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Abstract: This paper deals with life-saving decisions. The de­
cision maker can buy a number of death-averting devices or services 
which increase his safety S at the expense of the discounted future 
consumption R. The safety and consumption depend parametrically 
on the death probability p and the probability reducing strategy x, · 
i.e. S(pjx); R(pjx) . The two-factors utility function U(S, R) is used 
to find the optimum strategy x = x, which maximizes U(x). One 
can show that the unique strategy x exists and can be effectively 
derived. Many applications of proposed methodology are indicated. 
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1. Introduction 

The survival model introduced in the present paper is supposed to support life 
saving decisions, e.g. when one decides to increase the probability of survival 
by buying the death-averting devices or services, which decrease his consump­
tion. A typical decision of that type concerns the buyer of a car, which can be 
optionally equipped with a number of death-averting devices, such as: air bags, 
ABS, ESP, winter tyres, tyre chains, etc. The more devices one buys, the less is 
left for the remaining consumption. In other words, the driver 's safety increases 
at the expense of consumption. A similar problem is obtained when trying to 
find the rational number of medical prophylactic and other death averting ser­
vices, or - buying anti assassination devices or services. In order to find the best 
relation between increase of safety and loss of consumption, one should apply a 
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utility function depending explicitly on two fac:tors: safety and expected future 
consumption (discounted future return). ln the present paper the two factors 
model of utility, proposed by Kulikowski (1 998A , B, C) has been used. The 
notion of safety S is opposite to the notiou of risk, expressed by standard devi­
ation. Besides safety the model uses (as the second factor) the expected future 
return, i.e. consumption R . Both factors depend para.metrically on the death 
probability p over the probability reducing factor x, i.e. pjx. Then, one can try 
to find the best utility (U[S(x), R(x)]) maximi zing strategy x = x. ft is shown 
that the unique x exists and it cRn be derived effectively. 

Several extensions of the basic problem are possible. One of them is con­
cerned with discrete (xk, k = 1, 2, . .. , .~1) strategies. In such a. case one should 
choose the best number k = k of independent death averting devices or services. 

2. The survival model 

Assume that an investor expects to get a return Ra., out of the capital P0 , which 
is used for consumption next year. \Vhen the investor , in addition, receives a. 
salary w (consumed within the year) his total consumption becomes P0 R" +w. 
Assume also that such an investment-consumption pattern is repeated in the 
future years, so in case the investor faces life expectancy 7'e his discounted rate 
of consumption (denoted R.u) becomes 

- "T" (1 + ") -j p- 6 .i= l · I ' (1) 

where r = discount factor. 
The investor is, however, exposed to a death accident with the given prob­

ability p0 and his consumption rate, in sucb a ease, R.d = 0. fn other words 
one gets a. binary model , shown in Fig. I , ·where the state of being dead is 
characterized by Rd = 0, and p0 ; while the state of smvival is characterized by 
Ru and the probability of survival I - p0 . The expected rate of consumption 
for the present model is obviously 

R = (1- Po)Ru (2) 

Assume also that the investor can reduce th e death probability by a factor 
of x a.t the expense of cost c(x). For example, a. car driver is exposed to death 
in a road accident. He can, however, reduce t be value of Jlo by buying a car 
equipped with airbags, winter tyres, ABS, the Boseh ESP system, el·.c. The 
dealers promote the safety increasing systems by specifyi ng the reduction of 
death casualties. For example, ESP is claimed to reduce the number of accidents 
by 25 % (or the probability of death casualties by x = 3/4). T he cost of each 
safety oriented system increases along with the x factor. A similar situation 
exists in the area. of health services. One can reduce the death proba.bili ty by 
prophylactic actions, vaccination , screening etc., at the expense of a.clditiona.l 
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Figure 1. Modelling the death-averting system 

costs c(x). For additional references see Jones-Lee (1974), Linnerooth (1975), 
Reynolds (1956). 

One can also decrease the probability of assassination by employing the 
bodyguards or buying an armoured car etc. Since generally the cost function 
increases along with x, with an increasing rate, it is possible to approximate 
c( x) by a. convex function increasing at the rate ), 

c(x) = c[e'J.(x-l) -1], (3) 

where c,), - given positive numbers, and c(1) = 0. 
As a. result the expected return 

R(x) = Ru(x)(l- Po/x), (4) 

where 

c 
b =Pop; 

is a. strictly concave, decreasing function of x which attains maximum value 
R(l) = Ru . 

