
Dedicated to

Professor Jakub Gutenbaum

on his 70th birthday

Control and Cybernetics

vol. 29 (2000) No. 1

Assignment and sequencing of parts to autonomous
workstations

by

M. Lucertinil, F. Nicolo2 and S. Smriglio3

1 Dipartimento di Informatica, Sistemi e Produzione,
Universita di R.oma "Tor Vergata", lucertini@disp.uniroma2.it

2 Dipartimento di Informatica ed Automa.zione,
Universita di R.oma Tre, nicolo@uniroma3.it

3 Dipartimento di Matematica Pura ed Applicata
Universita di L'Aquila, smriglio@univaq.it

Abstract: We present an optimization-based coordination pro­
tocol among autonomous workstations in a multiprocessor stage de­
voted to painting of the shutters in a furniture production process.
The coordination aims to maximize the number of parallel opera­
tions executable at each machine cycle, while fulfilling constraints on
the unique-copy tools. The mechanism is derived by a distributed
implementation of a bipartite matching algorithm. The resulting
procedure is shown to be compatible with the several autonomous
decisions characterizing the process.

Keywords: bipartite matching, polynomial-time algorithm, dis­
tributed algorithm, coordination mechanism.

1. Introduction

Production systems often suffer from problems caused by unplanned events a.nd
complexity. This motivates the investigation of control systems and a.rchitec­
tures able to guarantee high degree of modularity, simplicity, flexibility, a.nd
distribution. The traditional models, based on scheduling a.nd control theory,
may suffer from lack of applicability, since they do not account satisfactorily for
several aspects of real world environments (Lin and Solberg, 1992).

A recent approach providing a decomposed and modular framework is based
on the paradigm of autonomous agents (AA), in which the plan is not established

222 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

by a global controller, but is the result of the decisions of several entities each
pursuing its individual goal. Autonomous agents can be defined as entities of
an organized system able to decide on the value of a set of control variables,
with given objectives and partially defined constraints, on the ground of the
available information. It is important to notice that, in practice, autonomous
decisions represent a major part of the decision process, whereas they are not
primarily considered in system design, especially at the shop floor level. Besides
other advantages, the AA paradigm fully accounts for this aspect.

As observed by Lin and Solberg (1992) the AA concept generalizes and inte­
grates other alternative control and scheduling architectures, such as cooperative
systems, heterarchical structures, object oriented programming, real time nego­
tiations of resource assignment and opportunistic scheduling, designed to meet
the complexity as well as the distributed nature of the process.

The investigation of a complex system by the AA paradigm consists of
(i) analysis of the system architecture;

(ii) identification of the agents;
(iii) identification of a coordination module;
(iv) characterization of the agents and of the coordination module in terms of:

memory, data elaboration capability and specific features ;
(v) characterization of the communication and negotiation protocols (agent to

agent, and agent to coordination module).
The coordination module can play different roles, ranging between two extreme
situations. The first corresponds to a strong control action, i.e., the agents are
not autonomous and just implement the decision of the global controller. The
opposite situation arises when the agents are completely autonomous without
coordination. The relationship among the aforementioned five basic features of
a multi-agent system is the object of several research contributions.

Lin and Solberg (1992) proposed a general framework for part flow manage­
ment based on a negotiation protocol among parts and other resources (both
jobs and resources have their own objectives). The purpose of their experi­
ments, performed with object oriented simulation, is to verify the flexibility of
the framework with respect to frequent changes in the environment. A recent
proposal is forwarded in Adacher et al. (1999) where different implementations
of the AA concept in flexible manufacturing and several control architectures are
investigated by an extensive simulation experience. Decker and Lesser (1994)
designed a modular family of coordination mechanisms. These support the ac­
tivity scheduling for teams of cooperative computational agents.

A different approach has been obtained by looking at distributed imple­
mentations of known algorithmic paradigms for optimization problems. For
instance, in Graves (1982), Della Croce et al. (1993), Gou et al. (1994), Gou
and Luh (1997), the authors observe that the natural functional decomposi­
tion of the system can be exploited in the study of Lagrangian relaxation of
the planning problem. In this framework, a subsystem decides on the value of
its variables on the ground of the current values of the Lagrangian multipliers

Assignment and sequencing of parts to autonomous workstations 223

imposed by the coordination module.
A similar approach is presented in Arbib and Rossi (1999), in which a dis­

tributed primal-dual heuristic is proposed for the solution of a generalized cov­
ering problem arising in a manufacturing environment.

