
Dedicated to

Professor Jakub Gutenbaum

on his 70th birthday

Control and Cybernetics

vol. 29 (2000) No. 1

Dynamic control of a class of discrete event systems using
a state reconstruction algorithm 1

by

Francesco Martinelli*, Salvatore Nicosia* and Paolo Valigi**

* Dipartimento di Informatica., Sistemi e Produzione
Universita di R.oma. "Tor Verga.ta."

Via. di Tor Verga.ta., 00133 R.oma., Italy

** Dipa.rtimento di Ingegneria. Elettronica. e dell 'Informa.zione
Universita. di Perugia.

Via. G. Dura.nti, 93, 06125 Perugia., Italy

e-mail: {martinelli ,nicosia}@disp. uniroma2. it
e-ma.il: valigi@diei. uni pg. it

Abstract: The problem of dynamic control of Discrete Event
Dynamic Systems (DEDS) is addressed in this paper as a. dynamic
optimization problem: some resources must be allocated to the sys
tem in order to optimize a. performance function which is assumed
time-varying. The control scheme exploits a. state reconstruction al
gorithm to compute an estimate of the performance for perturbed
sample paths.

The algorithm is based on the use of data. extracted from the
observation of the system and allows to accurately reconstruct its
state beha.vior, for resource allocations different from the nominal
one.

The proposed control scheme is then used for dynamic alloca
tion of buffer capacities in manufacturing systems, such as Ka.nba.n
systems. A pa.ra.llel implementation of the whole a.lgorithm is also
mentioned.

Keywords: optimization, ordinal optimization, Ka.nba.n sys
tems, sample path analysis

1This work has been supported by ENEA (MURST program) and University of Tor Vergata
(ex 60%) funds.

276 F. MARTINELLI, S. NICOSIA and P. VALIGI

1. Introduction

DEDS are important models of many man-made systems, for which on-line or
dynamic control is now emerging as a key problem.

Several techniques based on the observed sample path have been proposed,
aimed at estimating the beha.vior of a. DEDS under perturbed values of some of
its parameters (Gla.sserma.nn, 1990; Ho and Ca.o, 1991).

Although the main motivations for the introduction of these techniques was
reduction of simulation effort, they are also particularly useful in implementing
on-line control schemes. As a matter of fact, in this case it is not possible to run
several instances of the same system, with different values of the parameters, in
order to assess its behavior. Such a. type of on-line comparison instead, is made
possible by sample path techniques, and by the one proposed here.

Classical perturbation analysis techniques (Glassermann, 1990; Ho and Cao,
1991), and the modified rules proposed in Libera.tore, Nicosia. and Va.ligi (1997)
for the case of "weakly adjacent" events, attempt to estimate perturbation in
the time of occurrence of an event by comparing nominal and perturbed tim
ings, without consideration of the state evolution. The main difficulty in such
a. "timing comparison" approach is that several past and future events are re
quired, thus making such a computation too complex, and, more important, non
causal. The problem is usually solved by assuming that only sufficiently close
events may change order due to parameter perturbation. This allows to obtain
computation algorithms, which are approximate in nature, and whose accuracy
is reduced when larger parameter variations are considered.

To overcome this problem, the state reconstruction scheme from Ma.rtinelli,
Nicosia and Valigi (1997b) will be used here. A similar reconstruction approach
is that of Rapid Learning (Cassa.ndra.s, 1993b), which includes techniques like
Augmented System Analysis (Cassandras and Strickland, 1989), Standard Clock
(Vakili, 1991), and the recently proposed Time Warping Algorithm (TWA) (Cas
sandras and Panayiotou, 1996).

The main objective of this paper is the description, analysis and test of an
algorithm for the dynamic control of DEDS, which uses as ingredient the sample
path analysis approach of Martinelli, Nicosia. and Valigi (1997b).

The control problem will be posed as an optimization problem: some re
sources must be allocated in order to optimize a. performance function defined
on the system. Changes in the stochastic description of the system are possible
at any time: the time and the type of these changes are not known by the con
troller which should dynamically modify the resource allocation in reaction to
these changes. The framework is very general: the proposed control scheme can
be applied with any stocha.stic description. To operate the dynamic resource
allocation, it is necessary to periodically take an estimate of the performance
function corresponding to a. given set of possible allocations, based on the mea
surements taken on the real system. In the more general case in which some
measurements are not available, the inversion approach proposed in Park and

Dynamic control of DEDS 277

Chong (1995) could be used.

