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Abstract: We consider a general combinatorial optimization 
problem in which the set of feasible solutions is defined as a given 
and fixed family of subsets for some finite ground set. To any element 
of the ground set the so-called weight is associated. The problem 
consists in finding a feasible subset for which the sum of weights of 
its elements is the minimum. 

When the weights of elements vary or a.re estimated with some 
accuracy, then the solution of the problem obtained for some initial 
weights may appear non-optimal. In this paper we consider the 
quality of a given solution in the case of weights perturbation or 
inaccuracy. Namely, we study the relative error of a. given solution 
as a function of particular weights perturbation. We also calculate 
the maximum perturbation or estimation errors of weights which 
preserve the optimality of a. given solution of the problem. 

Keywords: combinatorial optimization, sensitivity analysis, ac­
curacy function, stability function, accuracy radius, stability radius. 

1. Introduction 

Let E = { e1, ... , en} be a. finite set. Assume that for e E E the so-called weight 
c(e) ~ 0 of element e is given. Denote by c = (c(el), ... , c(en))T E R')" the 
vector of weights. For a. given vector c a.nd a. subset Ss;; E , the weight w(c, S) 
of subset S is defined, where 

w(c, S) = L c(e). (1) 
eES 
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Let Q be an arbitrary family of subsets of E. Define 

m(c,Q) = min{w(c,S): SE Q} (2) 

with a standard convention that m(c, Q) = +oo if Q = 0. Similarly, 

M(c,Q) = max{w(c,S): SE Q} (3) 

and M(c, Q) = - oo if Q = 0. 
Assume that there is a specified family of sets F ~ 2E. Elements of F are 

called feasible subsets or feasible solutions. 
For a given set F and the vector of weights c the combinatorial optimization 

problem is defined in the following form: 

Find FE F such that w(c, F) = m(c, F), (4) 

or 

Find FE F such that w(c,F) = M(c ,F). (5) 

Most of the discrete optimization problems can be stated in the above form. In 
the following we will consider mainly the minimization problem ( 4) and we will 
use also a more standard notation for this problem: 

min w(c,F). 
FEF 

(6) 

It is assumed that the set F of feasible solutions of the problem is fixed, but the 
vector of weights may vary or is estimated with errors. Moreover, it is assumed 
that for some originally specified vector of weights c0 ~ 0 an optimal solution 
F 0 E F of the problem ( 4) is known. The main question considered in this 
paper is the following: 

What is the quality of the solution F 0 when the vector of weights changes? 

The quality of an arbitrary feasible solution F E F for a given vector of 
weights c may be measured by the value of the so-called relative error e( c, F) of 
this solution, where 

( F) 
= w(c, F)- m(c, F) 

e c, m(c,F) · (7) 

In fact, we will be interested in the maximum value of this error when the vector 
of weights c belongs to some specified set. Two particular cases are considered 
in the following. 

In the first case we assume that the weight of any element e E E may be 
perturbed by no more than some given percentage of its original value c0 (e) . 
This leads to a concept of the accuracy function. The value of the accuracy 
function for a given o E [0, 1) is equal to the maximum relative error of the 
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solution F under the assumption that the weights ofelements are perturbed by 
no more than J · 100% of their original values. 

In the second case we are interested in absolute perturbations of weights of 
elements and then the quality of a given solution is described by the so-called 
stability (or sensitivity) function. For a given f2 2: 0 the value of the stability 
function is equal to the maximum relative error of a given solution under the 
assumption that no weight of element is increased or decreased by more than [!. 

The accuracy and stability functions are introduced in (Libura, 1999). In 
this paper we give some extensions of the results presented in (Libura, 1999). 
Namely, we study the case when changes of weights are restricted to some 
arbitrary subset X ~ E of elements. We also introduce the concept of the 
so-called accuracy radius of the optimal solution F 0

. The value of this radius 
corresponds to the maximum percentage changes of weights which preserve the 
optimality of F 0

• Similarly, for the stability function we have the so-called 
stability radius which corresponds to the maximum absolute deviation of weights 
which preserve the optimality of po. 

The paper is organized as follows. In Section 2 we give general formulae 
for calculating the accuracy and the stability functions as well as corresponding 
radii. Section 3 describes a method of approximating these functions and radii 
using the so-called k-best solutions of the problem. 

2. Accuracy function, stability function and 
corresponding radii 

Let c0 be the original vector of weights for which F 0 is an optimal solution of the 
problem (4), i.e., w(c0

, F 0
) = rn(c0 ,F), and assume that m(c0

, F) > 0. Denote 
by X the set of elements of E for which weights may change. Let 

C 0 (X) = {c ERn: c(e) = c0 (e), e E E \ X} . (8) 

For a given J E [0, 1) and X ~ E we will consider vector of weights restricted 
to the set 

(9) 

This means that elements of the set To ( c0
, X) are obtained from the vector 

of weights c0 by increasing or decreasing any weight c0 (e), e E X, by at most 
J · 100% and keeping all weights c0 (e), e E E \X, unchanged. 

