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1. Introduction 

This paper belongs to a series of works, where the local Lipschitz stability of solu­
tions to parametric optimal control problems for nonlinear systems is analyzed. 
Due to the presence of inequality type constraints, the problems are non-smooth. 
The main tool in stability analysis for such problems is Robinson's implicit func­
tion theorem for generalized equations (Robinson, 1980). Using this theorem 
it can be shown that a sufficient condition of Lipschitz stability for nonlinear 
systems is that the stationary points of the linear-quadratic accessory problems 
are Lipschitz continuous with respect to additive perturbations. Usually, this 
last problem is much easier to investigate than the original one. This approach 
was applied to parametric mathematical programs in finite and infinite dimen­
sions as well as to optimal control problems. However, R.obinson's theorem does 
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not provide information on the gap between the obtained sufficient and neces­
sary conditions of Lipschitz stability. To get this information, an extension of 
Robinson's theorem obtained in Dontchev (1995) can be used. It allows to get 
necessary conditions of Lipschitz stability, provided that the dependence of data 
on the parameter is sufficiently strong. Using this approach, a characterization 
of the Lipschitz stability property was recently obtained for mathematical pro­
grams (Dontchev and Rockafellar, 1996), as well as for optimal control problems 
for systems described by nonlinear ordinary (Dontchev and Malanowski, 1999) 
and parabolic (Malanowski and Troltzsch, 1999) equations, subject to control 
constraints. 

The present paper concerns a nonlinear boundary control problem for an 
elliptic equation. We follow the approach of Malanowski and Troltzsch (1999) 
and characterize local Lipschitz stability with respect to the parameter for the 
solutions of this problem. Due to similarities with Malanowski and Troltzsch 
(1999) we do not always work out all details and refer to that paper. 

The main technical difference is that we eliminate the state, by introducing 
the solution map of the state equation, and we treat the problem as depending 
on the control alone. This approach is especially useful in the proof of necessity, 
since, in comparison with Dontchev and Ma.lanowski (1999) and Malanowski 
and Troltzsch (1999), it allows to weaken the required strong dependence on the 
data. Namely, we are able to avoid an additive perturbation of the state equa­
tion, which was needed in Dontchev and Ma.lanowski (1999) and in Ma.lanowski 
and Troltzsch (1999). The approach can be applied, not only to the consid­
ered problem, but in general, to control constrained problems with different 
dynamics. 

As in Malanowski and Troltzsch (1999), the crucial point in the stability 
analysis is to derive conditions of L00-Lipschitz stability of the solutions to the 
accessory linear-quadratic optimal control problems. Here we use the result 
obtained in the thesis Unger (1997). 

We should mention that the stability and sensitivity of solutions to elliptic 
optimal control problems were analyzed by J.F. Bonnans. In Theorem 3.1 of 
Bonnans (1998) he obtained a. sufficient condition of L2-Lipschitz stability for 
such problems in the case of distributed control and bounded dimension of the 
domain. 

The organization of the paper is the following. In Section 2 we introduce the 
considered optimal control problem, as well as the basic assumptions, and we 
recall some regularity results for the solution of the state equation. In Section 3 
we recall abstract implicit function theorems and we use R.obinson's theorem to 
derive sufficient conditions of Lipschitz stability. In Section 4 we use Dontchev's 
theorem to show that these conditions are also necessary, provided that the 
dependence of the data on the parameter is sufficiently strong. 
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2. Preliminaries 

Let n c IRn denote a bounded domain with boundary r. As usually, by 6.y 
and OvY we denote the Laplace operator and the eo-normal derivative of y at r, 
respectively. Moreover, let H be a Banach space of parameters and G C H an 
open and bounded set of feasible parameters. 

For any h E G consider the following elliptic optimal control problem: 

(Oh) Find (yh,uh) E zoo:= (C(O) n W 1,2 (S1)) x L00 (f) such that 

F(yh,uh,h) =min{F(y,u, h) (
1
) 

:= fn ({!(y(x), h)dx + fr '1/J(y(x), u(x), h)dSx} 
subject to 

-6.y(x)+y(x) =0 
8vy(x) = b(y(x ), u(x), h) 

inn 
on r, 

u E uad := {v E L 00 (f) I q::::; v(x) ::::; r a.e. in r}. 

(2) 

(3) 

In this setting, q < r are fixed real numbers, dSx denotes the surface measure 
induced on f, and the subscript X indicates that the integration is performed 
with respect to x. We assume: 
(Al) The domain n has C1,1-boundary r. 
(A2) For any hE G, the functions ({!(·, h): JR.--> JR. , 'l/;(-, ·, h): JR. x JR. --> JR. and 

b( ·, ·, h) : lR x JR. --> JR. are of class C 2 . Moreover, for any fixed u E JR. and 
h E C, b(·, u, h) :JR.--> JR. is monotonica.Jly decreasing. 
There is a bound cc > 0 such that 

lb(O,O,h)l + ID(y,u)b(O,O,h) l + IDfy,u )b(O,O,h)l ::::; CC lfh E C. 
Moreover, for any K > 0 a constant l ( K) exists such that 

ID{y,u)b(yl,ul,h) -D[y,u)b(yz,'llz,h)l::::; l(K)( IYl -y2l + l·ul-uzl) 
for all Yi, ui such that IYil ::::; K, luil ::::; K, and all h E G. The same 
conditions as above are also satisfied by ({! and '1/J. 