To compute these estimates we use a state reconstruction algorithm, the
Marking Algorithm, which is also presented in this paper and has similarities
with TWA. Some characteristics, however, differentiate the two algorithms. A
minor one concerns implementation. The reconstruction of perturbed sample
paths in the Marking Algorithm is triggered periodically, at the end of every
control interval: hence the decision a.s to which parameters to test can be taken
a.t the end of the control interval, e.g., on the basis of paths already reconstructed
on the same interval TWA resumes the reconstruction every time there exists
sufficient information to determine the next event . This allows to save time and
memory space, but makes difficult the choice a.t the end of the control interval
whose perturbed sample paths we may want to reconstruct.

Moreover, TWA is designed for DEDS whose randomness is only involved in
event lifetimes, while state transitions are completely determined. On the con
trary, the Marking Algorithm can be applied also to DEDS with random state
transitions. In particular, when dealing with queueing systems, we will consider
also random scheduling and routing policies and proper sequences will be intro
duced to store the random choices performed by the stochastic scheduling and
routing policies.

A complete analytical study is offered for the Marking Algorithm to clar
ify that the state sequence reconstructed by this algorithm, under proper as
sumptions, is the longest that it is possible to reconstruct using a. given set of
information.

The control algorithm proposed in this paper is an extension of the basic idea.
presented in Libera.tore, Nicosia. and Va.ligi (1997). Here, the control problem
for time-varying systems has been formally stated, and analytical results for the
proposed control algorithm are given for a. class of systems. Simulation results
are reported for more general systems. A similar idea. is also reported in Pepyne
and Ca.ssandras (1997) .

In the sequel of the paper, presentation will be focused on a. special class of
DEDS, in particular those systems which can be modeled by means of queueing
networks. As it will be shown in the paper, the extension to general DEDS is
straightforward.

The paper is organized as follows: in Section 2 notation is introduced; in
Section 3 the state reconstruction problem is stated and solved; in Section 4 the
control scheme based on this state reconstruction algorithm is presented; the
application of such a. methodology to on-line control of manufacturing systems
has been considered and tested by means of simula.tions in Section 5, together
with a parallel implementation. Section 6 gives some remarks on the extension
of the method to general DEDS. Section 7 contains conclusions.

278 F. MARTINELLI, S. NICOSIA and P . VALIGI

2. Notation and system dynamics

In this paper we will consider a dynamic control problem for the class of systems
that can be modeled by means of time-varying queueing networks with: (a)
general service time, (b) general routing and scheduling policy at each node,
(c) finite buffer capacity, (d) multi-class, (e) non-preemptive service, (f) infinite
arrival rate sources and infinite capacity sinks. Assumption (f) is considered in
order to guarantee that machines immediately downstream of sources are never
starved and machines immediately upstream of sinks are never blocked. This
is a classical assumption, and does not lead to loss of generality. As a matter
of fact, any finite arrival source can be modelled as the series connection of an
infinite arrival source followed by a node with a properly selected service time
probability distribution. A similar reasoning applies to infinite capacity sinks.

Each node of the network comprises a multi-class server and a dedicated
input queue is associated with each class. The set of nodes is denoted by Nand
comprises N 8 elements. The set of classes serviced by node i will be denoted by
Ci.

The dynamics of a queueing network is driven by random processes, de
fined on a common probability space (0, B, P), characterizing service durations,
scheduling and routing policies. With each node i, implementing a random
scheduling policy, is associated a random sequence {us (i) }k;, whose ki-th en
try is the class of the ki-th customer serviced by server i . Similarly, with each
node i implementing a random routing policy is associated a random sequence
{uR(i,a)}k,,, for each class a E Ci, whose ki,aAh element is the destination
queue for the ki,a-th class a customer serviced by node i.

Finally, with each node i is associated a random sequence {uD(i,a)}k,,, for
each class a E Ci, whose ki,a-th element is the service duration of the ki,a-th
class a customer serviced by node i.

Denote by us(-), uR(-), and uD(-) the realizations of the random sequences
{ us(i) }k, { uR(i, a) h,,", and { uD(i, a) h;," , respectively, and let u(-) := {us(-),
u R (-), u D (·)}; in the following u(-) will be referred to as input sequence, since
it drives the network evolution. Finally, let U denote the set of all the ad
missible input sequences, that is, the set of all the deterministic sequences
u(-) = {us(·),uR(·),uD(-)} that are realizations of the corresponding stochastic
sequences.