For an optimal solution F 0
, an arbitrary set of elements X ~ E, and J E 

[0, 1), the value of the accuracy function a(F0
, X, J) is defined as the maximum 

of the relative error of the solution po over the set Tb(c0
, X), i.e., 

a(F0 ,X,J) = max e(c,F0
). 

cETo(c0 ,X) 
(10) 
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In a similar way the stability function s(F0
,(}) is defined. Let e(X, c0

) = 

min{c0 (e): e EX}. For(} E [0 , e(X, c0
)) and X~ E define 

K 12 (c
0

, X)= {c E C 0 (X) : le( e)- c0 (e)l::; (}, e EX}. 

The stability function provides the maximum relative error of the solution F 0 

over the set K 12 (c
0 , X), i.e., 

(11) 

In (Libura., 1999) the general formulae for calculating values of the accuracy 
and the stability functions in the case of X = E were given . The following theo­
rem extends these results for an arbitrary subset X <;;; E. Denote for S', S" <;;; E, 

S' 0 S" = (S' \ S") u (S" \ S'). 

Theorem 1 For an optimal solution F 0
, X<;;; E , and 0 E [0 , l) , 

(1 2) 

For an optimal solution F 0
, X<;;; E, and(} E [0, e(X, c0

)), 

(F
o X ) - w(c0

, F 0
)- w(c0

, F) + (} · I(F0 0 F) n XI 
s , , (} - max ( ) I I . FEF w c0 , F - (}. F n X 

(13) 

Proof. We will prove only the first part of the theorem; the proof of formula. 
(13) is analogous and will be omitted. From (10) and (7) we have: 

where 

ma.x 
cETo(c0 ,X) 

w(c, F 0
)- m(c, :F) 

m(c,:F) 

ma.x (w(c, Fo) - 1) 
cET8 (c",X) m(c, :F) 

( 
w(c, F 0

) 
1
) max -

cETo(c0 ,X) minFEFw(c, F) . 

max ma.x (w(c, Fo) - 1) 
cET8 (c 0 ,X) FEF w(c, F) 

w(c, F 0
)- w(c, F ) 

ma.x max 
FEF cET8 (c" ,X) w(c, F) 

l 
max max , 
FEF cE T8 (c" ,X) w(c, F) 

(14) 

l = w(c, (Fo \F) n X)- w(c, (F \ F 0
) n X )+ w(c , (Fo \ F )\ X ) - w(c, (F \ F 0

) \ X ). 
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The maximum over c E T5 (c0 ,X) in (14) is attained when c(e) = c0 (e) + 
5 · c0 (e) for e E (F 0 \F) n X, and c(e) = c0 (e)- 5 · c0 (e) for e E F n X. 
Observe that for all other elements of the set E the weights remain unchanged, 
i.e., c(e) = c0 (e) fore E E \X. Thus, finally, we have 

l' 
a(F

0

,X,5)=max ( F) s: ( F X) ' 
FEF W C0

, - u · W C0
, n 

where 

l' = w(c0
, (F 0 \F) n X)+ 5 · w(c0

, (F 0 \F) n X) - w(c0
, (F \ F 0

) n X) 

+ o · w(c0
, (F \ F 0

) n X)+ w(c0
, (W \F)\ X)- w(c0

, (F \ F 0
) \X) 

w(c0
, Fo \F)- w(c0

, F \ F 0
) + o · w(c0

, (Fo \F) n X) 

+ 0 . w ( C0
, ( F \ F 0

) n X) 

w(c0
, F 0

) - w(c0
, F)+ o · w(c0

, (Fo ® F) n X). 

• 
As a simple corollary to Theorem 1 we obtain the formulae derived in 

(Libura, 1999) for the accuracy and the stability functions in the case of X = E: 

Corollary 1 For an optimal solution F 0 and o E [0, ] ) , 

( 
0 s:)- w(c0 ,F0 ) - w(c0 ,F) + o·w(c0 ,F0 ® F) 

a F ,E, u - v;t; (1 - o)w(c0 ,F) · 

For an optimal solution F 0 and (! E [0, Q(X, c0
)), 

(
Fo E ) - w(co, Fo)- w(co, F)+(! · IFo ® Fl 

s ' , (! -VJtJ w(c0 ,F) - f2 · 1FI · 

Let 

(15) 

and 

(F
oX ) - w(c0 ,F 0 ) - w(c0 ,F)+f2 · 1(po ® F)nXI 

SF , ,(! - ( ) I I . w c0 ,F - (! · FnX 
(16) 

Theorem 1 states that the accuracy function can be computed for a given 
F 0 and X<;;; E as a pointwise maximum of IFI functions aF(F0

, X, o). Observe 
that due to the fact that aFa(F0 , X,5) = 0 for 5 E [0,1) , only these functions 
aF (F 0

, X , 5) which are nonnegative for a given 5 must be considered in formula 
(12). Moreover, it is easy to see that any function aF(F0 ,X,o) is a continuous 
nondecreasing function of o in an interval of o E [0, 1) in which aF(F0