(A3) For all fixed real y and u with IYI ::::; K, lul::::; K, there is a constant lH(K) 
such that 

lb(y,u,hl)- b(y,u,hz) l::::; lH(K) IIhl - hzi iH lfhi E G, 
i = 1, 2. The same estimate holds also for ({! and 'l/; . . 

DEFINITION 2.1 For any u E L00 (f) a function y E Hf1,2 (S1) is said to be a 
weak solution of (2), if for all z E Hf 1,2 (S1) the following equation holds: 

1 ( n 8y OZ ) / n L:i=laxi oxi +yz dx = Jr b(y,u,h)zdSx. (4) 

• 
We will need the following standard regularity result for linear elliptic equations 
(see, e.g., Casas, 1993). 
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LEMMA 2.2 Consider the following linear equation 

-llz(x) + z(x) = h(x) 
8vz(x) + ,B(x)z(x) = fz(x) 

inD, 
on r . (5) 

Suppose that ,BE L 00 (r) is nonnegative. If h E L2 (D) and fz E L2 (r), then 
(5) has a unique weak solution z E W 1,2 (D). If h E Lq(D) , q > n/2, h E 
LP(r) , p > n- 1, then z E W 1,2 (D) n C(D) and there is a constant c > 0, 
independent of ,8, such that 

By the following lemma, problem (Oh) is well posed. 

(6) 

• 
LEMMA 2.3 If (Al) - (A3) hold, then for any u E uad and any h E G there 
exists a unique weak solution y(u , h) E W1,2(D) n C(D) of (2) . Moreover, there 
exists c > 0 such that 

lly(u', h')- y(u", h")ll c (n) :S: c( llu'- u"llu"(r) + llh'- h" IIH) · (7) 

• 
Proof For all u E Uad and h E G, the existence of a. unique solution y to (2) 
follows from Theorem 2.2 in Casas and Troltzsch (1993). In particular , for fixed 
h, the function b = b(y, u, h) is a real function satisfying all assumptions stated 
in Casa.s and Troltzsch (1993). Moreover , there is a. constant K > 0 such that 
ly(x )l :S: K on D, independently of the concrete choice of u and h. To see this, 
let us use the expansion 

b(y, u, h) = b(O , u, h)+ Dyb(y{}, u , h) y, 

where y{}(x) = '!9(x)y(x), with '!9(x) E [0, 1]. Hence 

8vy +,By= b(O , u, h), (8) 

where in view of (A2), ,B = -Dyb(y{}, u , h) E L00 (r) is nonnega.tive. By (A2) 
and (A3), the right hand side of (8) is uniformly bounded, and Lemma. 2.2 
implies a uniform bound K for y. Let now (ui, hi) E Uad x G, i = 1, 2, be given, 
with the associated states Yi· Then 

b(y1 , u1, hi) - b(yz, Uz, hz) 

= Dyb(y{}, u1, h1)(y1 - yz) + b(yz, u1, h1)- b(yz, Uz, hz) , 

where now y{} (x) = Yl (x) + '!9(x)(yz(x) - Y1 (x)) . Put (3 = - Dyb(y{} , u1, hi) 2 0 
and z = Yl - Y2. Then z solves 

- llz + z = 0, 8vz+f3z = fz, 
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where 

h b(yz,ul,hl)-b(yz,uz,hz) 

b(yz, u1, h1)- b(yz, uz, hi) + b(yz, uz, hi) - b(yz, uz , hz). 

According to (A2) and (A3), lfz(x)l:::; c( lu1(x) -uz(x)l + llh1- hziiH)· Hence 
Lemma 2.2 yields llzl lc(fl):::; c( llul- uz iiL00 (r) + llh1- hz iiH ). D 

Let ho E G be a given reference value of the parameter. We assume: 
(A4) There exists a local solution (yo, uo) of (Oh0 ) . 

Let us denote by sh(-) : L00 (f) ----+ C(D) n W 1•2 (D) the mapping which, 
for a fixed h E G, to a given control u assigns the weak solution of the state 
equation (2). Then problem (Oh) can be reformulated as the following problem 
of optimization with respect to the control alone: 

where 

( OU Find uh E uad such that 

:F(uh , h)= minuEU"" :F(u, h) , 

:F(u, h)= F(sh(u) , u , h)) , (9) 

:F: L 00 (f) x G----+ JR. In the sequel, we will use both equivalent formulations 
(Oh) and (0~) of the problem. A standard first order necessary optimality 
condition for ( 0~0 ) is given in the form of the following variational inequality: 

Du:F(uo, ho)(u- uo);::: 0 for all u E uad. (10) 

Denote by S0 := (Sf},S[j) : L2 (r)----+ L2 (D) x L2 (r) the mapping given by 
So : "V~-----> (zo,zolr), where zo = zo(v) is the weak solution of the linearized 
boundary value problem 

-6.z(x) + z(x) = 0 
Ovz(x) = Dyb(yo ,uo,ho)z(x) +Dub(yo,uo,ho)v(x). 

inn, 
on r. (11) 

Standard calculations show that the adjoint mapping Si) : L 2 (D) x L2 (f) ----+ 
L 2 (r) is given by 

S0 (:) = (Sf})*r+ (SJ')*s = Dub(yo ,uo ,ho)p(r, s)lr, 

where p(r, s) is the weak solution of the adjoint equation 

-6.p(x) + p(x) = r(x) 
Ovp(x) = Dyb(yo, uo , ho)p(x) + s(x) 

Define the following Hamiltonian 7-{ : JR3 x G----+ JR: 

7-i(y, u,p, h):= '1/J(y, u, h) + pb(y, u, h) . 

inn, 
on r. 