We will assume that in the general case the statistical properties of the ran
dom sequences characterizing service durations , scheduling and routing choices
may change at some given times. In particular, we will suppose that there is a
set {r1 , /z, ... } , called switching set, possibly empty, of time instants, /i+l > /i,
called switching times, such that the queueing network has the same stochastic
description in every interval ["Yl, /l+l), called steady interval, but the stochastic
properties could change at every switching time.

Let x be the queueing state (containing information about buffer contents
and server state), and let X denote the queueing state space.

Dynamic control of DEDS 279

The completion time of the customer currently under service at node i, or
the completion time of the last customer serviced by node i, if node i is currently
starved or blocked, will be denoted by 7i, and 7 := (7 1 , 72, ... , 7Ns f will denote
the vector of all these completion times, where 'T' denotes transposition.

The complete state of a. queueing network is given by the vector z :=

(xT, 7Tf, and will be referred to as the network extended state, with extended
state space Z. Then, the evolution of a. queueing network can be expressed,
based on the GSMP formalism (Cassandra.s, 1993a), as:

z(-) = <I>(z(O), u(-)). (1)

Function <I> will be referred to as the extended state map, while the sequence z (-)
will be referred to as the extended state sequence. It is stressed that equation
(1) is completely deterministic, i.e., given the initial extended state z(O) and
the input sequence u(-), its solution is completely determined. This means that
once the (infinite length) input sequence has been recorded, the extended state
sequence can be reconstructed; so eq. (1) can be seen both as a. network descrip
tion and as an ideal algorithm for reconstructing the evolution of the queueing
network once the input sequence and the initial state have been recorded. This
is the basic idea of the reconstruction algorithm which will be presented in the
following (see Martinelli, Nicosia. and Va.ligi, 1997a., for more details).

The behavior of a. queueing network depends on a. number of network para
meters() E 8, whose value may be changed during network operation to control
network performance. It is assumed that the parameter space 8 has N elements
and does not contain structural parameters, such as, e.g., the number of nodes
or classes in the network. For simplicity, we will also assume in the following
that the values of these parameters do not affect the input sequences. If this
is not the case the problem becomes much more involved and is not treated in
this paper: in this case even a stationary system could become time varying
when controlled. Then, to reflect such a. dependence on parameter (), equation
(1) will be written as:

z(-) = <I>(z(O), u(·), e). (2)

For queueing networks, the values the state may assume are not indepen
dent of network parameters: e.g., if the entries of vector () comprise the buffer
capacities, then these entries are also the maximum values for buffers content.

Let X(()) denote the admissible state space under parameter(), that is , the
set of all the values the queueing state vector may assume, for the value () of
the network parameter; then X = UeEeX(e). A given queueing state x is an
admissible queueing state under parameter() if x EX(()).

3. The state reconstruction problem

The solution to the state reconstruction problem considered in this paper
is based on the assumption that it is possible to directly measure the input

280 F. MARTINELLI, S . NICOSIA and P. VALIGI

sequence over a finite time interval and the initial extended state. The observ
ability issue, in the sense of Park and Chong (1995), is not considered here, and
direct availability of the required data is assumed. For more general cases, the
approach in Park and Chong (1995) can be considered.

Apart from the termination issue, explored in detail in this section, the
Marking Algorithm proposed here to solve the reconstruction problem, consists
of the execution of the system evolution equations using the measured input
sequence and initial state. Observe that for the general framework considered
in this paper, where the stochastic process characterizing the system is unknown,
this kind of approach is classical.

Let zo be the measured or observed initial extended state, u(·) be the mea
sured or observed input sequence, and z(-) = <I>(z0 , u(-), B) the measured (or
observed) extended state sequence, corresponding to the nominal network para
meter vector B. To reconstruct the extended state sequence for perturbed values
of the network parameter, the system dynamics (2) could be used. Notice that
the two sequences u(-) and z(-) have infinite length , hence any associated recon
struction problem can be solved only at a conceptual level.

The extended state sequence we would have observed if the network para
meter was {J in place of B can be reconstructed using eq. (2) if the observed
initial extended state z0 = ((x0)T (-r0f)T is such that x0 E X(B). Formally, we
can write:

z(-) = <I>(zo,il(·), B). (3)

In the Time Local Control Algorithm we present next, and in any other
real control problem, we are interested in reconstruction problems only using
finite input sequences. This is particularly true here, where attention is on non
stationary systems.

