Dedicated to
Professor Jakub Gutenbaum
on his 70th birthday

Control and Cybernetics
vol. 29 (2000) No. 1

Optimization of survival strategy by application of safety
dependent utility model

by
Roman Kulikowski

Systems Research Institute, Polish Academy of Sciences
Newelska 6, 01-447 Warsaw, Poland

Abstract: This paper deals with life-saving decisions. The de-
cision maker can buy a number of death-averting devices or services
which increase his safety S at the expense of the discounted future
consumption R. The safety and consumption depend parametrically
on the death probability p and the probability reducing strategy x,
i.e. S(p/z); R(p/x). The two-factors utility function U(S, R) is used
to find the optimum strategy = = &, which maximizes U(z). One
can show that the unique strategy & exists and can be effectively
derived. Many applications of proposed methodology are indicated.
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1. Introduction

The survival model introduced in the present paper is supposed to support life
saving decisions, e.g. when one decides to increase the probability of survival
by buying the death-averting devices or services, which decrease his consump-
tion. A typical decision of that type concerns the buyer of a car, which can be
optionally equipped with a number of death-averting devices, such as: air bags,
ABS, ESP, winter tyres, tyre chains, etc. The more devices one buys, the less is
left for the remaining consumption. In other words, the driver’s safety increases
at the expense of consumption. A similar problem is obtained when trying to
find the rational number of medical prophylactic and other death averting ser-
vices, or - buying anti assassination devices or services. In order to find the best
relation between increase of safety and loss of consumption, one should apply a
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utility funetion depending explicitly on two factors: safety and expected future
consumption (discounted future return). In the present paper the two factors
model of utility, proposed by Kulikowski (1998A, B, C) has been used. The
notion of safety S is opposite to the notion of risk, expressed by standard devi-
ation. Besides safety the model uses (as the second factor) the expected future
return, i.e. consumption R. Both factors depend parametrically on the death
probability p over the probability reducing factor z, i.e. p/z. Then, one can try
to find the best utility (U[S(z), R(z)]) maximizing strategy » = &. It is shown
that the unique & exists and it can be derived effectively.

Several extensions of the basic problem are possible. One of them is con-
cerned with discrete (zg,k = 1,2,..., M) strategies. In such a case one should
choose the best number k = k of independent death averting devices or services.

2. The survival model

Assume that an investor expects to get a return R, out of the capital Py, which
is used for consumption next year. When the investor, in addition, receives a
salary w (consumed within the year) his total consumption becomes PyR,, + w.
Assume also that such an investment-consumption pattern is repeated in the
future years, so in case the investor faces life expectancy T, his discounted rate
of consumption (denoted R*) becomes
w T —q
R = PoRo(1+ 55-)ps p=E;5,(1+7)7, (1)
PP, 4

where r = discount. factor.

The investor is, however, exposed to a death accident with the given prob-
ability pg and his consumption rate, in such a case, RY = 0. In other words
one gets a binary model, shown in Fig. 1, where the state of being dead is
characterized by R? = 0, and pp; while the state of survival is characterized by
R"™ and the probability of survival 1 — pg. The expected rate of consumption
for the present model is obviously

R =(1—po)R" (2)

Assume also that the investor can reduce the death probability by a factor
of z at the expense of cost ¢(z). For example, a car driver is exposed to death
in a road accident. He can, however, reduce the value of py by buving a car
equipped with airbags, winter tyres, ABS, the Bosch ESP system, ete. The
dealers promote the safety increasing systems by specifying the reduction of
death casualties. For example, ESP is claimed to reduce the number of accidents
by 25 % (or the probability of death casualties by 2 = 3/4). The cost of each
safety oriented system increases along with the x factor. A similar situation
exists in the area of health services. One can reduce the death probability by
prophylactic actions, vaccination, screening etc., at the expense of additional
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Figure 1. Modelling the death-averting system

costs c(x). For additional references see Jones-Lee (1974), Linnerooth (1975),
Reynolds (1956).

One can also decrease the probability of assassination by employing the
bodyguards or buying an armoured car etc. Since generally the cost function
increases along with x, with an increasing rate, it is possible to approximate
e(x) by a convex function increasing at the rate A

e(z) =gleM*V - 1], (3)

where ¢, A - given positive numbers, and ¢(1) = 0.
As a result the expected return

B(:L‘) . Ru(ﬂ‘.‘)(] —‘pD/.'I:), (4)
where
R*(z) = R* - b[e)t[x— L) 1], b= ip;
Py
is a strictly concave, decreasing function of  which attains maximum value
R(1) = R™.