(12) 

(13) 

(14) 
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Let us write for short r.po := r.p(yo, ho) and ·1/Jo := ·1/; (yo, ·u.o, ha). Using (11 )-(13) 
as well as (1) and (14), we get 

Du:F(uo, ho) u 
= DyF(yo, uo, ho) Sou+ DuF(yo , ·no , ho) u 

=In Dyr.po s~ u dx + fr(Dy ·l/Jo sr; u + Du'l/Jo u)dS" 

= (Dyr.po, S~ 1L)£2(D.) + (Dy'l/;o, S[j u)U(r) + (Du·l/Jo, n)u(r) 

= ( (S~)* Dyr.po + (S[j)* Dy·l/Jo + Du.'l/Jo, 1t)L2(r) 

where po is the solution of the following adjoint equation 

-.6.pa(x) + Po(x) = Dyr.p(yo, ho) in D, 

OvPo(x) = Dyb(yo, no, ho)Po + Dy'l/;(yo, 1Lo, ho) on I. 

Hence we have 

(1 5) 

(1 G) 

(17) 

and we can identify Du:F( tLo, h0 ) with the real function Du'H.(y0 , 1Lo, p0 , h0). This 
function belongs to L00 (f). To see this, we apply Lemma 2.2 to (16) to obtain 
the regularity p0 E C(D). By (17), optimality condition (1 0) takes the form 

t Du'H.(yo,1Lo,po ,ho)(u- uo)dSx;:::: 0 for all u E Uad. (18) 

On the other hand, since Du'H.(y0 ,uo,po,ho) E L00 (r), then in view of (17), we 
can treat Du:F(u0 , h0 ) as an element of L=(r) and rewrite condition (10) in the 
form of the following generalized equation: 

0 E Du:F(uo,ho) +N(uo), 

where 

N(u) := { ~ E { L
00 (f) I Ir .A(v- u)dSx ::; 0 \fv E uad} 

is a multivalued mapping with closed graph. 

(19) 

ifuEUad , 
if u rf_ uad 

3. Application of an abstract implicit function theorem 

We are interested in the following problem: 
Find conditions under which a neighborhood Go C H of ho exists such 
that for all hE Go there exists a locally unique solution (yh , u,) of (Oh): 
which is a Lipschitz continuous function of h. 
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First, we will find conditions of existence, local uniqueness and Lipschitz con­
tinuity of stationary points of (OU, i.e., of the solutions to the generalized 
equation 

(20) 

analogous to (19). Afterwards we will show that these stationary points corre­
spond to the solutions of (0~). In a standard way (see, e.g., Dontchev and Hager, 
1993; Dontchev, Hager, Poor and Yang, 1995; Malanowski, 1992; Malanowski 
and Troltzsch, 1999) we apply to (20) the implicit function theorem for general­
ized equations. To this end, along with (20) we consider the following general­
ized equation obtained by linearization and perturbation of (20) at the reference 
point: 

0 E Du:F(uo, ho ) + D~u:F( uo, ho) (v - uo) + N( v ), (21) 

where o E L 00 (f) is a perturbation. In the sequel, a solution to (21) will be 
interpreted as a stationary point of an accessory linear-quadratic optimal control 
problem. 

We shall explain later that D~uF(uo, ho)(v - u0 ) can be identified with a 
measurable and essentially bounded function. In the sequel by 

B;(xo) = {x EX lllx- xallx S p} 

we will denote the closed ball of radius p centred at x 0 E X. Moreover, to 
simplify the notation, we will write U = L00 (r). 

Our sufficiency analysis is based on the following R.obinson's abstract implicit 
function theorem (see R.obinson (1980) : Theorem 2.1 and Corollary 2.2). 

THEOREM 3.1 Suppose that DuF(u, ·) is Lipschitz continuous i;_: h, uniformly 
with respect to u in a neighborhood of ua. If there is a constant£ such that 

(i) for any e > 0, there exist p 1 > 0 and P2 > 0 such that, for each o E B;(, (0) 
there is a unique in B;f, ( u 0 ) solution to the linearized gener!!:lized equation 

{21), which is Lipschitz continuous in o with the constant£+ e, 
then 
(ii) for any e > 0, there exist (Jl > 0 and (12 > 0 such that, for each h E 

B~ ( ho) there is a unique in B;{
2 

( uo) solution to the nonlinear generc::_lized 

equation {20), which is Lipschitz contimwus in h with the constant£+ e. 

• 
Theorem 3.1 allows to deduce existence, local uniqueness and Lipschitz conti­
nuity of solutions to (20) from the same properties of the solutions to the linear 
generalized equation (21). Usually, this last problem is much easier than the 
original one. 