In this paper we investigate the problem of assigning and sequencing a batch
of parts to a set of parallel autonomous workstations with some specific opera­
tional rules. The analysis is based on a formulation of the problem as a bipartite
matching with GUB (Generalized Upper Bound) constraints. We exploit the
combinatorial characterization of the problem to implement autocoordination
mechanisms among agents which satisfy simplicity and flexibility requirements,
while mantaining a nice behaviour in terms of solution quality. Moreover, the
resulting model is sufficiently general to be applied in different production con­
texts.

The structure of the paper is the following. In Section 2 we describe the sys­
tem under investigation. Section 3 is devoted to the autocoordination procedure:
in Subsection 3.1 we introduce the mathematical background and investigate the
unrestricted case; in Subsection 3.2 we discuss the implementation details and
the extension of the approach to the general case. Finally, in Section 4 some
conclusions are drawn.

2. System description

In this section we describe a working center for the spray painting of components
in a flow line devoted the production of kitchen furniture. The system is charac­
terized by the presence of several manual operations and autonomous decisions,
and represents a suitable environment for the introduc~ion of optimization-based
coordination patterns among autonomous agents.

The working center consists of: (i) an input storage area; (ii) a processing
(painting) stage (including a tool magazine); (iii) an output storage area in
which the refined components wait to be transported to the assembly working
center. The process layout is depicted in Fig. 1. The input storage area is fed by
batch arrivals from the cutting center. A batch P contains n raw shutters to be
painted and refined. Separately from the batches, some more isolated shutters
can be dropped into the input magazine. These are urgent parts, which must
be processed with priority so as to satisfy an unexpected need having arisen in
the assembly center.

The painting operation is performed, within an airtight room, by a set C
of m parallel (not identical) workstations. In practice, m ranges from 8 to 12
and n ranges from 200 to 1000, while the number of urgent shutters in the
input buffers rarely reaches 50. Each part i is labelled with its identification
number and must be processed by one among the workstations in a given subset
Ci ~ C. The compatibility among shutters and workstations depends primarily
on the shutter dimensions, which, on the other hand, do not affect significantly
the duration of the operation. The latter is therefore assumed to be the same

224 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

-EJ] 0
-EJ] 0

jobs output

input queues buffers output

storage area cm storage area

-EJ] 0
tools magazine

airtight painting room

Figure 1. The working center layout

Assignment and sequencing of parts to autonomous workstations 225

for all the operations. As a consequence, the parallel workstations operate in
a synchronous fashion, so as to help the loading/unloading operation. In the
latter, a batch of finished parts is brought to the output storage area ..

The tool selection and placement is carried out by autonomous operators
in charge of tool management. Their activity includes also tool breakage and
monitoring. A peculiarity of the problem comes from the fact that some tools,
namely, some specific sprinklers, are available in a unique copy. As a con­
sequence, any two operations requiring the same unique copy tool cannot be
executed in parallel within the same machine cycle. This kind of sprinklers is
devoted to a particular refinishing of urgent shutter, needed when the (previous)
cutting and polishing phases have been shortened due to the shutter's urgency.
On the contrary, the other tools do not represent a scarce resource. Moreover,
tool replacement is not allowed to avoid the introduction of impurities in the
painting room: when a new batch arrives, the set of available tools loaded in
the magazine is fixed. A key feature of the actual management is that the tools
selection is performed on the ground of the workstation sta:tus with a weak link
(i.e., some aggregated information) with the specific composition of the current
batch.

The loading phase consists of assignment and sequencing of shutters to the
parallel workstations. Each workstation has its own buffer, containing up to
10 shutters, managed by a FIFO discipline (jobs queue). The machine loading
is carried out by human operators pursuing a workload balancing policy, in a
fully autonomous fashion, without a.ny automatic support. Their main task is
to verify the compatibility of a part with the workstation before loading the
part in the workstation's queue. In practice, some incompatibilities may occur
after the introduction of the shutters into the painting room. In this case, they
are resolved by local adjustments. In order to minimize the number of openings
of the airtight gate, the loading (as well as the unloading) phase is executed
once every 5 to 10 machine cycles.