Given a finite input sequence, qualitatively the problem is that of finding
the longest possible extended state sequence which can be generated by such an
input sequence (the concept of length of a sequence will be better specified in
the following). To formally state this problem, we need notation given below.

Let ulk(-) denote a finite input sequence measured by observing the system
for a finite time. Here k is the counter vector, that is - the vector containing
the lengths of all the sequences in ulkO· The sequence ulk(-) will be called a
k-length finite subsequence (briefly, k-subsequence) since it can be considered as
a subsequence of the infinite sequence u(-), which would have been measured if
the system were observed for infinite time. Given ulk(·), let U(ulk) denote the
set of all the admissible infinite sequences having ulk(·) as the common k-length
finite initial subsequence:

(4)

Notice that, in general, for a given ulk, the set U(ulk) has an infinite number
of elements. Of course, the infinite sequence we would have measured when
observing the system for infinite time belongs to such a set.

Dynamic control of DEDS 281

Let a k-subsequence uik (·) be given, together with a network parameter
vector iJ and an initial extended state z0 = ((x0) T (70) T) T such that :To E

X(B). Then, thesetS(z0 ,ulk(-),B) can be introduced, comprising all the infinite
extended state sequences that can be generated by (2) starting from the initial
value z0 under all the admissible infinite input sequences having uik (·) as the
common k-length finite initial subsequence. Formally:

(5)

Given an extended state sequence z(·), the sub-sequence obtained by taking
the first k terms (the k-th term is the value that the extended state assumes when
the counter vector is equal to k) will be denoted by zi,~J) and will be referred to

as the k-subsequence of the infinite sequence z(-). Given the set S(z0 , ulk(-), iJ),
a subsequence z*ln(·) is a common n-subsequence of S (zo, uik(-), B) if zln(-) =
z*ln(-) for all z(·) E S(zo,u lk(-),B). Then, the state reconstruction problem for
finite input sequences can be formally stated as follows:

PROBLEM 1 For the queueing network ~~ with observed initial extended state
z0 = ((x0)T (1'0)T)T, and observed k-length input sequence uik(-), given a per
turbed value () = B of the network parameter vector such that xo E X (B), find
the longest common finite subsequence of S(zo, uik(-), B).

A slightly different notion of the longest finite sequence could be introduced
considering each single node instead of the whole system. Problem 1 will be
solved under the following assumption, which is not too restrictive.

AssUMPTION 1 The probability distributions of all the random variables de
termining service duration u, for each server, are such that, for all E > 0,
Prob{O < u S c} > 0.

Problem 1 is initially solved under a simplifying assumption.

ASSUMPTION 2 The queueing network ~ only comprises servers with determin
istic scheduling policy.

Under assumptions 1 and 2, Problem 1 can be solved by the following algo
rithm, as shown in the subsequent Theorem l.

ALGORITHM 1 Deterministic Marking Algorithm

• Given the k-length finite observed input subsequence uik(-), let uloo(·)
be the infinite sequence obtained from uik(·) by adding "mark" symbols
after the last element of each sequence comprising uik(·); e.g. let the mark
symbol be +oo .

• Apply the algorithm given by z(·) = <li(zo, uloo(·), B) and terminate the
extended state reconstruction as soon as a server which needs a new service
duration extracts a mark symbol.

282 F. MARTINELLI, S. NICOSIA and P. VALIGI

THEOREM I If Assumptions 1 and 2 hold for system L:, then Problem 1 is solved
by the Deterministic Marking Algorithm.

Proof. Let zln(·) be the finite extended state n-subsequence obtained by the
Deterministic Marking Algorithm, where n is the number of its terms. The
proof is completed if the two following conjectures are correct:

• zln(·) is a common n-subsequence of S(zo, ulk(·), B);
• a common m-subsequence of S(zo, uJk(·), B), with m> n, does not exist.

The proof of the first conjecture is straightforward: the Deterministic Mark-
ing Algorithm performs only deterministic operations over a given finite input
subsequence, common to all the elements of the set U(ulk)·

To prove the second conjecture, let zAla(-) be a common a-subsequence of
S(z0 , ulk(·), B) and suppose by contradiction that a> n. Take the first n +I:::;
a terms of zAla(·), and denote this subsequence with zAln+I (-). Obviously
zAln+I(·) is a common (n +I)-subsequence of S(zo,ulk(-),B) and zAJn(·) =
.ZJn(·). So zAln+I(·) differs from .Z Jn(-) only by having one more term, the
(n + I)-th one.