In verifying the necessity of the derived sufficient conditions of Lipschitz 
stability, we will consider a special situation, where the dependence of data 
upon the parameter is strong in the following sense: 

Du:F(u, h)= Du:F0 (u) + h, where hE H = L00 (f). (22) 
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REMARK 3.2 As in Dontchev and Malanowski (1999) and in Malanowski and 
Troltzsch (1999), instead of (22), we can consider a more general situation, 
where 

H = H 0 x £0>0 (r), with H 0 being an arbitrary Banach space, and 

Du:F(u, h)= Du:F0 (u, h0
) + h1 , where h0 E H 0 and h1 E L00 (r). 

The next theorem follows from Theorem 3 in Dontchev (1995). 

THEOREM 3.3 lf (22) holds, then (ii) implies (i). 

• 

• 
In order to apply Theorem 3.1 we have to find the concrete expressions of the 
derivatives in the linear generalized equation (21). Using (J 6) together with 
(11) and (15), we find (21) in the following form 

(23) 

The expression of D~u:F(u0 , h0 ) is obtained by standard computations (see, e.g. 
(6.6) and (6.7) in Malanowski and Troltzsch, 1999): 

D~u:F( uo, ha) v = IC( uo, ha) v + D~u H(yo , uo, po , ho) v , 

with 

IC(uo,ho) = (Sf])*D;y<p(yo,ho)Sf] + (S6)*D;y7i(yo,uo,po,ho)S6 

+(S6)* D;u 7i(yo, uo, Po, ha)+ D~Y 7i(yo, uo, Po, ho)S6, 

and 

(24) 

(25) 

(26) 

By Lemma 2.2 we find that, for a fixed v E L 00 (f) , D~u:F(uo , ha) v E L 00 (r). 
Certainly, v0 = u0 is a solution of (23) for o = 0. To simplify the notation, by 
( · , ·) we will understand the inner product in L 2 (f). 

The generalized equation (23) constitutes the first order optimality condition 
for the following linear-quadratic problem. 

(L06) Find Vo E uad such that 

~(vo, D~u:F(uo, ho)vo) + (oo- o, vo) 

= minvEUa" { ~(v, D~u:F(uo, ho)v) + (oo- o, v)}. 

In view of (24) and (25), problem (L08) is equivalent to the following linear­
quadratic optimal control problem. 

(LOa) Find (z0 , v0 ) E zoo such that 

I(z8 ,v6 ,o) =mini(z,v,o) 
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subject to 

-6.z(x) + z(x) = 0 inn 
o~.~z(x) = Dyb(yo(x), uo(x), ho)z(x) (27) 

+ Dub(yo(x ), uo(x), ho)v(x) on r, 
V E Uad 

' 
where 

I(z, v, 6) := ~.Jo[(z, v), (z, v) ] + l (6o(x)- 6(x))v(x)dSx, 

with the quadratic form 

Jo[(z, v), (z, v)] = fo D~y'P(Yo, ho)z2dx 

r [ D~y1i(yo,uo,Po,ho) D~u1i(yo,uo,po,ho) l [ z] (28) + Jr[z, v] 2 2 dSx. 
Duy1i(yo,uo,Po,ho) Duu1i(yo,uo,Po,ho) v 

To verify assumption (i) of Theorem 3.1, we have to show that, for all 
sufficiently small perturbations 6, problem (LO.s) (or equivalently (LO~)) has 
a locally unique stationary point, which is Lipschitz continuous in 6. For this 
purpose, we will need a coercivity assumption. To introduce it, for any a ::::0: 0 
define the sets 

F" = {x Er I Du1i(yo, uo,po, ho)(x) >a}, 

;a= {x Er I - Du1i(yo, uo,po, ho)(x) >a}. 

We assume: 
(AC) (coercivity) There exist a > 0 and '/ > 0 such that 

(29) 

Jo[(z, v), (z, v)] ::::0: 'lllv ll i2(r) (30) 
for all pairs (z, v) satisfying (27) and such that v E v;, where 

Vc? := {v E Lq(r) I v(x) = 0 for a .. a. x E fa U Ja}, q E [2,oo].(31) 
In view of definitions (24) and (28), condition (30) is equivalent to 

(32) 

Note that in the situation where meas (!0 U J 0 ) = 0, the set (31) becomes the 
whole space Lq(f) and the analysis is much simpler. Therefore, we do not 
consider this case. By Satz 18 in Unger (1997) we have 

LEMMA 3.4 If (AC) holds, then there exist constants Pl > 0 and P2 > 0 such 
that, for all 6 E B~ (0) there is a unique solution (z.s, v0 ) of (LOs) such that 

vs E B;;: (0). Moreover, there exists a constant C > 0 such that 

llzs, - zs, ll c(n), I I vs' -vs" IIL=(I') S:: C 116' - 6"11 L=(I') for all 6', 6" E B;;', (0) . 

• 
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Theorem 3.1 and Lemma 3.4 imply 

PROPOSITION 3.5 If conditions (Al)-(A4) and (AC) hold, then there exist 
constants CJ1 > 0, CJ2 > 0 and£> 0 such that, for each hE B~ (ho) there exists 
a unique in B~2 (uo) solution uh of (20) and 

(33) 

• 
It follows from (7) and (33) that there exists a constant £' > 0 such that 

IIYh'- Yh"llc(n):::; C'llh'- h" II H for all h', h" E B~ (ho) , (34) 

where Yh is the solution to the state equation (2) corresponding to the control 
uh. By (13), a similar estimate holds for p , 

IIPh' - Ph"llc(n):::; £' 11 h' - h" ii H for all h' , h" E B~ (ho). (35) 

In view of Proposition 3.5, for h E B~ (ho), we can define the maps sr: V f--> 

Zh (V) , Sf: V r--> Zh (V) lr, where Zh (V) is the solution of the linearized equation 
(11) , with Dyb and Dub evaluated at (yh, uh, h) . Analogously to the definition 
of S0 , we put Sh = (Sr ,sO and view Sh as an operator from L2 (r) to L2 (0) x 
L2 (r). The adjoint operator S'h : L2 (0) x L2 (r) -+ L2 (r) is given by (12), 
(13), with the subscript 0 substituted by h. The following lemma summarizes 
regularity properties of the mappings sh and s;., which will be used in the 
sequel. 