A major interest of the producer is to minimize the completion time of the
n parts, since the painting phase represent a bottleneck for the whole process.

In the above scenario, the minimization of the number of cycle times nec­
essary to refinish all the shutters in a batch (makespan) can be carried out
by maximizing, at each machine cycle, the number of parts processed. This
observation gives rise to an iterative procedure for workload assignment and
input sequencing (i.e., construction of the jobs queues). At each iteration (i.e.,
machine cycle), the maximum number of parallel operations is computed and
the corresponding components are assigned to the first currently free slot of
each queue. Whenever the input magazine contains at least two urgent shut­
ters (which must be processed with priority), incompatibilities among operations
may occur. The problem of maximizing the number of parallel operations within
a machine cycle can be considered as a special version of the Batch Selection
Problem (ESP) (see Van de Klundert, 1999), in which the limited resource is
not the magazine capacity, but some specific tools. From now on, the restricted

226 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

(unrestricted) problem will be referred to as BSP (UBSP). In our application,
the maximum number of urgent shutters in the input magazine is significantly
smaller than m and the number of iterations with restrictions, in which we have
to solve BSP, is about 10% of the total. In the remaining iterations we have to
solve the unrestricted problem UBSP.

In the remainder of the paper we describe an auto-coordination mechanism
among the workstations, which allows to: (i) find an optimal (i .e., maximum
cardinality) solution for UBSP; (ii) find a locally optimal solution for BSP. The
resulting procedure is shown to be flexible with respect to variation of shut­
ters arrival pattern, loading/ unloading timing and possible machine downtimes.
Moreover, it does not require heavy information exchange. The procedure is
based on a. formulation of (BSP) as a. bipartite match·ing problem with side
constraints.

3. Auto-coordination protocol among autonomous work­
stations

Let us introduce some definitions. Given an undirected graph G = (V, E), a
matching M is a set of egdes such that no two edges in M share the same node.
Let us define the following

PROBLEM 1 Let B = (U U V, E) be a bipartite graph of vertices U U V and edges
E. Let E1 , ... , Ek be subsets ofE and r 1 , ... , rk positive integers. Given an inte­
ger p, the Restricted Maximum Matching (RMM) is the problem of determining
whether there exists a matching M such that: (i) IMI 2 p, (ii) IM n Eil ::; ri,
fori= 1, ... , k.

The problem is known to be NP-complete also for r1 = ... = rk = 1,
i = 1, . . . , k (see Itai et al., 1978).

We observe that BSP is equivalent to finding a restricted matching of maxi­
mum size on the pa.rt-workstation compatibility graph G, where a. set Ei corre­
sponds to a group of operations sharing a. unique-copy tool.

Whenever restrictions do not arise, i.e., all operations are compatible with
each other, the problem boils down to finding a. matching of maximum ca.rdi­
na.lity in the bipartite graph G. Let us introduce the decentralized procedure
for this case (i.e., UBSP), which, in our application, occurs in more than 90%
of machine cycles. The extension to the general BSP is discussed in Subsection
3.2.

3.1. Optimal solution of UBSP

The purpose of this section is to show that an asynchronous coordination pro­
tocol, requiring a limited information exchange among the autonomous work­
stations, is sufficient to reach the global optimal solution to UBSP.

Assignment and sequencing of parts to autonomous workstations 227

It is worthwile to recall the following basic results of matching theory. An
exhaustive treatement can be found in Lovasz and Plummer (1986) .

Given a matching M , we define as matched (exposed) the nodes which are (are
not) endpoints of one edge in M. The set of exposed nodes w.r.t. M is denoted
by Expa(M). If v E V is matched, we denote by VVM the matching edge. A
path p = [vo, v2, ... , vk] is called M-alt ernating if 'li·i-iVi E M iff viv;+ 1 rf. M, for
i = 1, ... , k- 1. An M-alternating path is called M-augmenting if both v0 and
Vk are exposed.

Augmenting paths yield larger matchings:

REMARK 3.1 If P is an augmenting path w.r.t. a matching M , then the sym­
metric difference M'= P!:::,M is a matching with IM'I = IMI + J.

The following characterization is the basis for the combinatorial algori thms for
computing a matching of maximum size in a graph.