The application of death-averting systems transforms the model of Fig. la 
into the model of Fig. lb, where the reduced death probability p = p0 jx is 
achieved at the expense of the cost c(x) reducing original consumption Ru. In 
order to compare the lotteries a. and b in Fig. 1, and find the best survival 
strategy x = x, the investor should apply a properly chosen utility model. The 
utility function should be sensitive to the death probability, survival strategy x , 
and consumption R( x) . 
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3. The utility model 

The most popular utility function, used in economic sciences (.o evalu c~.te con­
sumption (called Z), is a. concave increasing ftmctiou f, i. e. 

U = f(Z) 

A typical example of such a. function is 

(5) 

where a, f3 are given positive numbers, {1 < I. 
Since in the investment model one uses the notion of future consumption 

(denoted by Z = RaPo), which is generally unknown, it is natural to regard Z a.s 
a. random variable with expected value Z = E{ Z}. Tbe expected value, however, 
does not characterize the random variable completely. Vlh en constructing a 
subjective utility model, which is supposed to account for decision under risk, it 
is desirable to have a complete description of ra.uclom variable, e.g. iu the form of 
probability distri bution function (p.d .f. ). In many situations, such a. knowledge 
is missing and one should be satisfied with knowing certain p.cl.f. parameters, 
such as expected value and variance (0"2) onl y. Tt should be rnentioned that 
many economists, e.g. Irving Fisher ( J 906) , J\ lla.is (] 953), argued that. people 
base their choices among gambles on t.he variance of the gambles as well as 
expectations. The expectat ion alone is insufli.cient to explain risky decisions. 

In the model proposed by Kulikowski ( I 998A, B, C) oue assumes that utility 
depends on two factors: 1. the expected retum Z = P0 R , Hncl 2. the net 
expected return Y = P0 ( R - 1w). 

The standard deviation O" is a measure of risk. It is multiplied by t he sub­
jective price of the risk ( K) tbe investor attaches to O". Then n.O" can be regarded 
as the subjective cost of risk characterizing the investor. 

·when "" (and consequently Y) is 6xecl, the random variable Y can belong 
to two separate sets of: a. worse (unprofi tab le) returns: Y :::; Y b. better 
(profitable) returns): Y > Y. 

In the case when the probability density function of R , i.e. F(R) , is known, 
one can easily derive the probabilities of worse (p) and better (1 - z;) returns: 

y 

p = J F(R)dR, 

- oo 

00 

1 - p = J F(R)dR 
y 

If, for instance, F(R) is normal one gets for~~= 1,p ;:::; 1/6 and I- p = 5/6. 
vVhen the investor feels more averse to the risk he will set r;. > .1 , getting small er 
probability of worse outcomes, i.e. p < I /6 , and vice versa - assuming r;. < :1, i.e. 
when he becomes risk fond , he gets p > 1/ 6. ln o~her words the in wstor should 
decide what probability for worse cases (when Y :::; Y(p)) he can tolerate or 
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accept. He can also regard Y as the lower bo11ncl for bet.ter n:~tum :; i. e. Y > Y 
(which, e.g. will not induce bankruptcy). Knowing R, a and Y the investor can 
derive easily K. and p. 

It should be observed that fixing r;, one can also formulate a sirnple acceptance 
rule: the investment is acceptable when the return R is at least equal Rp + tw , 
Le. 

(6) 

where Rp is the return of risk free investment, such as buying the government 
bonds. Obviously Rp aud R are positive. 

The two-factors utility can be written in the form 

U=F[Z,Y]. (7) 

Since Z and Y are expressed in monetary terms it is natural to a.ssmne that 
F is "constant returns to scale function ., (otherwise one could in crease utility 
by converting each $ to 100 cents). As a c:oHsequence of that assumption one 
can express U in an equivalent form , Ku likowski (1098A , B): 

z 1 
U = Yf(y) = PoRS.f(S) , (8) 

where 

S = ~ = 1- K.; can be called the safety index . 

Observe that the maximum of safety, Sm = 1, one gets for a = 0, and due to 
(6) , s ::::: RF \ R > 0. 