, X, o) ~ 0, 
i.e., for these values of owe have oap(~; , x,c5) ~ 0. One can also easily show that 

2w(c0
, F n X) 
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which means that if aF(F0
, X, 6) :::: 0, then also a

2

ap~~o ,X,o) :::: 0 for FE :F, i. e., 
all functions aF(F0

, X, o) are convex for any o E [0, 1) for which aF(F0
, X, o) :::: 

0. 
Similar arguments can be used for the stability function s ( F 0

, X, (2). It can 
be expressed as a pointwise maximum of IFI functions sF(F0

, X, Q). This leads 
to the following corollary: 

Corollary 2 For a given optimal solution F 0 and X ~ E, the accuracy func­
tion a(F0

, X, 6) is a nondecreasing convex function of 0 with the number of 
breakpoints not bigger than IFI in the interval o E [0, 1). 

For a given optimal solution F 0 and X ~ E, the stability function s(F0
, X, Q) is 

a nondecreasing convex function of (2 with the number of breakpoints not bigger 
than IFI in the interval (2 E [0,Q(X,c0

)). 

The formulae (12) and (13) can hardly be regarded as efficient tools to com­
pute exact values of the accuracy and the stability functions for a given solution 
F 0

, but they appear useful in calculating upper and lower approximations of 
these functions (see Section 3). They can be also used to introduce the so-called 
accuracy radius and the stability radius as well as to derive formulae to calculate 
exact and approximate values of these radii. 

Observe that if F 0 is an optimal solution of the problem ( 4) then, obviously, 
a(F0

, X, 0) = 0. It is of special interest to know the maximum value of 6 for 
which a(F0

, X, o) = 0. This value is called the accuracy radius of the solution 
F 0 with respect to the set X and is denoted by ra(F0 ,X). Formally 

(17) 

The accuracy radius can be introduced in an alternative way in the frame­
work of the so-called "tolerance approach" described in Wendell (1982, 1984), 
Labbe et al. (1991). 

The practical importance of the accuracy radius consists in the fact that 
given the value r = ra(F0

, X) we know that the weight of any element e be­
longing to the set X may be perturbed (increased or decreased) arbitrarily by 
r · 100% (or less) without destroying the optimality of F 0

• Similarly, if we know 
that the weights of elements in X are estimated with the accuracy r · 100%, 
then we can guarantee that the solution F 0

, calculated for the estimated vector 
of weights c0

, is also optimal for the actual vector of weights. 
In an analogous way the stability radius r 8 (F 0 ,X) of the solution F 0 with 

respect to the set X can be defined. Formally, 

(18) 

Observe that the value of stability radius gives the maximum absolute deviation 
of any weight of element from the set X which does not destroy the optimality 
of the solution F 0

• The stability radius is a standard object studied in the sensi­
tivity analysis for combinatorial optimization problems . It is typically derived 
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from the so-called stability region of the optimal solution (see e.g. Sotskov et 
al., 1995, 1998, Libura, 1996, Greenberg, 1998). Let 

Fx = {FE F: w(c0
, (Fo ®F) n X)-=/=- 0} 

and 

F'x ={FE F: (F0 ®F) n X-=/=- 0}. 

The following theorem gives the general formulae for calculating the accuracy 
radius and the stability radius of the solution F 0 with respect to the set X. 

Theorem 2 For an optimal solution F 0 and X<;;;; E, 

a( 0 ) • { . w(c
0 ,F) -w(c

0 ,F0
)} 

r F ,X =mm 1, mm ( (F F) X) 
PE:Fx W C0

, 0 QSJ n (19) 

and 

(20) 

Proof. We will prove only (19); the proof of (20) is analogous and will be 
omitted. Consider first the case Fx = 0. Then, according to a standard con-

t . . w(co,P) - w(co,Po) h t th t . th' ven wn, mmPEFx w(co,(po®P)nX) = oo, so we ave o prove a m lS case 
ra(F 0 ,X) = 1. Indeed, observe that when Fx = 0, then for any FE F we 
have ap(F0 ,X,8) ::; 0 for 8 E [0, 1). From (12) it follows that in this case 
a(F0 ,X,8) = apo(F0 ,X,8) = 0 for any 8 E [0, 1), and from (17) we have 
ra(F 0 ,X) = 1. 