The application of death-averting systems transforms the model of Fig. 1a
into the model of Fig. 1b, where the reduced death probability p = pg/z is
achieved at the expense of the cost ¢(w) reducing original consumption R*. In
order to compare the lotteries a and b in Fig. 1, and find the best survival
strategy x = &, the investor should apply a properly chosen utility model. The
utility function should be sensitive to the death probability, survival strategy z,
and consumption R(z).
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3. The utility model

The most popular utility function, used in economic sciences to evaluate con-
sumption (called Z), is a concave increasing function f, i.e.

U= f(2)
A typical example of such a function is
U =aZP, - (5)

where a, 3 are given positive numbers, 3 < |. _

Since in the investment model one uses the notion of future consumption
(denoted by Z = R, Fp), which is generally unknown, it is natural to regard Z as
a random variable with expected value Z = }:,{g }. The expected value, however,
does not characterize the random variable completely. When constructing a
subjective utility model, which is supposed to account for decision under risk, it
is desirable to have a complete description of random variable, e.g. in the form of
probability distribution function (p.d.f.). In many situations, such a knowledge
is missing and one should be satisfied with knowing certain p.d.f. parameters,
such as expected value and variance (¢?) only. It should be mentioned that
many economists, e.g. Irving Fisher (1906), Allais (1953), argued that people
base their choices among gambles on the variance of the gambles as well as
expectations. The expectation alone is insufficient to explain risky decisions.

In the model proposed by Kulikowski (1998A. B, C) one assumes that utility
depends on two factors: 1. the expected return Z = PyR, and 2. the net
expected return Y = Py(R — ko).

The standard deviation ¢ is a measure of risk. It is multiplied by the sub-
jective price of the risk (x) the investor attaches to o. Then ko can be regarded
as the subjective cost of risk characterizing the investor. N

When & (and consequently Y') is fixed, the random variable ¥ can belong
to two separate sets of:  a. worse (unprofitable) returns: Y <Y b. better
(profitable) returns): ¥ > Y.

In the case when the probability density function of ﬁ i.e. F{ﬁ’.), is known,
one can easily derive the probabilities of worse (p) and better (1 — p) returns:

p= fY F(R)dR, 1—p= 7F(R):.£R
.9 J

If, for instance, F(R) is normal one gets for k = 1,p~ 1/6 and 1 — p = 5/6.
When the investor feels more averse to the risk he will set x > 1, getting smaller
probability of worse outcomes, i.e. p < 1/6, and vice versa - assuming x < 1, i.e,
when he becomes risk fond, he gets p > 1/6. In other words the investor should
decide what probability for worse cases (when Y < Y(p)) he can tolerate or
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accept. He can also regard Y as the lower bound for better retwrns i.c. Y>Y
(which, e.g. will not induce bankruptey). Knowing R.o and Y the investor can
derive easily x and p.

It should be observed that fixing & one can also formulate a simple acceptance
rule: the investment is acceptable when the return R is at least equal Rp + ko,
ie.

R > Rp + ko, (6)

where Rp is the return of risk free investment. such as buying the government
bonds. Obviously Rr and R are positive.
The two-factors utility can be written in the form

U = F[Z,Y]. (7)

Since Z and Y are expressed in monetary terms it is natural to assume that
F is "constant returns to scale function™ (otherwise one could increase utility
by converting each $ to 100 cents). As a consequence of that assumption one
can express U in an equivalent form, Kulikowski (1098A, B):

Z 1 .
U=Yf(5)=PoRSf(3), ®)
where
b4 o Sl
S = 7= 1— n}?—. can be called the safety index.

Observe that the maximum of safety, S,, = 1. one gets for ¢ = 0. and due to
(6), S=Rr\R>0.

In the similar way (as in the case of (5)) one can approximate the function
(8) by f(-) = (-)?, which yields

U=PRRS"™, 0<p<1 9)

The function (9) is expressed in monetary units, in the same form as the
expected monetary return Z = PyRR. However, the real value of that return is
decreased by the factor S'=8, which for risky investments is less than 1.

One should observe that the parameter 1 — 3 can be regarded as the sensi-
tivity of the investor (4¥£) to small change of safety (42). Indeed

dU dS

1—3.
u s b

When one uses the death averting system, shown in Fig. 1h, the expected
return R(zx), given by (4), should be introduced in formula (8). One can also

find the corresponding safety index S(2) =1 — h?‘_((t)) Since
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a*(2) = po/z[R()?+ (1~ po/a)[R*(z) — R(@)]" =
= [po/a(1 = po/x)* + (1 = po/2)(po/x)*)[R" (x)}* =
= po/a(1 - po/2)[R" (2)]".
one gets

o(z) = \/%(1 —%)Ru(a,-).