THEOREM 3.1 A matching M in a graph G is maximum if and only if there is
no augmenting path in G with respect to M.

This implies that the computation of maximum matchings can be carried out
by searching for augmenting paths. A general implementation leads, in the case
of bipartite graphs, to a time complexity O(IEI min(IUI, lVI)) (see also Gerards,
1995).

In order to describe the coordination protocol among workstations we con­
sider the following implementation of the bipartite matching algorithm:

DEFINITION 3.1 A tree T in G is called M -alternating if the follouring holds:
(i) T contains exactly one exposed node, denoted by rr ;

(ii) for each node u E V (T), the path from rr to u in T is alternating;
(iii) for each node u of degree one, other than rr, the matching edge uv.M is

in T.

The basic operation of the algorithm deals with searching for augmenting
paths by growing an 111-alternating tree T , rooted at some node v . Given an
exposed node v we refer to this operation as SCAN(v). This is based on a
breadth first search procedure. During its execut ion, the status of a node can
be either unreached (set U), candidate (set L , managed by a FTFO discipline)
or visited (set Z). SCAN(v) is detailed in Table 1, where the set of nodes
adjacent to a node v in G is denoted by Na('u) and the set of tbe edges in the
alternating tree is denoted by T.

Searching for augmenting paths can be carried out by scanning operations.
In fact, an M -augmenting path p exists if and only if there exists a node v E

Expa(M) such that SCAN(v) detects p. Two different implementations arise
according to whether the scanning operations are executed sequentially or in
parallel. Let us first describe the former . The generic iteration starts with a
matching M . The algorithm keeps a set W(M) <::_: Expa(M) of nodes arbitrarily

228 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

Procedure SCAN(v);

Input: matching M in G, v E Expa(M);

Output: an At-augmenting path p or failure;

{

}

1. Initialization:

T=0,STOP FALSE, L={v}, U=V-{v}, Z=0;

2. Main loop:

while (not STOP) {

}

pick the first node wE L;
L=L-{w} , Z=ZU{w};

if (wE Expa(A1)) /* w = v */

foreach u E U, u E Na(w)

if (u E Expa(A1))

return p= alternating path from v to u;
STOP = TRUE;

else
T =T U {wu} , L = L U {u}, U = U- {u} ;

else I* w is matched *I

foreach u E U, u E Na(w), wu (/_ A1 {

if (u E Expa(A1))

return p = alternating path from v to u;
STOP = TRUE;

else
T =TU {wu}, L = LU {u} , U = U- {u} ;

}

Table 1. Scanning an exposed node

Assignment and sequencing of parts to autonomous workstations 229

ranked. At the beginning of an iteration W(M) = Expc(M). Let v be the first
node in W(M). The algorithm removes v from lV(M) 'and executes SCAN(v) .
If SCAN(v) returns an augmenting path p, then M is updated as in Remark
3.1 and the next iteration can start. Otherwise, the algorithm updates v as the
(new) first node in TV(M) and executes SCAN(v). The algorithm stops when
W(M) = 0 and no augmenting paths have been found. The time complexity is
now O(IEI(min(IUI, IVI)) 2

), since each augmentation takes O(IEI min(IU I, lVI))
time and the maximum number of augmentations is min(IU I, lVI). Although we
worsen the complexity of the algorithm, in the new implementation the search
for augmenting paths is executed by handling one exposed node at a. time. From
an efficiency point of view, the increase of complexity comes from the fact that
the exposed nodes are scanned sequentia.lly. On the contrary, if all the scan
operations can be executed in parallel, then the overall complexity falls back to
O(IEI min(IU I, lVI)).

3 .1.1. Finding a maximum matching by autonomous workstations

We now show that the described bipartite matching algorithm can be imple­
mented at the lowest complexity (i.e., all the scanning operations are executed in
parallel) as the result of local auto-coordination mechanisms among autonomous
worksta.tions.

This procedure requires a. simple coordination protocol between two work­
stations and a. few basic control facilities . In particular, we assume that each
worksta.tion u can send to any other workstation v four different messages:

1. request: u asks v to free the part it is currently assigned to;
2. release: u informs v that it is ready to release the part it is currently

assigned to;
3. failure: u informs v that the required part cannot be released.
4. acknowledgement: u informs v that it is ready to accept the part which

v is releasing.
Moreover , each worksta.tion u has a. two-entry memory device able to store:

(i) the name of the currently assigned part (if no parts are assigned the entry
is NIL);

(ii) the name of one worksta.tion which sent a. request message to ·i (if i did
not receive any request the entry is NTL).