In the similar way (as in the case of (5)) one can approxirnate the function 
(8) by J(-) = (-) .8 , which yields 

u = PaRS1- .a, (9) 

The function (9) is expressed in rnonetary units, in the same form as the 
expected monetary return Z = P0 R. However, the real value of that return is 
decreased by the factor S1 -.8, whicb for risky investments is less than 1. 

One should observe that the parameter 1 - ;3 can be regarded as the sensi­
tivity of the investor ( 'ijj ) to srnall change of safety('~]'). Indeed 

dU dS 
-u:-s = l- ;3 . 

vVhen one uses the death averting system, shown iu Fig. 1 h, Lhe expected 
return R.(x), given by (4), :should be introduced in formula (8). Oue can also 

find the corresponding safety index S(x) = 1 -,; ~.i:~. Since 
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one gets 

a(x) = 

Then 

Po/x[R(xW + (1- Po/x)[R11·(x)- R(x)] 2 
= 

[Po/x(1- pofx)2 + (l- Po/x)(pofx)2 ][R11·(xW = 

Po/x(1- Pofx)[Ru (xW . 

a(x) v?!iao 
S(x)=1-K;( EQ)R () =1-" -. - . 1-x Yx x-po 

Since 

S(1) = 1 - K;j Po 
1- Po 

(1 0) 

is the tolerable safety index, denoted by S0 , one can write 

S( ) V Po l -PO ( S ) ~- · - Po X = 1- K; -- · -- = J- J- 0 --. 
1-po x-po x-po 

( 1 l) 

It is necessary to mention that the notion of maximum tolerable probability 
(p0 ) as well as the minimum tolerable safety (So) is subjective. Some individuals 
can regard the level of safety offered by the social security system as tolerable. 
Others, mostly richer people, will regard S0 as untolerable and spend a lot to 
increase their safety. 

Observe that R(x) is a strictly concave, decreasing function of x and S(x) 
is strictly concave, increasing. Then R(x) = cp[S(x)] for growing :1: (x ::::: 1) is 
strictly concave, decreasing. 

As an example, in Fig. 2, the graph of R = cp[S] is plotted for Ru = 1.1; b = 
0.05 ; .A= 0.4; po = 0.001; S0 = 0.1. A constant utility curve R(x)[S(x)p-.8 = 
U = const. for (3 = 0.5 is also plotted in Fig. 2. There is a unique point x = x 
where both curves are tangent. Regarding x as a control parameter one can say 
that a unique control strategy x = x such that maxxU(x) = U(x) subject to 
the constraint R(x) = cp[S(x)] exists and is unique. 

One can derive the optimum strategy analytically. Indeed, the necessary 
condition of optimality requires that 

dU = oU dR + oU ds = Po[Sl- .8 dR + (1 _ (J)Rs- !3 ds] = 
dx oR dx oS dx dx dx 

= U[2_ dR + (1- (3)2_ dS] = 0 (12) 
Rdx Sdx 
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Since U > 0 equation (12) can be written in an equivalem. forrn , I<ulikowski 
(1998C) : 

s 1- (3 
= R w 

where w = - ddR : ddS can be called the marginal price of snbstitution (between .x .x 
-dR and dS). 

The relation (13) called optimum Sj R relation, which speci6es the necessary 
condition for the strategy x = x to be optimum, becomes also sutficient when 
the function R(x) = cp[S(x)] is strictly concave, decreasing, as shown in Fig. 2. 

One can also observe that the optinmm strategy requires that the slope of 
the tangent to the admissible set R = cp(S), i. e. 

w(x) = tawy, 

derived from the slope of straight line, which int.ersects the point {S(i:), R(x) }, 
1.e. 

R(x) 
tano: = S(x) , 

should equal the sensitivity (of the investor) to safety, (1- ,13), i.e. 

tan /' = 1 _ (3. 
tano: 

(1 4) 

The rules of (13) or (14) can be used to find effectively the unique optimum 
survival strategy x = x, such that: 

max U(x) = U(x); 
xE>2 

where 

n = {xiR(x)- cp[S(x) ] = 0, X::::: ]}. 