As shown below, if such a zAla(-) exists, it is possible to construct an (n+I)
subsequence of a sequence in S(z0 ,ulk(·),e) that differs from zAln+IC) by the
last term: this is in contradiction with the fact that zAin+1(·) is a common
(n +I)-subsequence of S(z0 ,ulk(·),e), hence with the fact that zAla(-) is a
common a-subsequence of S(z0 ,ulk(·),e).

To construct this subsequence proceed as follows. Let 6 > 0 be the time in
terval between the two final transitions of the extended state sequence zA I n+I (·)
and choose an E E JR, 0 < E < 6. Replace the mark symbol of the sequence
uJ 00 (·) that has determined the termination of the Deterministic Marking Al
gorithm while computing zAJn(·), with a service duration equal to TJ SE, which
is an admissible service duration, in view of Assumption 1. Then consider the
extended state (n +I)-subsequence obtained by considering the first (n + I) iter
ations of the Deterministic Marking Algorithm, applied to such a modified input
sequence. This subsequence contains n +I elements and differs from zAln+I(·),
as was to be proved. •

The extension to the case of servers with random scheduling is not difficult
and is given in the following Theorem and Algorithm. To simplify notation,
assembly nodes are not allowed. In the following algorithm, uD,i,a(ki,a) denotes
the observed service duration of the ki,a-th customer of class a serviced at node
i, Nc,i denotes the number of classes that node i can provide service to, us,i(ki)
denotes the class of the ki-th customer serviced at node i, and XL,i,a denotes
the state entry corresponding to the current length of queue a in node i.

Dynamic control of DEDS 283

ALGORITHM 2 Marking Algorithm

• Given uik(·), let uloo(·) be the infinite sequence obtained from uik(-) by
adding an infinite number of mark symbols after the last terms of all the
sequences in ulk(·).

• Associate with each server i implementing a random scheduling policy a
set Fi, initially empty, and Nc,i flags f(i, a), a E Ci, initially set to zero .

• Apply the algorithm given by z(-) = <I>(zo, uloo(·), B), and, in addition, at
each state transition update flags f(i, a), a E Ci, and sets Fi, for all nodes
i implementing a random scheduling policy, according to the following
rules:

!(
.) { 1 if UD i o:(ki a) =mark symbol
2

' a :== 0 other,~ise ' (6)

Fi ={a E ci : f(i, a)= 1 and XL,i,o: > 0}' (7)
and mark all the servers for which the three following conditions are sat
isfied all together:

1. Fi is not empty;

2. server i has completed a service at the current transition, or is starved;

3. us,i(ki) E Fi or us,i(ki) =mark symbol.

• The extended state reconstruction terminates as soon as a server with
deterministic scheduling which needs a new service duration value extracts
a mark symbol or a server implementing a random scheduling policy is
marked.

Theorem 2, which can be proved similarly to Theorem 1, summarizes the
results of the solution to Problem 1, in the general case in which both deter
ministic and random scheduling policies are allowed.

THEOREM 2 Assume the queueing network ~ does not contain assembly nodes
and that Assumption 1 holds, then Problem 1 is solved by the Marking Algorithm.

Proof. Like for Theorem 1, assume zln(-) be the finite extended state n

subsequence obtained by the Marking Algorithm and assume by contradiction
that it is possible to determine a common a-subsequence zAia(-) of a sequence
in S(z0 ,ulk(·),B) with a> n. Also in this case we show that it is possible to
construct an (n +I)-subsequence of a sequence S(z0 , ulk(-), B) that differs from
zA I n+l (·) for the last term.

Let o > 0 be the time interval between the two final transitions of the
extended state sequence zA ln+l (·). If the Marking Algorithm was terminated by
a deterministic scheduling node, it is possible to repeat the procedure reported
in the proof of Theorem 1. Otherwise, if i is the marked node which terminated
the algorithm, select an element from Fi and set UD,i,o:(ki,o:) = ry < o. If just
one of the conditions to mark the node was not met, it was not possible to
apply the above procedure. The reason for which, in the perturbed path, us,i(-)

284 F. MARTINELLI, S. NICOSIA and P. VALIGI

can be not all used while UD,i,a(ki,a) =mark symbol, is that node i may have
worked more parts of type a than in the nominal path. •

Before concluding the section, we want to give some indications on the com
plexity of the Marking Algorithm. The computational complexity is propor
tional to the number of the events recorded in the input sequence and to the
complexity of the update of the state when an event occurs. The quantity of
memory required by the algorithm must be enough to store the input sequence.