Assume now that F x -=/=- 0 and for any F E F x consider the value of ratio 
£ w(co P)-w(co po) If £ 1 th . . h . l f £ [0 1) 
up = w(co',(Po®P)Ax) . up < , en 1t g1ves t e maXImum va ue o u E , 

for which ap(F0
, X, 8) ::; 0. Otherwise, ap(F0

, X, 8) ::; 0 in the whole interval 
8 E [0, 1). From (12) it now follows that if 8p ~ 1 for any F E Fx, then 
a(F0 ,X,8) = 0 for 8 E [0,1). In this case we have ra(F 0 ,X) = 1. Otherwise, 
the maximum value of 8 for which a(F0

, X, 8) = 0, is equal to the minimum 
value of 8p over the set F x, which proves (19). • 
Example 

As an example of the combinatorial optimization problem ( 4) we will consider 
the well known symmetric traveling salesman problem defined on the graph G 
shown in Fig. 1. In this case the ground set E is the set of all edges of the graph, 
i.e., E = {e1,e2 , e3,e4,e5,e6,e7,es,eg,e10,en}. Weights of edges are given by 
respective elements of the vector c0 = (3, 4, 3, 2, 2, 6, 4, 0, 3, 5, 1 )T. 

The set of feasible solutions F is equal to the family of all subsets of edges 
which form the Hamiltonian cycles in the graph G. There are only 10 such 
subsets for this small example of the traveling salesman problem. They are 
listed below together with their weights for the vector c0

: 
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e1 

e4 
e3 

e es "l e6 

eg 

e11 e2 ea 

e1o 
Figure 1. Graph G. 

po = {e1, e5, eg, ew, en, e4}, w(c0
, P 0

) = 13, 
P 1 = {e2 ,es,e5,e7,eu,e4}, w(c0 ,P1 ) = 13, 
P 2 = {el,e7,eu,eg,es, e2 }, w(c0 ,P2 ) = 15, 
P 3 = {el,e6,es,eg,eu , es}, w(c0 ,P3 ) = 16, 
P 4 = {ei , e7 ,eiO, es ,eg, e4}, w(c0 ,P4 ) = 17, 
P 5 = {es,e7,e6,es,eg,e4}, w(c0 ,P5

) = 18, 
P 6 = {ei,e5,eg,eu,ew,e2}, w(c0 ,P6

) ·= 18, 
P 7 = {e2,e6,e5, eg,eu,e3 }, w(c0 ,P7

) = 19, 
P 8 = {e2, ew,e7,e5,eg,e4}, w(c0 ,P8

) = 20, 
P 9 = {e3,ew,e6,e5,e9,e4}, w(c0 ,P9

) = 21. 
Consider an optimal solution po = {el , es,es,e10,eu,e4} with w(c0 ,F0

) = 

13. Let X= {e4,e9,en}, i.e., the set of edges, for which weights ma.y change, 
contains all of the edges incident to the vertex 6 of the graph G. 

The accuracy function a(P0
, X, o), computed according to Theorem 1 and 

drawn with the Matbematica package, is shown in Fig. 2. 
From the plot of the accuracy function a(P0

, X, o) one can read, for example, 
that if weights of edges e4, e9, eu are perturbed by no more than 60% of their 
original values, then the relative error of the solution po may not exceed 8%, 
approximately. Moreover, if perturbations of these weights do not exceed 40%, 
then the solution po remains optimal. 

The first breakpoint of the function a(Po, X, o), i.e., o = 0.4, gives the value 
of the accuracy radius. The same value can be calculated from Theorem 2 
without computing the accuracy function in the interval [0, 1). To use this 
theorem it is necessary to find the set F x. One can easily check that w(c0

, (P 0 ® 
pi) n X) = 0 fori = 1 and w(c0

, (P 0 C9 pi) n X) =/= 0 for i = 2,3, ... , 9. 
Thus, we have Fx = {Pi : i = 2, 3, ... , 9}. By calculating values of ratios 
o - w(co,F)-w(co ,F") for PE Fx we can verify that the minimum of Op over 

F - w(c0 ,(F0 0F)nX) 
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Figure 2. The accuracy function of the solution F 0
• 

th t F . h' d f th l t' p2 d a (Fa X) u·(c'' ,F2)-w(co ,Fo) e se x 1s ac 1eve or e sou wn an r , = w(c",(Fo®F2)nX) = 
w(c

0
,F

2
)-w(c

0
,F

0
) = 15-13 = 0 4 

c0 (e4)+c0 (eg) 2+3 · · 

In an analogous way values of the stability function and the stability radius of 
the solution F 0 can be computed. We have 

g(X,c0
) = min{c(e4 ),c(e9 ),c(e11 )} = min{2, 3, 1} = 1. 

From (13) it follows now that s(F0 ,X,g) = 0 forgE [0, 1). This means that 
r 8 (F0 ,X) = 1. The same value of the stability radius can be computed from 
formula (20). From the fact that r 8 (F 0 ,X) = 1 it follows that the weights of 
edges incident to the vertex 6 in G may be perturbed simultaneously (increased 
or decreased) by at most 1 without destroying the optimality of the tour F 0

• 

The combinatorial optimization problem considered in this example is rather 
small and it is possible to use directly Theorems 1 and 2 to calculate the exact 
values of the accuracy function, the stability function as well as corresponding 
radii. For larger instances of difficult combinatorial optimization problems for­
mulae (12), (13) and (19), (20) lead to intractable computations. On the other 
hand, specially for these problems it would be desired to have practically efficient 
methods to calculate at least approximate values of the accuracy and stability 
functions as well as accuracy and stability radii . In the following section such a 
method is described. 