In the numerical example, illustrated by Fig. 2, 

R(x) 

S(x) 

1.1- 0, 05[e0.4 (x-1) - 1](1 - 0.001 ), 
X 

0.999 
] - 0.9 

X - 0.001' 

The optimum strategy x ;;:::; 3.4; R(:i) = 1.04; S(x) 
w =tan I' = 1, and the condition (14) for /3 = 0.5 holds. 

(15) 

0, 52; tan o: 2· 
' 
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4. Extensions 

In Section 3 we dealt with the continuous survival strategy :r. However, in many 
situations the survival strategy is discrete. For example, people are confronted 
with a set n of death involving accidents (A.1, A.2, ... , AM), each characterized 
by the given probability of occurrence p1 , • •• , PM. They have also a. possibility 
to reduce each probability by a given factor Xk > 1, k = 1, ... , NI, at the expense 
of given cost (Ekck), of the death-averting devices applied. To each A.~; one can 
assign an xk-factor and the corresponding values of Rkl S~;. The problem is to 
find a subset [20 c n consisting of accidents with reduced probabilities, i.e. with 
Xk > 1. 

In order to solve the present problem it is helpful to assume: 
a. The accidents A.~; E rl are independent in the set rl, so the probability of 

death following at least one accident becomes 

For the survival probability one gets 

u d M ( Pk) P = 1 - P = rrk=l 1 - - . 
Xk 

(17) 

b. The indices k in the set n are arranged according to tbe increasing 
marginal prices of substitution Wk = - ~~:' LJ.Rk = Rk - Rk-1; :JSk = sk -
Sk_ 1 ; k = 1, ... ,M, so the most effective device (i.e. one with the smallest 
value of cJ/x1 or wi) is the first and the device having the largest value of WM 

is the last in the sequence. 
In order to find wk, k = J, ... , M one should apply the multistage (i.e. for 

k = l, 2, ... ) model shown in Fig. 1, wbere the R'k value is attained with 
probability 

The value R% = 0 is attained with probability Pf = 1 - p/,. Then the 
expected return (Rk) at the stage k becomes 

w 'Lfc 
Rk = R'kp'k, R'k = Ra(1 + 0 R - 0 R) )p 

ro •·a ro ' ·a 
(J 8) 

and the risk 

ok = v;;;;iR'k. (1 9) 

Using (18) (19) one can derive the safety at each stage: 
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Since "' is unknown, one can assume that it is derived for the worst tolerable 
case, i.e. k = 0; and pu = 1r1 , which corresponds to the minimum tolerance 
safety So. For example, the minimum tolerable safety can be set equal to 0.1. 
Then the value of "' becomes 

and sk can be written as 

Sk = 1 - (1 - So) 
(1- Iri)pk. 

(20) 

One can also derive the values of the marginal price of safety wk: 

(21) 

as well as the increasing (by assumption b) sequences of 

Rk 
tan "/k and decreasing tan O!k = sk , /;; = 1, 2, ... 

One should observe that upon constructing the discrete process (18), (20) 
the continuous function R = <p(S), introduced in Section 3, can be piecewise 
approximated by the linear segments with the slopes -wk, k = 1, 2,, .... As a 
result the optimum strategy i: = { x 1 , x2 , . .. , Xk} should be formulated in terms 
of the number k of death-averting devices, which maximes utility, i.e. choosing 
the segment tangent to constant utility curve. 

Taking into account the geometrical interpretation of l'k, ak (see Fig. 2), 
one can try to reach the optimum relation between "/k, ak, by approximation. 
For that purpose one can derive the sequence of errors 

ok =I tan'Yk - (1- !3)1, 
tan ak 

k=1,2,3, ... 

The optimum value of k = k will correspond to 

(22) 

When k is derived one finds easily the optimum life-saving strategy, Le. the 
strategy which maximizes the utility function: 
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5. Numerical example 

In order to facilitate the understanding of the proposed model consider a nu­
merical example. One has to choose a survival programme within J..!f = 3, sta­
tistically independent survival areas, characterized by probabilities p1 = p2 = 
P3 = p. Let the probability reducing factors (:ri) and costs of death averting 
devices i1Ri) be given, i.e. 

Xi = 4; X2 = 3; X3 = 2; 

- 6.R1 = 0.1, -6.R2 = 0.11, -6.R3 = 0.12. 

