~ O,bk ~ 0 fork = 1, 0 0 0 ,n2,l = 1,0 . 0 ,nJ.o 
Consider the system (1) with the state-feedback 

0 
0 

0 
0 

(11) 

(12) 

where K = [K1, K2], K1 E R1 xn1 , Kz E R1 xn2 and Vij E Rm. is a new input 
vector. 
Substitution of (12) into (1) yields 

(1 3) 

where 

Ac = A+ BK = [ An+ B1K1 , A12 + B1K2 ] 
A21 + B2K1, A22 + B2K2 

(14) 

The standard closed-loop system (13) is reachable (controllable) if and only if the 
standard 2D Roesser model (1) is reachable (controllable), Kaczorek (1993). It is 
easy to show that if at least one of az f= 0, l = 1, 0 0 0, n1 or bk f= 0, k = 1, o 0 o , n2, 
then the condition of Theorem 201 is not satisfied and the posit ive model (1) is 
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not reachable at point (n1 ,n2). To simplify the calculations let us assume that 
n 1 = 3 and n 2 = 2. In this case using (11), (5) and (8) we obtain 

[{ 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 

T10 = a2 a3 1 0 ,To1 = 0 0 0 0 0 
0 0 0 0 au a12 a13 bl 1 
0 0 0 0 a21 a22 a23 b2 0 

0 0 0 0 0 
0 0 0 0 0 

Tu= T10T01 + TmT10 = au a12 a13 bl I ' . .. 
a1a13 an+ a13a2 a 12 + a13a3 a13 0 
a1a23 a21 + a23a2 a22 + az3a3 a23 0 

0 0 

M 10 = [ ~1 
] = 

0 

,Mm= [ ;
2

] = 

0 
] 0 
0 bl 
0 bz 

0 

Mn = To1 [ ~1 
] + T10 [ ;

2 
] 

0 
bl 

a13 
a23 

0 0 

M 20 = T10 [ ~1 
] 

l 
, Moz = Tm [ ~2 ] 

0 
a3 0 ' ... 
0 bt + bz 
0 blb2 

0 0 0 0 0 
0 0 0 1 0 

[M10,Mo1, Mn, M2o, Mo2, ... ] = 1 0 bl a3 0 (15) 
0 b] CLJ3 0 b¥ + b2 
0 b2 a23 0 b, b2 

It is easy to see that the matrix (1 5) does not satisfy the condition of Theorem 
2.1 if a1 =!=- 0, l = 1, 2, 3. Let the positive system (I) with (11) be unreachable at 
point (n1 ,n2 ) . It will be shown that there exists a state-feedback gain matrix 
K such the closed-loop system (13) is reachable at point (n1,n2). 
Let 

K= [-a1,-a2, ... ,-an1 ,-1,0, ... ,0] (16) 
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For (11) and (16) the matrix (14) has the form 

Ac=A+BK= [ Au,Aiz] 
AzJ , Azz 

(17) 

where 

0 1 0 0 
0 0 0 

An = Au + B1K1 = + 
0 0 0 

ao a] az anl 

0 0 1 0 0 
0 0 0 0 

[-ao, - a1 , ·· · , - an,]= 

0 0 0 0 ] 

1 0 0 0 0 

0 0 0 0 

0 0 0 0 

A1z = A12 + BrKz = + [- 1 0". 0] = (18) 
0 0 0 0 
1 0 0 

0 0 0 l + 

0 0 0 
all al2 O. J. , l 

ib = A21 + B2K1 = l "" 0.22 az,., 

0 0 0 
0 0 0 an2l an22 an':!.n l 

bl l a, 
al2 a1,, 

l bz azJ Cizz az , , 
[-ao, -a1 , ···,-an,]= 

bn2 ~~2·1 7in22 7i"n 2n1 

bJ ] 0 0 0 
bz 0 0 0 

ii:z2 = A22 + BzKz = + 
bn2-J 0 0 0 1 

bn2 0 0 0 0 
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[I]~-~ 0 .. . 0]~ 
0 
0 

0 
0 

0 

0 
0 

0 
l 

0 
0 

0 
0 

I 
0 

If the assumptions of the canonical form are satisfied, I\aczorek (Hl85, 1998), 
then it can be shown that 7ikl 2::0 fork= l , ... ,n2, l = l , . . .. n 1. Now we 
shall show tha.t the closed-loop system with (:I 8) and b1 = b2 = · · · = hn2 - 1 = 
O,bn2 =I= 0 is reachable at point(n1 , ·nz). Using (17), (5) and (9) we obtain 

M 10 = [ ~1 
] = en, ( n 1- th column of the n x n identity ma.trix) 

(1 9) 

Note that in this case the matrix 

is GPPM and by Theorem 2.1 the positi ve system (l) with (17) and b1 = b2 = 
· · · = bn

2
-l = O,bn2 =/= 0 is reachable at point (n,,n2). In the case when bk =I= 0 

for k = 1, ... , n 2 the calculations in the proof are more complica.tecl. Therefore, 
the following theorem ha.s been proved: 

THEOREM 3.1 Let the positive system ( 1) with ( 11) be v.nreachable at the point 
(n1,n2). Then the closed-loop system (1S) with (17) is reachable at the point 
(n1 ,n2) if the state-feedback gain matrix J( has the foTTn (16). 