208 M. LIBURA 

3. Envelopes of functions and bounds for radii 

A method of approximating the accuracy and the stability functions and the 
corresponding radii described in this section is based on the so-called subsets of 
k-best solutions of the problem (4). 

Let k be an integer, k E {1, .. . ,I.FI}. For c E R+ the set F(c, k) ~ F is 
called the set of k-best solutions of the combinatorial optimization problem ( 4) 
if and only if the following conditions are fulfilled: 

(i) IF(c, k)l = k, 
(ii) M(c, F(c, k)) :::; m(c, F \ F(c, k)). 

In other words, F( c, k) is the set of first k elements from a list of feasible solutions 
of the problem ( 4) ordered according to nondecreasing weights. Observe that 
such a subset is not, in general, uniquely determined. Thus, we will assume in 
the following that for a given integer k and c = c0 some particular set F(c0

, k) 
is considered. 
Let 

Lk(c) = M(c, F(c, k))- m(c, F(c, k)). (21) 

Observe that for given c and k the value Lk(c) is uniquely determined. This 
value gives the difference between "the worst" and "the best" solution in any 
set of k-best solutions. 

The idea of using sets of k-best solutions in stability analysis was exploited 
in several papers (see e.g. Piper and Zoltners, 1976, Wilson and Jain, 1988, 
Libura et al., 1998). This approach is motivated by the fact that calculating k­
best solutions is relatively inexpensive if one compares the time necessary to find 
a single solution and the time needed to compute some set of k-best solutions 
(see e.g. Lawler, 1972, Piper and Zoltners, 1976, Hamacher and Queyranne, 
1985/6, Wilson and Jain, 1988, van der Poort et al., 1999). On the other hand, 
the information provided by the set of k-best solutions allows to derive useful 
evaluations of various parameters studied in the sensitivity analysis. 

In this section we will follow the approach used in Libura (1999) to calculate 
lower and upper envelopes of the accuracy function in the case of X =E. We 
will state analogous results for arbitrary subset X ~ E and both functions 
considered. We will also give lower and upper bounds of the accuracy radius 
and the stability radius with respect to the set X. 

Assume that for some integer k 2:: 2 and c = c0 the set F( c0
, k) of k-best 

solutions of the problem (4) is known. Let 

(22) 

where, as defined before, 
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Denote for q ;:::: 0, 

(23) 

and let 

(24) 

where 
ql = w(c0

' F 0
) + Lk(c0

) , q2 = w(c0
, X), q3 = maxFE:F\:F(c",k) w(c0

, F n X). 
Observe that in the definition of qmin two first components, i.e., q1 and q2, are 

easy to compute. On the other hand, the evaluation of q3 may lead, in general, 
to a difficult optimization problem. However, it is important to stress that in 
the following we will not need the exact value q':nin but only an upper bound 
of this value, which can be easily determined from q1 and q2 . Nevertheless, we 
would be interested in using possibly small upper bound of q':nin, because this 
leads to a tighter evaluation of the accuracy function and the accuracy radius . 
Therefore, in some cases, calculating the value of q3 or some its upper bound 
may be considered (see e.g. the example in this section). 

The following theorem gives lower and upper bounds for the accuracy func­
tion based on k-best solutions. 

Theorem 3 For X~ E, 0 E [0, 1) and arbitrary q E [q':nin> w(c0
, F 0

) + Lk(c0
)] 

the following inequalities hold: 

Proof. The inequality ak(F0 ,X,o) ::::; a(F0 ,X,o) is a direct consequence 
of the fact that for any X ~ E and o E [0 , 1) the optimization problem (22) 
defining ak(F0

, X, o) is a restriction of the problem (12), which gives the value 
of a(F0 ,X,o) . Indeed, in both problems the objective functions are the same 
and for the sets of feasible solutions the relation :F( c0

, k) ~ :F is fulfilled. 
To prove the upper bound of a(Fo, X, o) in (25) observe that 

a(F0 ,X,o) = max{ max aF(F0 ,X,o), max aF(F0 ,X,o)}. (26) 
FE:F(c0 ,k) FE:F\:F(c" ,k) 

Moreover , 

aF(Fo, X, o) = w(c0
, Fo)- w(c0

, F)+ o · w(c0
, (F 0 ®F) n X) 

w(c0
, F)- o · w(c0

, F n X) 
w(c0

, F 0
)- w(c0

, F)+ o · w(c0
, Fo n X)+ o · w(c0 ,F n X) 

w( c0
, F) - o · w( c0

, F n X) 

28 · w(c0
, F n Fo n X) 
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w ( C0
, F 0

) + 0 . w ( C0
, F 0 n X) - 1 - 25 . w ( C0

, F n F 0 n X) 
w(c0 ,F) -ow(c0 ,FnX) w(c0 ,F) - 0 · w(c0 ,FnX) 