LEMMA 3.6 The operators sh and s;. are compact in the L 2 -spaces defined 
above. Moreover, the operators are continuous between the following spaces: 

sh: Lr(r) __, L 8 (0) X U(r) 

S'h: Lr(O) x Lr(r) -+ L 8 (f) 

if n = 2 and r ?: 2, 

sh: Lr(r) __, Lr+r(O) X Lr+r(r) 

S'h : Lr(O) x Lr(r)-+ Lr+r(r) 

if n > 2 and r ?: 2. 

for all s E [2, oo ), 

where T = n~l > 0, 

Proof Define Ah by Ah : (u,v) r--+ (z , z lr) , where 

-/:::,z + z = u 

8vz = Dyb(yh ,uh,h)z+Dub(yh,uh,h)v. 

(36) 

(37) 

• 

To simplify notation, let us write LP = LP(O) x LP(r). We will show that Ah 
is continuous either from Lr to L 5 for all s E [2, oo) , or from Lr to Lr+r , if 
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n = 2 or n > 2, respectively. This includes the statement of the lemma.. It is 
known that Ah : £ 2 ---) W 1•2 (D) X W 112•2 (f), is continuous. The embeddings 
W 1•2 (D) c La(n) and W 112•2 (f) c £ .6(r) are compact for all a< 2n/ (n- 2) 
and all (3 < 2(n- 1)/(n- 2) < 2n/(n - 1). Therefore, 

2n 2 
Ah : L 2 

---+ £.6 is compact for (3 :S: -- = 2 + --
1 

. 
n - 1 n-

(38) 

In particular, Ah is compact in £ 2 , which implies in turn the compactness of Sh 
and S'h, as stated in the lemma.. 

On the other hand, since by the Sobolev embedding theorem W 1•2 (D) x 
W 112•2 (r) c L 8 (D) x Ls(r) for any s < oo, if n = 2, we find that the map­
pings 

{ 

£S 
Ah : £2 ---) 2n 

L~ 

for any s < oo, if n = 2, 
(39) 

if n > 2 

are continuous. Thus, (36) follows immediately. To prove (37), note that by 
Lemma 2.2, Ah : Lq (D) x £P(f) ---+ L00 is continuous if q > n/2 and p > n - 1. 
Since n - 1 ;:::: n/2 for n ;:::: 2, the mapping Ah : LP ---+ L00 is continuous for 
p > n - 1. So, in particular 

Ah : L n ---+ L 00 is continuous. 

Applying the interpolation theorem to (39) and ( 40), we find that 

Ah : Lre ---+ Lse 

is continuous, where e E [0, 1] and re, se are given by 

1 1- e e 
- - -- + -
re - 2 n' 

1 1-8 8 (n-1)(1 -8) 
-:-::----c-:--:-7+ - = -----'--~ 
(2n/(n- 1)) oo 2n se 

Hence 
2n 2n 2 

se- re = (n- 1)(1 - e) - n(1- e) + 28 ;:::: n- 1 for all e E [0, 1]. 

(40) 

If e varies from 0 to 1, then re moves from 2 ton, thus we have proven (37) for 
all rE [2,n]. For r > n, (37) holds trivially by (40). D 

We should mention that T in (37) is not the optimal one, since we did not 
exploit the optimal regularity of Sh , but it is enough for our purpose. 

The following theorem is our principal sufficiency result. 

THEOREM 3.7 If conditions (Al) - (A4) and (AC) hold, then there exist con­
stants 0'1 > 0, O'z > 0 and .A > 0 such that, for each h E B~ (ha) there exists a 

unique in B~2= (yo, uo) solution (yh, uh) of (Oh) and 

IIYh' - Yh"ll c(f!), IIPh' -Ph" llc(f!), lluh' - uh"ll L= (r) :S: .A iih' - h"IIH 

j ar all h' h" E BH (h ) ' ,., 0 . • 
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Proof In view of (33) - (35), to prove the theorem, it is enough to show that 
uh satisfying (20) is a locally unique solution to (0~). We have already pointed 
out that, for hE B~ (ho), the derivatives Du:F(uh, h) and D~uF(uh, h) can be 
represented as in (15) and (24) , with all terms evaluated at h, rather than at h0 . 