Assume also Ro = 1.1, S0 = 0.1, p = 0.001 , (3 = 0.5. 
Using (16) and (17) one gets 

P't = (1 - pjxl)(1- p)(1- p) = 0.998; 
p~ = (1 - pj xJ)(1- pjx2)(1 - p) = 0.9985 
P3 = (1 - pjxl)(1 - pjx2 )(1- pjx3 ) = 0.999 

Then, by (20), (21) and (22) one obtains 

pf = 1 - p]' = 0.002, 
p~ = ] - p)j = 0.0015 
P~ = 1 - P3 = 0.001 

sl = 1- o.9 o.997 . o.oo2 = o.266; w = - f::lRl = .o.1 = o.602; 
0.003 0.998 f::lS1 0.266-0.1 

I 
sl I I 0.266 I 81 = 0.602 -R . -0.5 = 0.602 - 0.5 = l-0.3401 = 0.34 

l 1.1-0.1 

In the similar way one finds also 

s2 = o.364, w2 = u 22; o2 = 1 - o.o4J 1 = o.04J, 

s3 = 0.481, w3 = 1.026; 83 = IO.l58 l = o.158 

It is possible to observe that mink(ok), k = 1, 2, 3, is attained for k = 2. 
Then, the optimum death aversion programme should consist of two devices 
(with x 1 = 4 and x2 = 3). The device with x 3 = 2 is too expensive and does 
not contribute to an increase of utility. 

It should be observed that according to the model proposed in order to 
increase the probabili ty of survival one should decrease tb e lifetime consumption 
as the cost of buying a. number of death-avert ing devices or services. 

It is well known that the lifetime consumption can be also increased by 
dropping life-shortening activities, such a.s smoking cigarettes or taking drugs. 
In such a case the life expectancy Te increases by the factor 1 + y, and the 
discount factor increases by 
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At the same time the consumption R'( increases to 

Ri = Ra(1 +: +Rc)(p + L'lp) , 
ro ·0 

where c = savings on cigarettes & drugs. As a result one gets an increase of pJ. 
and an increase of safety, say to sr > sl' and of consumption , to RT > Rl' If 
the decision was taken at the starting point (k = 1) one gets an improved new 
starting position {Si,Ri}, as compared to the starting position {S1 ,RI} . 

The last observation indicates that using the proposed methodology one can 
find the best survival strategy, enabling one to buy a proper number of death­
averting devices and to drop the activities which endanger li fe expectancy. 

One can also observe that -L'lRY; = R/;_ 1 - RY; = ck -FaR:: and the rich people 
(with Por > P0 , and other parameters unchanged) face a small er price of safety 
(wkr < wk)· Then, they can afford a richer death-averting program (i.e. kr > k). 

The present methodology can be also applied to study the impact of social 
expenditures on the social safety. If, e.g., the government considers to increase 
safety (i.e. by reducing p0 jx ) by increasing taxes for expenditures in health 
services etc., according to the cost function ( 3) the best strategy ( i: ) to make 
the individuals happy (i.e. to maximize individual utility) can be derived by 
formulae (13) and (14). 

References 

ALLAIS, M. (1953) Le comportement de l 'homme rationnel devant le risque. 
Econometrica, 21, 503-546. 

FISHER, I. (1906) The nature of capital and income. MacMillan, New York. 
JONES-LEE, M. (1974) The value of changes in the probability of death or 

injury. Journal of Political Economy, 99 , 835-849. 
KULIKOWSKI, R. (1998A) Portfolio optimization: Two factors-utility approach. 

Control and Cybernetics, 3. 
KULIKOWSKI, R.. (1998B) Portfolio optimization: Two rul es approach. Con­

trol and Cybernetics, 3. 
KULIKOWSKI, R.. (1998C) Optimum safety/return principle and applications. 

Bulletin of Polish Academy of Sciences, Ser. Technical Sciences. 
KULIKOWSKI, R.., LIBURA, M., SLOMINSKI, L. (1998) Wspomag anie decyzji 

inwestycyjnych. IBS PAN, Warsza.wa. 
LINNEROOTH, J . (1975) The evaluation of life-saving: a survey. IIASA RR-

15-21. Laxenburg, Austria. 
REYNOLDS, S.F . (1956) The cost of road accidents. Jov.rna.l of the Royal 

Statistical Society, 119, 393-708. 