Then
S(m)-:l—m(}_gxg(%:l—g xﬁopo' (10)
Since

Po
S1)=1—-&
(1) &

is the tolerable safety index, denoted by Sy, one can write

N Po 1—=po _ 1—-po
S(.‘L)—l—.‘{ q‘m—-l—(]—s‘(}) 1‘—_% (]1)

It is necessary to mention that the notion of maximum tolerable probability
(po) as well as the minimum tolerable safety (Sg) is subjective. Some individuals
can regard the level of safety offered by the social security system as tolerable.
Others, mostly richer people, will regard Sy as untolerable and spend a lot to
increase their safety.

Observe that R(z) is a strictly concave, decreasing function of = and S(z)
is strictly concave, increasing. Then R(z) = ¢[S(z)] for growing = (z > 1) is
strictly concave, decreasing.

As an example, in Fig. 2, the graph of R = ¢[S] is plotted for R* = 1.
0.05; A = 0.4; po = 0.001; Sp = 0.1. A constant utility curve R(z)[S(z)]
U = const. for # = 0.5 is also plotted in Fig. 2. There is a unique point 2 = &
where both curves are tangent. Regarding 2 as a control parameter one can say
that a unique control strategy x = & such that maz,U(z) = U(&) subject to
the constraint R(z) = ¢[S(z)] exists and is unique.

One can derive the optimum strategy analytically. Indeed, the necessary
condition of optimality requires that

I; b
1-g

dU SUdR &Uds _ . 4 dR gl
o Rn Tl s he gt =R ] =
1dR 1ds
=Vl + 0D =" e
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Figure 2. Interpretation of optimum strategy
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Since U > 0 equation (12) can be written in an equivalent form, Kulikowski
(1998C):

S 1-8

i 3

=3 (13)
where w = —%% ; % can be called the marginal price of substitution (between
—dR and dS).

The relation (13) called optimum S/R relation, which specifies the necessary
condition for the strategy = & to be optimum, becomes also sufficient when
the function R(z) = ¢[S(x)] is strictly concave, decreasing, as shown in Fig. 2.

One can also observe that the optimum strategy requires that the slope of
the tangent to the admissible set R = ¢(S5), i.e.

w() = tan-y,

derived from the slope of straight line, which intersects the point. {S(&), R(2)},
ie.

_ R@)
tana = E(_:f')_’

should equal the sensitivity (of the investor) to safety, (1 — 3), i.e.

tany -
tanOr&] B (14)

The rules of (13) or (14) can be used to find effectively the unique optimum
survival strategy x = &, such that:

maxU(z) = U(%); (15)

where
Q = {2|R(z) -~ ¢lS(2)] =0, z>1}.

In the numerical example, illustrated by Fig. 2,

R(z)

0.999
- =L [ ———.,
5() 1 =09 =000

The optimum strategy & =~ 3.4; R(&) = 1.04; S(z) = 0.52; tana = 2;
w = tan~y = 1, and the condition (14) for 3 = 0.5 holds.
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4, Extensions

In Section 3 we dealt with the continuous survival strategy x. However, in many
situations the survival strategy is discrete. For example, people are confronted
with a set  of death involving accidents (A;, As, ..., Ay ), each characterized
by the given probability of occurrence py....,pa. They have also a possibility
to reduce each probability by a given factor 2z, > 1,k =1,..., M, at the expense
of given cost (Xxck), of the death-averting devices applied. To each A, one can
assign an z-factor and the corresponding values of Ry, Si. The problem is to
find a subset Qg C Q) consisting of accidents with reduced probabilities, i.e. with
zp > 1.

In order to solve the present problem it is helpful to assume:

a. The accidents 4, € Q are independent in the set {2, so the probability of
death following at least one accident becomes

p? = p{A1UAy, ... ,UAy} = 1-TIML 1 —p(Ak)] = 1= TT)L, (1 - 7:—)( 6)

For the survival probability one gets

pPr=1-pt=ML (1—-_)- (17)
b. The indices k in the set £} are auanged according to the increasing
marginal prices of substitution wy = —"_T§f ARy = R — Rp_; ASp = 8 —

Sk—1; k=1,...,M, so the most effective device (i.e. one with the smallest
value of ¢1 /21 or w;) is the first and the device having the largest value of wys
is the last in the sequence.