Thus Du:F(uh, h) can be treated as an element of L 00 (f) . In view of Theorem 
3.7 we find that the mapping 

( 41) 

is continuous. Moreover, the quadratic form associated with D~uF(lLh , h) de­
pends continuously on h, since uh, Yh, and Ph depend continuously on h, and 
therefore the estimate 

can be derived with some effort. By the continuity of Du:F(v.h, h) = DuH(yh, 
uh,Ph, h) it follows from (29) that, for a 1 > 0 sufficiently small, we have 

IDuF(uh, h)(x) l 2': ~ for a.a. x E I"' U J"' and all hE B~ (ho). (43) 

On the other hand, using ( 42), and shrinking a 1 > 0 if necessary, we obtain 
from (32) that 

(v , D~uF(uh, h)v) 2': ~ ll vlli2(r) for all V E v; and all hE B~ (ho). (44) 

The estimates ( 43) and ( 44) constitute sufficient optimality conditions for ( 0 h). 
Indeed, expanding F(u, h) into the Taylor series at uh , we get 

where 

F(u, h)- F(uh , h) = (Du:F(uh, h), u - uh) 

+~((u- uh), D~u:F(uh, h)(u - uh)) + r(u- uh), 
(45) 

ll l ~l (v)l ---> 0 as llv ii Loo (r) ---> 0. (46) 
v £2(r) 

By (17), the optimality condition (10) evaluated at h yields 

Du:F(uh, h)(x)(u(x)- uh(x)) 2': 0 for a .. a. x E f and all u E Uad. (47) 

On the other hand, in view of (42), there exists a. constant c > 0 such that 

( 48) 

For any u E L 2 (f), let us denote by u 1 and u 2 the projections onto v; and onto 
its orthogona.l complement, respectively, i.e. , 

1 { 0 u (x) = u(x) 
on I"' U ;ex, 2 ( ) _ { u(x) 
on r \ I "' u J"'' u X - 0 

on lex U J"' , 
on r \ I"' u J"'. 
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Using (44), (48) and Young's inequality we obtain 

((u- uh), D?tuF(uh, h)(u- uh)) 

= ((u1
- uD, D?LUF(uh, h)(u1

- u~)) 

+2((u1
- u~), D~uF(uh, h)(u2 - u~)) 

+((u2
- u~), D~uF(uh, h)(u2

- u~)) 

~ ~llu1 - u~ II I2(r)- 2cllu1
- u~ll£2(r)l l u2 - u~ II P(r) 

- cllu2
- u~III2(r) 

~ 1llu1
- u~ II I2(r)- c(l + ~)llu2 - u~lll2(r) 

( 49) 

= 1 fr\(I "' UJ"')(u
1(x)- u~(x)) 2dSx - c1 J(I"'UJ")(u2(x)- u~(x)) 2dSx 

for all h E B~ (h0 ), where c1 = c(l + ~). Combining (47) through (49) and 
using (43) together with (45) we obtain 

F(u, h)- F(uh, h) 

~ JI"' UJ"' (~ lu(x)- uh(x) l - %1u(x)- uh(xW) dSx 

+i f r\(I"'UJ"') iu(x)- uh(x) l2dSx + r(u- uh) for all u E U ad. 

Choosing a = +4"'4 we get r Cl 

By ( 46), for a > 0 sufficiently small, we obtain 

(50) 

i.e. , uh is a solution of (Oh), unique in B~ (uh)· Choosing az = I and a1 = fp_ 
we complete the proof of the theorem. • 

4. Lipschitz stability: necessity 

In this section we are going to show that (AC) is not only a sufficient, but also a 
necessary condition of local Lipschitz stability of the solutions to (Oh), provided 
that the dependence of data upon the parameter his sufficiently strong, in the 
sense that (22) holds. In view of definition (9), condition (22) is satisfied if 

(SD) (strong dependence) 
F(y,u, h)= fn <p(y(x))dx + fr ['l/! 0 (y(x) , u(x)) + h(x)1t(x) ]dSx, 

(51) 
b(y,u,h) = b(y,u), 

where hE L00 (r). 
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Note that if (SD) holds, then the Hamiltonian (14) takes the form 

H(y,u,p,h) = H0 (y,u,p) + hu, 

where H0 (y, u) = 'lj;(y, u) + p b(y, u). 

(52) 

We assume that condition (ii) in Theorem 3.1 is satisfied and we will show 
that, if (51) holds, then (AC) is satisfied with some a > 0 and 1 > 0. The 
proof is based on the same idea as in Dontchev and Malanowski (1999) and 
in Malanowski and Troltzsch (1999), but technically it is simplified. Namely, 
we introduce small variations (ii, u~;) of the reference values, such that in a 

neighborhood of (ii, uj;), problems (0~) with inequality constraints can be locally 
treated as problems with equality constraints, which are much easier to analyze. 
First, we derive necessary coercivity conditions for (0!-_) and then deduce similar 

h 
conditions for the reference problem (0~0 ). To this end, let us choose any a< T 
and E < min{u2, ~(r- q)}, where q and r are the bounds in the inequality 
constraints (3), while u1 and u2 are given in Theorem 3.1/(ii). 