< w ( C0
, F0

) + 0 . w ( C0
, F0 n X) - ] 

w(c0 ,F)-O·w(c0 ,FnX) ·· 

Thus we have 

(F
o X ') w(co, F0

) + o · w(c0
, Fo n X) 

max aF , , u < max - 1 
FEF\F(c",k) - FEF\F(c",k) w(c0 ,F)- ow(c0 ,FnX) 

w(co, Fo) + o. w(co, Fo n X) - 1 < Ak(Fo X o a. ) 

minFEF\F(c",k)[w(c0 ,F)-o·w(c0 ,FnX)] - ' ',qmm · 

To prove the last inequality observe that for i = 1, 2, 3, 

min [w(c0
, F)- ow(c0

, F n X)] ~ w(c0
, F 0

) + Lk(c0
)- o · qi. (27) 

FEF\F(c",k) 

Indeed, we have 

min [w(c0
, F)- o · w(c0

, F n X) ] ~ (1- o) min w(c0
, F) 

FEF\F(c",k) FEF\ F(c",k) 

~ (1- o)(w(c0
, F 0

) + Lk(c0
)) = w(c0

, F 0
) + Lk(c0

) - o · q1 . 

Also 

min [w(c0
, F)- o · w(c0

, F n X)] ~ min [w(c0
, F)- o · w(c0

, X)] 
FEF\F(co ,k) FEF\ F(c" ,k) 

~ w( C0
, F 0

) + Lk ( c0
) - 0 · w( C0

, X) = w( C0
, F 0

) + Lk ( C0
) - 0 · q2. 

Similarly, 

min [w(c0 ,F)-o·w(c0 , FnX) ] 
FEF\F(c0 ,k) 

~ min w(c0 ,F)-O· max w(c0 ,FnX) 
FEF\F(c",k) FEF\F(c",k) 

~ w(c0
, F 0

) + Lk(c0
) - 0 · q3. 

Obviously, from 

max aF(F0 ,X,o) :::; Ak(F0 ,X,o,q~in) 
FEF\F(c",k) 

it follows that 

max aF(F0 ,X,o):::; Ak(F0 ,X,o, q) 
FEF\F(c0 ,k) 

for any q E [q~in> w(c0
, F 0 )+Lk(c0

)], and, finally, from (26) we obtain the upper 
bound of a(F0 ,X,o) in (25). • 

Theorem 3 easily specifies for the case of X =E. Observe that when X = E, 
then q~in = q1, because q2 ~ q1 and q3 ~ q1. We have thus the following 
corollary (see Libura., 1999): 
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Corollary 3 For an optimal solution F 0 and o E [0, 1) , 

ak(F0
, E, o) ::; a(F0

, E, o) ::; ma.x{ ak(F0
, E, o), Ak (Fo, E, o, q1)}, 

where 

k(Fo E s:) _ w(c0
, F 0

)- w(c0
, F)+ 0 · w(c0

, F 0 ®F) 
a , ,u - ma.x 

FE.'F(c 0 ,k) (1- o)w(c0
, F) 

and 

In a. similar way bounds for the stability function based on k-best solutions 
may be derived. Let 

where 

(F
o X ) - w(c0

, F 0
) - w(c0

, F)+{! ·I(F0 ®F) n XI 
Sp ' 'e - ( ) I I . w c0 ,F -e· FnX 

Define for q 2: 0, 

a.nd let 

q':nin = ma.x IF n XI. 
FE:F\:F(c0 ,k) 

The following theorem holds: 

Theorem 4 For an optimal solution F 0
, X S: E, e E [O,e(X,c0

)) and 

arbitrary q E [ q':nin' w(co '~i,~~k(co) ) the following inequalities hold: 

(28) 

(29) 

Proof. The proof is analogous as in Theorem 3, so we will omit some details. 
Observe that 

s(F0
, X, e) = max { ma.x sp(F0

, X, e), max sp(F0
, X, e)}. (31) 

FE.'F(c 0 ,k) FE:F\:F(c 0 ,k) 

In a. similar way as for ap(F0
, X, o) it ca.n be shown that 
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Thus, 

(FoX ) w(c0 ,P) +12·1F0 nXI 
max s F , , o < ( ( ) I I) - 1 . 

FE:F\:F(c0 ,k) ~ - minFE:F\:F(c",k) 'W C0
, F -(2. F n X 

But 

min (w(c0
, F)- 12 · IF n XI) :::; w(c0

, F 0
) + Lk(c0

)- q:nin> 
FE:F\:F(c",k) 

which leads to inequality 

max sp(r,X,Q) :S Sk(F0 ,X,Q,q':r,in)· 
FE:F\:F(c",k) 

Finally, taking into account that (28) is a restriction of (13) an d using (31) we 
obtain (30). • 

Theorems 3 and 4 can be used now to derive simple lower and upper bounds 
of the accuracy radius ra(F0

, X) and the stability radius r 8 (F 0
, X). 