The entry (ii) acts as a flag representing the status of the workstation:
whenever the first request switches the entry from NIL to some worksta.tion
name, u blocks any further request, i.e., becomes inactive, until a reset signal
arrives.

Forwarding a. request message includes, as a. first step, checking the status
of the receiving workstation. If the latter is inactive, the request cannot be ac­
knowledged and the queried workstation immediately returns a failure message.

230 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

Finally, each part is labeled with the name of the workstation to which the
part is currently assigned.

Let us analyze how to implement in a distributed fashion both the search
of augmenting paths and the augmenting phase in which we increase the size
of the current matching (i.e., the number of processed parts). The former is
based on a sequence of request messages, while the latter requires a sequence of
release messages.

The procedure starts from an inclusionwise maximal matching which is the
result of the autonomous actions of the workstations (i.e., no coordination
among the agents). From now on, we will call matched (exposed) a workstation
or a part whose associated node is matched (exposed). Moreover, we denote
by Nv (M) the set of workstations matched by M to the parts compatible to
workstation v, \fv E C. By definition, v tJ_ Nv(M).

Let us begin with detailing how to grow a single alternating tree, rooted
at an exposed workstation v, i.e., how to implement SCAN(v). Without loss
of generality, we assume that, at the beginning, all the workstations except
v are active. They correspond to unreached nodes (see Table 1). In the
first iteration, workstation v sends a request message to all workstations in
Nv(M). Whenever an active workstation acknowledges the first request message
it becomes inactive and behaves as a candidate node.

Each candidate workstation u tries to satisfy the request looking for a dif­
ferent compatible part. We refer this action to as request phase. Four cases are
possible. In the first two cases u gives an immediate answer:

1. u finds an exposed compatible part;
2. the current part is the only one compatible with u.
In the second two cases, u acts as an exposed workstation: it looks for a new

compatible part with the aim of setting free the current one. Hence, it forwards
request messages to all the workstations in Nu(M):

3. all the requests are refused (i.e., all the queried workstations are inactive) ;
4. at least one query is accepted.

If condition 1 occurs, an augmenting path has been found. On the contrary,
both conditions 2 and 3 lead to a failure, and workstation u immediately returns
a failure message to the requiring workstation. Finally, if condition 4 holds, the
request phase is iterated by each of the queried workstations.

The search for augmenting paths fails if conditions 2 or 3 occur for all candi­
date workstations. In this case, the current matching cannot be augmented by
SCAN(v). When v completes the request phase, it corresponds to a visited
node in SCAN(v).

An example is depicted in Fig. 2. The initial matching is M = {la, 2b, 4c }.
The sequence of requests (3 ---> 2), (2 ---> 1) fails since wor kstation 1 cannot
free part a. On the contrary, the sequence (3 ---> 4) succeeds by detecting the
augmenting path p = [3, c, 4, d].

Let us now discuss the execution of parallel scan operations. We show that

Assignment and sequencing of parts to autonomous workstations 231

workstations parts

1 a

2
b

v= 3

c

4

d

~ Request message

Figure 2. Scan operation by request messages

232 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

workstations parts workstations parts

v= 3 v= 3

c c

4 4

d d

!!:ill Release message ~ Acknowledgement message

(a) (b)

Figure 3. The augmenting phase

it can be carried out with the same coordination protocol supporting the single
scan operation. To explain this, suppose that two different exposed workstations
u and v start two different sequences s1 and s2 of requests. If the two sequences
converge to the same (matched) workstation, say w, the first sequence reaching
w will continue, while the second will be blocked since after the first request
workstation w becomes inactive. This fact does not compromise any potential
augmenting path. In fact,

REMARK 3.2 An augmenting path exists from node u to an exposed node z
containing node w if and only if an augmenting path exists from node v to z
containing node w.

Hence, a simple FIFO rule in the acceptance of request messages leads to an
exhaustive search for augmenting paths by parallel scan operations.