4. Dynamic control of time-varying queueing networks

The dynamic control of a time-varying queueing network will be formulated
as a dynamic optimization problem: a performance index 'I, which is affected
by the parameter vector e, is defined on the network and the control objective
is that of on-line choosing the value of the parameter vector which optimizes
such a performance index.

Suppose for now that the switching set defined in Section 2 is empty (sta
tionary scenario). A sample of the network performance taken in [t, t+ T] will be
denoted by L(e, w, t, t + T), where w is a. particular realization of the stochastic
process characterizing the input sequence. The following ergodicity assumption
allows to define a performance index 'I(e):

AssUMPTION 3 In the stationary scenario, the queueing network is such that
limy_,00 L(e, w, t, t + T) is well defined for all time t and e E 8 , and its value is
the same for all w and t, except possibly for w in a 0-measure set (almost sure
convergence of the limit).

If Assumption 3 holds, we will assume as performance index the following
steady state value

'I(e) = lim L(e, w, t, t + T).
T-+oo

In the non-stationary scenario define

'I(e, t) = linlr_.ooL(e,w, t, t + T)

where the notation lim is used to specify that the limit is computed as if the
stochastic process characterizing the queueing network would maintain after t
the same description it has at time t and that such a fictitious stationary system
satisfies Assumption 3. The dynamic optimization problem is that of finding:

e*(t) = argmax'I(e, t).
liES

In the stationary case, if we observe the system for an infinite time, we are
eventually able to choose e* which solves our problem. A control algorithm,
however, has to take a decision in a finite time, as in the following algorithm,

Dynamic control of DEDS 285

which is the basis for the control scheme proposed next. The basic idea. is that
of applying a. control action (i.e., a. parameter modification) every Tc time units,
a.t the end of a. control interval [tk, tk+l], where tk = kTc.

ALGORITHM 3 Basic Control Algorithm.

• Initialization: Choose a duration Tc for the control intervals, an initial
value for the parameter vector Bo, and set k = 0 and to = 0.

• Iteration k:

1. by applying the marking algorithm, reconstruct the extended state se
quence io (-) using the input sequence recorded up to tk+l , for all e in
8;

2. based on the io(-), compute L(B , w, 0, tk+l), V 8 E 8.

3. choose as new parameter

Bk+1 = fJ = argma.xL(B,w,O,tk+l)·
IJE8

The reconstruction at Step 1 can be implemented in a. more efficient man
ner. At theend of each iteration k, we store for all 8 E 8 the extended state
reached by the queueing network under e and the segment of the input sequences
recorded in [tk, tk + Tc] which may have been not completely used in the recon
struction. At iteration k + 1 we extend these input sequences with the values
observed in [tk+1 , tk+l + Tcl· For all ewe resume the extended state reached
a.t the end of iteration k and continue the reconstruction by means of marking
algorithm. Such a. procedure is repeated again and again.

THEOREM 3 In the stationary scenario, under Assumption 3, the Basic Control
Algorithm asymptotically gives with probability one the optimal parameter vector
value e·.

Proof. Since, as assumed above, the control does not modify input sequences,
the result directly follows from Assumption 3. •

The Basic Control Algorithm cannot be successfully applied in the non sta
tionary scenario. The following modified version, designed for non stationary
problems, exploits the characteristics of ordinal comparison: if it is applied to
a stationary system, the order among different parameter vector values e based
on estimates L(e, w, t, t + T) approaches very fast (in some cases exponentia.lly
with T) the true order of parameter vector values, i.e. the order based on I(B),
much faster than the rate the variance of L(B,w, t , t + T) approaches 0, which
is of order 1/T (Da.i and Chen, 1997).

In the non-stationary case observe that L(B, w, t, t + T) can be considered
an estimate of I(B, t) only if the interval [t, t + T] is all contained in a. steady
interval (i.e. there exists l: 'Yl :::; t < t + T < 'Yl+l) ·

The following algorithm performs the reconstruction only using data from
the current control interval (time local feature). For this reason , reconstruction

286 F. MARTINELLI, S. NICOSIA and P. VALIGI

for all e E 8, as in the Basic Control Algorithm, is no more necessary. In the
basic version the reconstruction should be performed for all e E 8: stopping
the reconstruction for a e at some iteration would exclude this vector value in
all successive iterations. On the contrary, using the Time Local version, it is
possible to perform the reconstruction for a. subset ek ~ e, possibly different
from a control interval to another, without losing any e.