Define the set 

1 
K = {x Er I ua(x).::; 2(q + r)} 

and introduce the following increment t:-.u of the reference values u0 : 

on [ 01 U ] 01
, 

on K \ ! 01
, 

on [r \ K] \ Jcx. 
(53) 

Define u = uo + t:-.u. It follows from (53) that, for u, the control constraints 
(3) are active on the set ! 01 U ] 01 and non-active with the margin E > 0 on the 
complement of this set: 

{ 

= q on lex, 
U( X) = 'r On } 01

, 

E [q + E, r- c] on r \ [!01 u J"']. 
(54) 

(see Fig.1) . Let fj denote the solution of the state equation (2) for u = u. 
Similarly, let p be the solution of the adjoint equation (16) corresponding to 
u = u and y = fj. Note that in view of (51) and (52), fj and p do not depend on h. 
Using this fact we introduce a. variation h of h0 , such that (fj, u, p) is a stationary 
point of (Q;;), i.e., (fj,u,fi) = (YJ;,Uj;,Ph,)· In order to get DuH(fj,u,P,h)(x) = 
DuH0 (fj, u,fi)(x) + h(x) = 0 on f \(I"' U J"'), we put h = ho + t:-.h, where 

{ 
0 on I"' U ] 01

, 

t:-.h(x) = -Du1i0 (y,u,fi)(x)- ho(x) on f \(I"' U 101
). 

(55) 

Note that by the construction of u, y, p, 

IIDuH0 (fj,u,fi)- DuH0 (yo,uo,po)IIL=(f)---+ 0 as ll6.u ii L= (r)---+ 0. (56) 
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Using (29), (53) and (56) , we find that, forE> 0 sufficiently small 

{ 

> 0 
Du1i(y, u,p, h)(x) : ~ 

on la , 
on la, 
on r \ [la u la ], 

(57) 

which, together with (54), shows that the variational inequality (18) is satisfied 
at (fj, u,p, h). On the other hand, for X Er\ (la u la) we have 

I Du H0 (fj, u, P) (x) + ho( x) I :S I Du H(yo , uo , Po , ho) (x) I 
+1Du1i0 (y, u, p)(x) - Du1i0 (yo, uo , Po)(x) l 

:Sa+ 1Du1i0 (y,u,p)(x)- DuH0 (yo ,uo,po)(x)l. 

u 
u~ 

q=-r 

---- - - -----1 
' ' 

Figure 1. Construction of uh and h (Hg ·- H0 (yo,uo ,po) , '}--{~ 
1-(D(yh , Uj,,Pj,)). 

(58) 
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In view of (53), (55), (56) and (58), for a> 0 and E > 0 small enough, we obtain 

llb..hiiL=(r) < 0"1, i.e., hE B~ (ha). Hence, by our assumption, u is a unique in 
B:f

2 
(uo) solution to (20), i.e., u = uh. 

LEMMA 4.1 For a > 0 and E > 0 sufficiently small 
2 ~ 2 

(u, Duu:F(uh, h)u) ~ 0 for all u E Va. (59) 

• 
Proof In view of (54) and (57), locally around uh, the inequality constraints (3) 
can be treated as equalities: 

{ 

- q 

uh(x) = r 
free 

on Ia, 
on Ja, 
onf\[Iau J a] . 

(60) 

Indeed, in order tha: a feasible variation uh + b..u satisfies the first order opti­

mality condition at h, we must have b..u = 0 on JC> U Ja. On the other hand, 
any variation uh + b..u such that 

{ 
-0 

lb..u(x)l ~ E 

on I a U Ja, 
on r \ (JC> u Je>), 

is feasible for (Q;;). Hence, the first order optimality condition (20) at (h, uh) 
reduces to the equation 

(Du:F(uh,h),u) = 0 for all u E Va00
• (61) 

Expanding :F(·, h) into the Taylor series at uh and using (61), we obtain 

- ~ 1 -0 :::; :F(u, h)- :F(uh, h)= 2((u- uh), D?w:F(uh, h)(u - uh)) + r(u- uh) 

for all u E Vaoo. 

Dividing by llu - uhlli2(r)' passing to the limit with llu- uhiiL=(r) -> 0 and 
using ( 46) we obtain 

2 ~ 00 
(v,Duu:F(uh,h)v) ~ 0 for all V E va . 

In view of the linearity of V~ as well as of the continuity and density of the 
embedding vaoo c v;' we arrive at (59). 0 

We are going to show now th!.t the quadratic form (59) is actually coercive, 
with a constant independent of h . To this end we will use Theorem 3.3. 

LEMMA 4.2 If (ii) holds, then 

2 - 1 IIDuu:F(uh,h)uiiL=(r) :2: g- lluiiL=(r) for all u E vaoo' (62) 

• 
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Proof Let us introduce the linear generalized equation analogous to (21) but 
evaluated at ( u~;,, h): 

~ 2 ~ 

0 E Du:F(u~;,, h)+ Duu:F(u~;,, h)(v- uh) + N(v). (63) 

By (SD) and Theorem 3.3, (i) holds, i.e., for 0 sufficiently small, (63) has a 
locally unique solution v6 , which is locally Lipschitz in o, with the Lipschitz 
constant C > 0 independent of the choice of h E B~ ( ho). Note that vo = u~;, is 
the solution of (63) for 0 = 0. Hence, in the same way as in (61), we deduce 
from the construction of h and uh, that for all 0, in a small neighborhood of 
zero, (63) reduces to the equation 

2 ~ ~ 2 ~ 00 

(Duu:F(uh, h)vc5 + (Du:F(u~;,, h)- Duu:F(u~;,, h)uh)- o, v) = 0 for all V E va . 

In view of (61), choosing o E Va00
, we obtain from the above equation 

2 ~ 

Duu:F(uh, h)(vc5- vo) + 0 = 0. 