In order to find wi,k = 1,..., M one should apply the multistage (i.e. for
k = 1,2,...) model shown in Fig. 1, where the R} value is attained with
probability

pi = ﬂ'k-HH?:l(l = pi/%i), Ty = n?f:k-l-l (1 —pj)-

The value R{ = 0 is attained with probability P = 1 — p}. Then the
expected return (Ry) at the stage k becomes

i g w E" c'T
and the risk
O = pkpk}?“ (19)

Using (18) (19) one can derive the safety at each stage:
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Since & is unknown, one can assume that it is derived for the worst tolerable
case, i.e. k = 0; and p* = m;, which corresponds to the minimum tolerance
safety Sp. For example, the minimum tolerable safety can be set equal to 0.1.
Then the value of x becomes :

m 5B = 050

and Si can be written as

S =1—(1— TTl.Pﬁ
k=1-(1-5S) T=mipt (20)

One can also derive the values of the marginal price of safety wy:

—AR;  Ri_1— Ry
Wi AS}; Sk = Sk—] 3 ( )

as well as the increasing (by assumption b) sequences of

3 R
tan vy, and decreasing tanaj; = S—k, b= 120
k

One should observe that upon constructing the discrete process (18), (20)
the continuous function R = ¢(S), introduced in Section 3, can be piecewise
approximated by the linear segments with the slopes —wi, k= 1,2,,.... As a
result the optimum strategy & = {z;,zs,..., 2} should be formulated in terms
of the number k of death-averting devices, which maximes utility, i.e. choosing
the segment tangent to constant utility curve.

Taking into account the geometrical interpretation of i,y (see Fig. 2),
one can try to reach the optimum relation between 7, o, by approximation.
For that purpose one can derive the sequence of errors

tan v
k —t

= (1= k=123 5 22
ok _(1-p), k=123 (22)

The optimum value of k = k will correspond to

min d, = d;:.
P

When k is derived one finds easily the optimum life-saving strategy, i.e. the
strategy which maximizes the utility function:

max U[Rg; Sk] = U[Ry; St
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5. Numerical example

In order to facilitate the understanding of the proposed model consider a nu-
merical example. One has to choose a survival programme within M = 3, sta-
tistically independent survival areas, characterized by probabilities p; = py =
p3 = p. Let the probability reducing factors (x;) and costs of death averting
devices AR;) be given, i.e.

Ty =i e ='3; my =2
—AR] =G.1, —f_\Rg = 0.1], —ﬂRg, =012

Assume also Rg=1.1, S =0.1, p=0.001, 7= 0.5.
Using (16) and (17) one gets

p¥ = (1 —p/z1)(1 = p)(1 — p) = 0.998; p{ =1-p} =0.002,
Py = (1—p/z1)(1 —p/za)(1 —p) =0.9985  pf =1—p§ =0.0015
p§ = (1 —p/z1)(1 — p/2)(1 — p/x3) = 0.999 p§ =1 —p§ =0.001

Then, by (20), (21) and (22) one obtains

0.997 0.002 su,. . DB 0d e
=108 0.003 0998 ~ 1206w = AS;  0266—0.1 0.602;
S 0.266 .

§y= ‘U.GOZE —0.5’ — Io.ﬁozm —0.5| = |—0.340| = 0.34

In the similar way one finds also
Sy = 0.364, wy = 1.122; &5 = | —0.041| = 0.041,
S3 = 0.481, wy = 1.026; &3 = [0.158] = 0.158

It is possible to observe that ming(dx).k = 1,2,3, is attained for k = 2.
Then, the optimum death aversion programme should consist of two devices
(with z; = 4 and 25 = 3). The device with 23 = 2 is too expensive and does
not contribute to an increase of utility.

It should be observed that according to the model proposed in order to
increase the probability of survival one should decrease the lifetime consumption
as the cost of buying a number of death-averting devices or services.

It is well known that the lifetime consumption can be also increased by
dropping life-shortening activities, such as smoking cigarettes or taking drugs.
In such a case the life expectancy T, increases by the factor 1 + y, and the
discount factor increases by

Dp=Z( 4 0)~ = 5T (14 7)7F = SEE (1 4 9)
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At the same time the consumption RY increases to

w +

Ri = Ra(1 + W (p+ Ap),
where ¢ = savings on cigarettes & drugs. As a result one gets an increase of pY'
and an increase of safety, say to ST > S, and of consumption, to R} > Ry. If
the decision was taken at the starting point (k = 1) one gets an improved new
starting position {S7, R}}, as compared to the starting position {5y, R;}.

The last observation indicates that using the proposed methodology one can
find the best survival strategy, enabling one to buy a proper number of death-
averting devices and to drop the activities which endanger life expectancy.

One can also observe that —AR} = R}, — R} = ¢; i and the rich people
(with Py, > Fy, and other parametels unchanged) face a smaller price of safety
(wir < wy). Then, they can afford a richer death-averting program (i.e. k, > k).

The present methodology can be also applied to study the impact of social
expenditures on the social safety. If, e.g., the government considers to increase
safety (i.e. by reducing po/z) by increasing taxes for expenditures in health
services etc., according to the cost function (3) the best strategy (i) to make
the individuals happy (i.e. to maximize individual utility) can be derived by
formulae (13) and (14).
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