From Theorem 3.1 we have the following important corollary. 

COROLLARY 3.1 The reachability ofpos·itive system (1) wi.th (11) 'is not in·vari­
ant under the state-feedback (12). 
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Example 1 
Consider the positive 2D Roesser model (l) with 

0 0 0 
l 

A= [ Au A12 ] = 2 0 ,B=[BI]= 
Az1 A22 B2 

2 3 0 

3 4 2 

which is unreachable at point (2,2). 
In this case n1 = nz = 2, m= 1 and using (16) and (14) we obtain 

K = [-1 -2 -1 0] ' ' . ' 
and 

Ac=A+BK= [! ~ : ~ L[: 1 [-1,--2,-1,0]~ [ ~ 
3421J 2J 1 

Using (5), (9) and (20) we calculate 

MlO ~ [ ~1 l ~ r n -Mo. ~ [ ~, l ~ r n -
Mn ~ Tm [ ~ ] + Tw [ ~2 ] ~ [ ~ j 

M, ~ 1j o [ ~1 l ~ [ ~ j , M" ~ Tm [ ~,] ~ [ ~ j 
Hence the matrix 

I 0 
0 0 
1 0 
0 0 

0 

(20) 

2 

(21) 

is GPPM and by Theorem 2.1 the closed-loop system witb (22) is reachable at 
point ( n 1 , nz) = (2, 2). 
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4. Controllability of positive linear systems with feed backs 

Consider the positive single-input model (1) with (1 1) and the state-feedback 
(12) . According to Theorem 2.2 the positive system is controllable (to zero) if 
and only if the matrix A is nilpotent. Tt is said that the state-feedback (12) 
violates the nil potency of A if and only if the closed-loop matrix ( 14) is not 
nilpotent. From Theorem 2.2 the following theorem follows : 

THEOREM 4.1 The closed-loop system {13) is uncontrollable at point (n1 ,n2) ~f 
the state-feedback ( 12) violates the nilpotency of A. 

COROLLARY 4.1 The controllability of the positive system {1) is not ·invariant 
under the state-feedback ( 12). 

Example 2. Consider the positive model (1) with 

A_ [ An 
- A2l 

0 

0 

0 

0 

0 

In this case n1 = 2, n2 = 1 and 

Using (5) we obtain 

Tw~ [ ~ 
1 
0 
0 

T,, ~ [ ~ 
0 
0 
0 

-A12 
fn 2 Z2 - A22 

i l ,10, ~ [ ! 
0] {'>' 0 for i = 0 
0 i > 0 

' B= 

0 

Z J -1 - I 
0 ZJ -1 

') 

= Z ]Z2 

0 0 Z2 

0 n [ ! 0 , T2o = T1
2
0 = 

0 

and j=O 
and j > 1 
and j>O 

(23) 

0 H 0 
0 

and the component of Xij caused by nonzero boundary conditions Ul) is, Roesser 
(1975), Kaczorek (1985), Klamka (1991 ), 

. . i [ o ] j [ :r0~1 ] Xbc(z,J) = LTi-k,j xv + LTi,j-1 
k=O kO l=O 

= 0 for i > 2, j > J 

and any xh;0 and x~1 . 
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Therefore, the system can be transferred to zero by zero input sequence for any 
boundary conditions (3) and arbitrary matrix B. Note that if the matrix B 
has the form (23) then any nonzero gain matrix J{ = [k1 , k2, k3 ] violates the 
nilpotency of the matrix A given by (23) since 

If B ~ [ ~ ] then we have 

l + /;;3] 
1 
0 

and for k1 = 0 the nilpotency of A is not violated. 

5. Extensions and concluding remarks 

It has been shown that the reachability and controllability of positive 2D Roesser 
type model are not invariant under the sta.te-feedba.cks. By suitable choice of 
the state-feedbacks the unrea.cha.ble positive 2D Roesser type model can be 
made reachable and the controllable positive 2D Roesser model can be made 
uncontrollable. With slight modifications the considerations presented above 
can be extended for the multi-input positive 2D Roesser type model and the 
positive nD(n > 2) R.oesser type models. It is well known, Kaczorek (1983), 
that the first Fornasini-Marchesini model, Fornasini and Ma.rchesini (1976), can 
be recast in the 2D R.oesser model. Therefore, the considerations can be imme­
diately extended for the positive first Forna.sini-Marchesini model. Extensions 
of the considerations for the positive second Fornasini-Marchesini model, For­
nasini and Marchesini (1978), and general 2D model, Kurek (1985), are also 
possible. An open problem is a.n extension of the considerations for the singular 
2D linear systems, Kaczorek (1993). 
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