Recall that 

:Fx ={F E :F: w(c0
, (F 0 0 F) n X)/:- 0} 

and let 

{ 

. { 1 . u·{c" ,F) - tc{c" ,F")} 
a mm ' mmFE:Fxn:F(c",k) tc{c",(F"®F)nX) 

Rk = 

1 

Denote for q 2': 0, 

a Lk(c0
) 

rdq) = w(co, Fo n X) + q. 

Theorem 5 If X ~ E and q 2': q':nin ' then 

min {r~(q ), R~} :::; ra(F0
, X):::; R~. 

(32) 
otherwise. 

(33) 

(34) 

Proof. The bounds for the accuracy radius correspond to the envelopes of 
the accuracy function formulated in Theorem 3. T he upper bound in (34) is 
determined by the inequality 

(35) 

Observe, as in the proof of Theorem 2, that the maximum val ue of o, for 
h. h (Fo X ') < 0 · ] £ u•(c" ,F)-tc(c" ,F") f . . F -r w 1c ap , , u _ 1s equa to u F = tc{c" ,(F"®F)nX) .01 any E .r x. 

If :Fxn:F(c0
, k) = 0 or Op 2': 1 for any FE :FxnF(c0

, k), then from (35) we have 
the upper bound ra(F0

, X) :::; 1. Otherwise, from (35) it follows that the maxi­
mum value of o, for which a(F0

, X, 6) = 0, does not exceed minFEFxn:F(c",k) Op, 
which proves that ra(F0

, X) :::; R~. 
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The lower bound in (34) is determined by the inequality 

(36) 

which, according to Theorem 3, holds for any q E [q~in>w(c0 ,F0 ) + Lk(c0
)]. 

From (36) it follows that ra(F0
, X) is not less than the minimum of two va.l­

ues: r' - equal to the largest value of 6 E [0, 1) for which ak (Fa, X, 6) S 0, 
a.nd r"- equal to the largest value of 6 for which Ak(F0 ,X,6,q) S 0, q E 
[q~in,w(c0 ,F0 ) + Lk(c0

)]. From the proof of the upper bound of ra(F0 ,X) 
we haver' = RJ;,. To determine r" observe that from (23) it follows that the 

largestvalueof6forwhichAk(F0 ,X,6,q) S Oisequa.J torJ;,(q) = u·(c"~;.~~'1)+q' 
where q is taken arbitrarily from the interval [q~in, w( C0

, F 0
) + Lk ( c0

) ]. The 
best lower bound of the accuracy radius is therefore obtained for q = q~in, but 
the inequality 

holds, obviously, for a.ny q ;::: q~in. • 
Consider now the case X= E. We have then q~in = q1 = w(c0

, F 0 )+Lk(c0
). 

Let Fk ={FE F(c0
, k): w(c0

, po ®F) cJ 0} and define 

{ 

· w(c" ,F)-w(c" ,F") 
Rk = ~lllFE:F'• w(c",Fo®F) if Fk # 0, 

otherwise. 

Using this notation we obtain from (34) the following bounds for the accuracy 
radius ra(F0

, E): 

Corollary 4 For an optimal solution F 0
, 

(37) 

Analogous bounds may be derived for the stability radius. Let 

Denote for q ;::: 0, 

Theorem 6 If X~ E and q;::: q':nin' then 

(38) 
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Proof. The lower bound for the stability radius r 8 (F0
, X) corresponds to the 

upper bound of the stability function in (30). The upper bound is a. consequence 
of the lower bound for s ( po, X) in ( 30). The proof of these facts is quite 
analogous as the proof of Theorem 4 and therefore the details omitted. • 

From (38) the bounds on the stability radius of the solution po in the case 
X = E can be easily obtained. 
Let 

m= ma.x{IFI: FE F}. 

Obviously, the inequality q':nin ::::; m holds. Denote 

R' . { (E 0 ) . w(c
0
,F)- w(c

0
,F

0
) } 

k = mrn [! , c , mm . 
FE:F'p;n:F(co ,k) IFo 0 Fl 

Using this notation we obtain from (38) for X = E the following corollary: 

Corollary 5 If po is an optimal solution and q 2: min {m, n} , then 

. { Lk(co) R' } < s(Fo E) < R' 
mm IFol + q' ·k - r ' - ·k· (39) 

Example (continued) 
Consider again the symmetric tra.veling salesman problem defined on the 

graph G from Fig. 1. On that small example it is easy to demonstrate the effect 
of applying various values of k in approximating the accuracy function and the 
accuracy radius of po using k-best solutions of the problem. Observe also that 
if, as before, X = { e4, eg, eu}, i.e. X is the set of edges incident to the same 
vertex 6, then it is easy to calculate an upper bound of the value q3 for any k. 
Indeed, for any feasible solution of the tra.veling salesman problem exactly two 
edges incident to any vertex appear in the solution. Thus, we obtain an upper 
bound of q3 by taking two edges from X with largest weights, which leads to 
inequality q3 ::::; 5. Observe also that q2 = w( C0

, X) = 6 does not depend on k. 
On the other hand, the value of q1 = w( c0

, F 0
) + Lk ( c0

) depends on k, but for 
any value of k is larger than q2 and available upper bound of q3. Thus, for any 
k the best choice for q is the upper bound of q3 equal to 5. 