If the search phase is successful, we are left with the problem of performing
augmentation in a decentralized fashion . Consider a queried workstation w ,
currently assigned to part WM able to detect an exposed compatible part u -1=­

WM (in Fig. 2, w = 4, WM = c and u = d).
Workstation w stores the name of the workstation v which first required WM

(in Fig. 2, v = 3) and it is now ready to answer with a release message indicating
that part WM is going to be free. This process is repeated by each workstation
which received a request message, whenever a release message allows it to switch
its current assignment. Notice that each release message determines univoca.lly
the new assignment (due to the fact that only the first request message is stored).
The matching is updated by a backward sequence of acknowledgement messages.

The augmenting phase is shown in Fig. 3: workstation 4 informs worksta.tion
3 that part c can be released (3a); the acknowledgement of this message leads
to the augmenting (3b) . The new matching is M = {la, 2b, 3c, 4d} .

Notice that a rule is needed to handle possibly multiple release messages

Assignment and sequencing of parts to autonomous workstations 233

workst.ations parts

a

2
b

v= 3

lfaiD Failure message

Figure 4. Backward sequence of failure messages

arriving at a workstation. Also in this case, using an argument similar to the
one expressed in Remark 3.2, we can observe that the FIFO discipline supports
the correct auto-coordination. Moreover, whenever a workstation acknowledges
a release, it becomes matched and replies with a failure to other releases. A
failure message is propagated backward so as to reset the workstations which
are ready to free their current part.

An important aspect deals with the system reset . In Fig. 2, workstation 2
has been blocked by the request of 3 and enters the request phase. It consists
of a further accepted request from 2 to 1, which immediately returns a failure.
This resumes the active status of 2. This mechanism is general: an inactive
workstation v becomes active whenever all its requests have been answered
with a failure message. At the same time v forwards a failure message to the
(unique) requiring workstation. The situation is depicted in Fig. 4.

The total amount of information stored (i.e., space complexity) is O(n+m).
From the analysis of time complexity (see Subsection 3.1) we conclude that the
total number of messages (at each machine cycle) is O(nm2).

3.2. Heuristic solution of BSP

In this section we discuss the implementation details of the described procedure
and extend it so as to obtain a heuristic algorithm for BSP.

The painting workstations are actually equipped with a simple device able
to control temperature, composition of the paint, and operating mode. The
implementation of coordination protocols requires a higher data processing ca­
pability. A suitable equipment for the workstation is the Programmable Logic
Control (PLC), commonly operating in FMSs. In fact, PLC can perform fast
peripherals polling and sequential queries of large archives (see Studebacker,
1996), which are executed many times in the proposed procedure. Moreover,

234 M. LUCERTINI, F. NICOLO and S. SMRIGLIO

the computational complexity analysis shows that the size of the instances at
hand (see Section 2) lead to a slight computational workload, and data process­
ing time does not represent a bottleneck for the procedure.

The first implementation issue deals with the construction of the part­
workstation compatibility graph. To this aim, a new field <part_dim> is needed
in the part label, containing the shutter's dimensions. This information has to
be made available to the workstations PLCs outside of the airtight room by a
memory device PARLMEM (i .e., a blackboard-like system) shared among work­
stations. This must contain the number of shutters, and, for each shutter, its
dimensions. The complete record in PART _MEM is summarized in the following
table.

Ftecord: <part_id, part_status, part_dim, curr_assignment, opn_type>
<integer><part_id>: shutter's name;
<boolean><part_status>: 1 if the shutter has been assigned in a previous iteration

and 0 otherwise;
<integers pair><part_dim>: pair (w, h), w (h) is the shutters width (height);
<integer><curr_assignment>: workstation the shutter is currently assigned to;
<integer><opn_type>: type of painting;

The field <part_status> has been introduced to eliminate from the current
instance of BSP the parts processed at previous steps.

In order to solve BSP, each workstation must check the availability of the
required set of tools before taking the part. To this aim, a field <opn_type>
in each element of PART _MEM stores the type of the painting operation re­
quired. Each workstation, depending on its characteristics, reads <opn_type>
and builds the set of necessary tools, whose availability is checked by a query
to a second shared memory device storing the tool status. VVe denote such a
device TOOL_MEM. Its size equals the number of tools and each record ·i contains
the number of copies of tool -i currently available.