Thus, for any sufficiently small 0 E Vaoo, this equation has a. unique solution 
W£5 := V£5 - Vo E vaoo, which is Lipschitz in 0 with Lipschitz constant c > 0, and 
we arrive at (62). D 

To show the coercivity of the quadratic form (59), note that, a.s in (24), 

n;u:F( Uf;, h) = JC( uh, h) + n;u H(Yf;, uh, Ph, h), where JC( uh, h) is given in (25) 

with indices 0 substituted by h. By (25) and (36), JC( uh, h) is a continuous 
mapping from LP(f) into C(f), for p > n- 1. Hence, by a known argument 
(see, e.g., Lemma 6.3 in Ma.lanowski and Troltzsch, 1999), (24) and (62) imply 

2 ~ -1 DUUH(Yf;(x), Uf;(x),Pf;(x), h)~ c for a.a. X Er\ (I" u J"). (64) 

On the other hand, by Lemma 3.6, Sh : L2 (f) ----t L2 (D) x L2 (f) is compact. 
Therefore, it follows from (25) that JC(u~;,, h): L2 (r) ___, L2 (f) is compact. 

LEMMA 4.3 If (62) holds, then 

2 ~ 1 2 2 
(u, Duu:F(uh, h)u) ~ r llui iL2(I') for all u E Va . (65) 

• 
Proof Denote by P : L2 (r) ___, v; the orthogonal projection in L2 (f) onto the 
closed subspace v;. Then we have 

2 ~ 2 ~ 2 
(u, Duu:F(u~;,, h)u) = (u, P DuuF(uh' h)u)v;; for all u E Va. 

Notice that, in contrast to n;u:F( u~;,, h), the operator P n;u:F( uh, h) is a map­
ping in v;. By a well known property of the spectrum of self-adjoint operators 
in a Hilbert space (see, e.g., Theorem 2, p.320 in Yosida., 1980) we have 

min{p, E JR I p, E a-} 
= inf{(u, p n;u:F(Uf;, h)u)v;; I u E v; with llullv;; = 1}, 
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where CJ is the spectrum of 

2 ~ ~ 2 ~ 2 2 
P Duu:F(u~;, h) := PK(u~;, h)+ P Duu'H(Y!;,, u~;, Ph, h) : Va ---7 Va. 

Hence, in view of (59), condition ( 65) will be satisfied if the operator 

P K( u~; , h) + (P n;u H(Yf; , Uf;, Ph, h) - 11-)J : v; ---7 v; 
is invertible for all 11- E [0, e- 1 ), 

where J denotes the identity in v;. Note that by (64) the real function 

(66) 

is bounded, measurable and positive on r \ (I<> U J <>) for any 11- E [0, e- 1 ). 

Multiplying the operator in (66) by this function, we see that this operator is 
invertible if and only if R'" + J : v; ---7 v; is invertible for all 11- E [0, g-l ), 
where 

(67) 

So it remains to prove that the operator R'" + J is invertible. Note, that in 

view of compactness of K( u~;, h), the operator R'" is compact. It follows from 
the definition of R'" and from (36), (37) that 

R'"v~ c v~+T 
R'"V~ c V0

00 

for all rE [2,n -1], 
for all r > n - 1, 

(68) 

where the second property follows from Lemma. 2.2. Consider the homogeneous 
equation in v; 

(R'" + J)u = 0. (69) 

Let us apply in (69) a. bootstra.pping procedure. Assume that 'I.L E v; is a. 
solution of (69) . Then u = -R'"u, and (68) implies u E v;+T. Continuing this 
procedure, after a finite number of steps, we find that u = - R'"u E V0

00
, which in 

view of (62), shows that u = 0 is the only solution to (69). By a known property 
of compact operators (see, e.g., Theorem 2, Chapter XIII , Sec.l in Ka.ntorovich 
and Akilov, 1977) the uniqueness of the solution of the homogeneous equation 
(69) implies that the operator (R'" + J) : v; ---7 v; has a bounded inverse. 
Hence (66) holds and the proof of the lemma. is completed. 

0 

We can formulate now the principal result of this paper, i.e., a. characteriza­
tion of the Lipschitz stability property for the solutions to problems (Oh). 

THEOREM 4.4 If conditions (Al) -(A4) hold, then (AC) is a sufficient condi­
tion in order that 
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(LC) There exist constants u 1 > 0, u 2 > 0 and A > 0 such that for each 
hE B~ (ho) there exists a unique in B;

2
oo (yo, uo) solution (yh, uh) of (Oh) 

and 
[[Yh'- Yh"llc(n) ' [[uh' - uh" [[Loo(r):::; .\ [[ h'- h"[[H for all h', h" E B:, (ho). (70) 

If in addition, condition (SD) holds, then (AC) is also necessary for (LC) to 
be satisfied. D 

Proof Sufficiency is given in Theorem 3.7. To prove necessity, note that from 
(65) we have 

(u, D~uF(uo, ho)u) = (u, D~uF(u~;, h)u) 

+(u, [D~uF(uo, ho)- D~uF(u~;, h)]u) ~ g-l[[u[[1,z(r) (71) 
2 2 ~ 2 

+(u, [DuuF(uo, ho)- DuuF(u~;, h)]u) for all u E V"'. 

By ( 42) and (70) , choosing a > 0 and E > 0 sufficiently small, we get 

Conditions (71) and (72) show that (AC) is satisfied with "'! = c;
1

. D 
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