ALGORITHM 4 Time Local Control Algorithm.

• Initialization: Choose a duration Tc for the control intervals, an initial
value for the parameter vector e0 and set k = 0 and t0 = 0.

• Iteration k:

1. using the marking algorithm and only data measured in the control
interval [tk, tk+l], reconstruct the extended state sequence ze(-), for
all e E 8k, 8k ~ 8 being a subset to be defined;

2. based on ze(-), compute L(e,w,tk.tk+l) , for all e E 8k .

3. choose as new parameter

ek+l = 1J = argma.xL(e,w,tk,tk+l)·
IIE6k

The implementation of Step 1 must be explained with more detail. Suppose
m control actions have already been implemented and let em be the current
value of the parameter vector. We start a new control interval [tm, tm+l] which
will end with a control action (Step 3) at time tm+l· State reconstruction is
carried out only using data observed in the (m+ 1)-th control interval, i.e. the
interval [tm, tm+ll· This allows to perform the reconstruction for just a. set
em ~ e, which implies a computation reduction and also a greater simplicity
in handling input sequences. Notice that the Time Local feature is necessary in
the non stationary scenario, where data. from the past may lose significance.

However, the above control scheme, even if applied in the stationary scenario,
does not converge to the optimal parameter vector value e* . In the stationary
scenario we can just set Tc large enough to be confident with a. high probability
of being in a set of sub-optimal parameter vector values. To formalize this, we
consider again the stationary scenario and introduce the sub-optimal set 8 (p)
of parameter vector values e E 8 with the first p largest values of I(B), i.e., if
we order parameter vector values e E 8 from the best to the worst one, 8(p)
contains the first p elements.

The following theorem characterizes the steady state probabilities and, con
sequently, the beha.vior of the algorithm, in the stationary scenario.

THEOREM 4 In the stationary scenario, for a queueing network which satisfies
Assumption 3, and given a sub-optimal set e (p) I for all € > 0 small as desired
there exists a T large enough that the steady state probability distribution of
the ergodic Markov Chain generated by the Time Local Control Algorithm with

Dynamic control of DEDS 287

em = e for all m and Tc 2: T is such that the parameter vector value Bm
selected by the algorithm at iteration m belongs to e (p) with probability larger
than 1- E, that is Prob{Bm E e(p)} > 1- E for all m> 0.

Proof. We use the following indicator process, proposed in Dai (1996):

I,,N(t,t+T) ~ { :
ifmaxa-E8(p) L(O', w, t, t + T) 2:

maxiiE8\8(p) L(B, w, t, t + T)
otherwise

(8)

Observe that, if em = e for all m, t = tk and T = Tc, Prob{ Ip,N(t, t + T) =
1} is the probability that at iteration k of the Time Local Control Algorithm
we select a e in the sub-optimal set e(p).

Ftom Dai (1996), we know that Prob{Ip,N(t,t+T) = 1} is a nondecreasing
function of p and that, under Assumption 3, limr_,00 Prob{Ip,N(t, t + T) =
1} = 1 (stationary scenario). This means that for all E > 0 small as desired
there exists a T such that Prob{Ip,N(t, t + T) = 1} > 1 -E. In addition,
observe that in the stationary scenario the Time Local Control Algorithm with
em = e Vm behaves like a homogeneous Markov chain whose states are all
the parameter vector values. Such a Markov chain reaches the steady state
probability distribution in just one iteration and is characterized by a unique
recurrence class. If error on estimates is small enough, bad parameter vectors
values are associated with transient states. So, the Markov chain is ergodic. •

Theorem 4 also implies that at steady state, considering a time interval long
enough, the Time Local Control Algorithm spends in e(p) a fraction 1 - E of
such a time interval.

However, the choice of Tc is not straightforward. We have to take into
account the estimate accuracy and, in time varying applications, the duration
of steady intervals.

Besides the choice of Tc, to apply the marking algorithm in Step 1 of the
control algorithm we need also to specify, for all (} E em, an initial state which
is admissible under the parameter vector (} for which the reconstruction is per
formed.