This tool checking proceduTe may be executed (i) in the construction of a
starting solution and (-i-i) in the search of augmenting paths. Tn case (-i) a possible
strategy is to rank the workstations and build the assignment according to this
ranking. Another possibility could be to accept a. starting solution carried out
by human operators, as in the current management.

As far as case (ii) is concerned, during the request phase, the current can­
didate workstation executes a tool checking procedure before forwarding the
request message to verify if the operation is executable w.r.t. the current work­
stations configuration. In case of failure, the request is not forwarded. In this
case, the search for augmenting paths by (sequential or parallel) scanning oper­
ations can fail even if an augmenting exists and the algorithm returns a locally
optimal solution.

Assignment and sequencing of parts to autonomous workstations 235

4. Conclusions

We proposed a distributed procedure able to: (i) find the maximum number of
parallel operations in an "unrestricted" machine cycle (UBSP) and (ii) return a
locally optimal solution whenever restrictions on tools availability occur (BSP).
The validity of the approach resides upon two facts. First of all, the numbe.r
of restricted machine cycles represents less than 10% of the total. Second, the
heuristic algorithm can be applied to any starting solution, such a.s the one built
by human operators. In other words, it can be used for tentatively improving
the starting solution.

The procedure does not need any centralized controller and has been shown
to require manageable information flows . Another nice feature is its robustness
with respect to different parts arrival patterns and to machine downtimes.

A further research direction deals with the investigation of system architec­
tures able to guarantee good performances to distributed control procedures. In
our case this can be carried out by a sensitivity analysis with respect to different
configurations of the part-workstation compatibility graph.

References

ARBIB, C . and R.ossr , F. (1999) Optimal Resource Assignment through Ne­
gotiation in a Multi-agent Manufacturing Environment . Dipartimento di
Matematica Pur a ed Applicata, Universita. di L' Aquila, Report 14.

ADACHER, 1., AGNETIS, A. and MELONI, C. (1999) A Simulation Study of
Autonomous Agents in FMSs. Dipartimento di Jnform atica eA utomazione,
Universita. di Roma Tre, Technical Report 43-99, to appear in liE Trans­
actions on Design and Manufacturing.

DECKER, K.S. and LESSER, V. (1994) Communication in the Servic:e Coor­
dination. Department of Computer Science, University of Massachusetts.

DELLA CROCE, F., MENGA, G., TADEI , R.., CAVALOTTO , M . and PETRI, L.
(1993) Cellular control of manufacturing systems. EJOR, 69, 498-509.

GERARDS, B. (1995) Matching. Network Models. Volume in: Handbook in
Operations Research and Management Science.

Gou, L., HASEGAWA, T., LuH, P.B. , TAMURA , S . and 0BLAK, J.M. (1994)
Holonic planning and scheduling for a robotic assembly testbed. Pmceed­
ings of 4th Rensselaer International Conference on Computer Integrated
M anufactoring and A 1Ltomation Technology. Rensselaer, NY, October.

Gou, L. and LUH, P.B. (1997) Holonic manufacturing scheduling: arch itec­
ture, cooperation mechanism, and implementation. TEEE/ ASME Inter­
national Conference on Advanced Intelligent Mechatronics, Tokyo, Japan,
June 16-20.

GRAVES , S.C. (1982) Using Lagrangea.n techniques to solve hierarchical pro­
duction planning problems . Management Sc'ience, 28, 3.

lTAI, A ., R.oDEH , M. and TANIMOTO, S. (1978) Some Matching Problems for

236 M. LLTCERTJNl , F. N ICO LCl !tnrl S. SMRlGLTO

Bipartite Graphs. Journal of the A ssociation for Compnting Machinery,
25, 4, 517- 525 .

LIN, G.Y. and SOLBER.G, J.J. (1992) Integrated shop floor control using au­
tonomous agents. liE Transa.ct·ions, 24, 3, 57-7 1.

LovA.sz, L . and PLUMMER., M.D. (1986) Matching Theo-ry. North Holland,
Amsterdam.

STUDEBACKER, P. (1996) PLC or PG? Cmdrollvfagazine, 9, 11 , 24- 30.
VAN DE KLUNDER.T, J. (1999) Scheduling Problems in Automated Manufac­

turing. Faculty of Economics and Business Administration, University of
Limburg, Maastricht, The Netherlands, Dissertation no. 9G-35.