Figs. 3 and 4 show lower and upper bounds of the accuracy function for 
q = 5 and k = 4, 5, respectively, obtained from Theorem 3. The shadowed 
regions indicate the gap between these bounds. From these figures it is also 
easy to read the bounds for the accuracy radius. Observe that for k = 5 these 
bounds are tight and we obtain the exact value of ra(F0

, X). For k = 4 the 
lower bound is smaller than the upper bound and we have only the interval 
which contains the value of the accuracy radius. 

The same bounds for the accuracy radius can be obtained directly from 
Theorem 4 without calculating the accuracy function. From (32) it follows that 
fork = 4, 5, 

R~ = R'f, = 0.4. 
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0.2 0.4 0.6 0.8 1 

Figure 3. Bounds for the accuracy function a(F0
, X, o) for k = 4. 

0.~-------+-------4-------4------~-----, 

0.2~-------+-------4~-----4------~---

0.~------~------~------~------+# 

0.1~------~------~------~----~+-------~ 

o.~-------+-------+-------4~~---4------~­

o.o£+-------4-------4----~~--------~------~ 

0.2 0.4 0.6 0.8 1 

Figure 4. Bounds for the accuracy function a(Fo, X, o) for k = 5. 
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From (33) we have for q = 5, 

ra( ) = L4(co) = _3_ = 0 375 
4 q w(c0 ,F0 nX)+q 3+5 · ' 

and r5(q) = 0.5. Thus, fork= 4 from (34) we have bounds 

but fork= 5 we obtain from (34) the exact value ra(F0 ,X) = 0.4. 
In a similar way the envelopes of s(F0 ,X) and bounds for r 5 (F 0 ,X) can be 

calculated from Theorems 5 and 6. We have 

Observe that due to the fact that edges e4 , e9 , e11 are incident to the same 
vertex of G, the cardinality IF n X I for any solution F of the tra.veling salesman 
problem is equal to 2, which implies that q::,_in = 2. Fig. 5 shows the lower and 
the upper bounds for the stability function obtained from (30) for k = 5 and 
q = 2. As before, the shadowed region indicates the gap between these bounds. 

0.0~---~---~---+---~ 

0 . 2 0.4 0.6 0.8 1 e 

Figure 5. Bounds for the stability function s ( po, X, (!). 

To evaluate the stability radius of the solution po with respect to X observe 
that 

R4 = R~ = 1. 
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For q = 2 we have 

rs( ) = L4(co) = _ 3 _ = 0 75 
4 q IFo n X I + q 2 + 2 . , 

and r5(q) = 1. Thus, fork= 4 we have bounds 

0.75:::; r 8 (F 0 ,X):::; 1, 

but for k = 5 we obtain the exact value r 8 (F 0
, X) = 1. This means that the 

weights of edges e4 , eg, e11 may be perturbed simultaneously and independently 
by at most 1 without destroying the optimality of the tour po. 

4. Conclusions 

The accuracy and the stability functions describe the quality of solution ob­
tained for some original vector of weights in the situation when these weights 
are perturbed by some amount or only some estimations of actual weights are 
available. The accuracy radius and the stability radius give the maximum per­
turbations which still preserve the optimality of given solution. For difficult 
combinatorial optimization problems calculating the exact values of these func­
tions may lead to intractable computations. Observe that finding the accuracy 
radius or the stability radius in the case when only single weight is allowed to 
vary, i.e., when lXI = 1, is equivalent to determining the so-called tolerance of 
this weight. But the latter problem is known to be NP-hard for any NP-hard 
combinatorial optimization problem (see e.g. Ra.ma.swa.my and Chakravarti, 
1995, van Hoesel and Wagelmans, 1999). Thus, for this type of problems it 
is of special interest to have methods which give some approximate values of 
considered functions and corresponding radii. In this paper one such method, 
based on the notion of k-best solutions, is described . Given a set of k-best solu­
tions of the problem one can determine in an easy way envelopes of the accuracy 
and stability functions as well as bounds for the accuracy and the stability radii. 
The quality of such approximations depends on the parameter k and grows with 
k, but experiments performed in Libura el al. (1998) on similar approximation 
problems for the traveling salesman problem suggest that for practical purposes 
it is not worth to increase the number k too much, because the improvement of 
approximation decreases substantially with k . 

In this pap er as a. measure of quality of a given solution the relative error 
of this solution is considered. In some cases studying the absolute error of the 
solution and its dependence on perturba.tions may appear more adequate. This 
case was considered for the minisum facility location problem in La.bbe et al. 
(1991). 

In this paper we concentrate on describing the quality of an optimal solu­
tion of the problem in the case of weight perturbation. All results concerning 
the evaluation of the accuracy and stability functions might be stated quite 
analogously for an arbitrary feasible solution of the problem. 
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