Notice that the measured initial state could be not admissible under all
B E em- Now, the limit in Assumption 3 does not depend on the initial state
even if, on the short term, the performance sample L(B, w, t, t + T) could be
affected by the initial state. An initial state admissible under all (} E em
is the state of empty network and it has been used in our implementation.
Different policies for the selection of the initial state have been tested by means
of simulations without showing better results.

We specified that at iteration m, the state reconstruction could be performed
just for a set em ~ e. The two following choices have been considered here: a
"global" control scheme, where em = e for all m, and a "local" control scheme,
where em comprises all Bin a small "neighbor" of Bm. The latter choice reduces

288 F. MARTINELLI, S. NICOSIA and P. VALIGI

computation but could introduce in the Markov Chain describing the algorithm
one (or more) recurrence class associated with a local optimum different from
the recurrent class of the global optimum.

Different Gm could be designed if we have some extra information on the
queueing network to restrict the search to a subset of 8. Observe that some
rules have to be defined to overcome the case when a e E 8m, which makes
the current network extended state not admissible, is selected at Step 3. In
the application presented in the next section we give a possible solution of this
problem.

As for the complexity of the Time Local Control Algorithm, observe that
at each iteration we have to apply the Marking Algorithm for all e E Gm on
a time interval of length Tc. So, the computational complexity is proportional
to the cardinality of the set Gm and to the control interval duration Tc. The
memory required by the algorithm must be sufficient to store the input sequence
corresponding to an interval during Tc. So, roughly, it is like the memory
required by the Marking Algorithm.

5. Dynamic control of manufacturing systems

The Time Local Control Algorithm has been applied to the problem of dynamic
allocation of buffer capacities in manufacturing systems. The problem is relevant
per se, and also as a model of Kanba.n controlled manufacturing systems (Di
Mascolo, Frein, Dallery and David, 1991).

Figure 1. The manufacturing system.

The control scheme is aimed at dynamically varying the buffer capacity of
some queues in the system, in reaction to unknown changes/disturbances in the
production scenario, in order to optimize system performance.

The performance measure considered in this paper is the long term system

Dynamic control of DEDS 289

11 12 81 82 83 84 I 85 I 86 87 ss 89 I 810 I
169 169 168 203 168 169 168 205 169 169 168 169
168 168 287 204 169 168 169 170 170 168 204 170
288 288 167 168 288 288 288 289 4 288 169 168
204 204 288 169 204 176 204 204 289 4 288 5
170 170 169 205 176 177 4 169 205 204 170 289
176 176 175 48 170 170 5 316 168 170 49 4
289 205 203 288 5 205 176 177 6 5 205 177
205 289 3 315 177 289 167 168 5 289 48 205
167 167 176 287 4 204 3 288 177 176 176 6
5 5 4 167 289 295 49 211 49 167 316 176

Table 1. Order of the first 10 buffer allocations: comparison based on long and
short run simulations.

throughput T(H), computed over a large number of service customers:

H
T(H) = T(H) ' (9)

where T(H) is the time at which the H-th serviced customer departs from the
system.

The manufacturing system considered in our experiments is depicted in Fig.
1. It is a simple case of multi part-type manufacturing system, with the service
duration of all the nodes independent of part type, nodes 3, 4, and 5 working
only one part-type each; the routing policy from node 2 to nodes 3, 4, and 5 is
random and is a model of the mix of part type arriving at the system and of a
deterministic routing policy, based on part-type: each type to a different node.

It is assumed that all the queues can be controlled, i.e. their buffer capacity
can be modified, satisfying the following constraint, which defines the parameter
space 8:

L B(i,a) = Btot,

(i,a)EQc

(10)

where B(i,a) is the buffer capacity of queue (i, a). Qc is the set of controlled
queues (in this ca.se Qc = {2, 3, 4, 5, 6}) and Btot is the total buffer capacity
available to the controlled queues.

The same system was considered in Liberatore, Nicosia and Valigi (1995b,
1997) but the set of controlled queues was Qc = {3 , 4, 5} due to the minor accu
racy of the perturbation analysis scheme used there, which allowed to consider
only smaller perturbations.

Table 1 reports the ordered sequence of parameter values e based on short
run and on long run performance estimates (in particular on a time interval

290 F. MARTINELLI, S. NICOSIA and P. VALIGI

corresponding to the service of M = 500 customers for the short run and
M = 1000000 for the long run). L1 and L2 are two independent long run
simulations while Sk, k = 1, 2, ... , 10, denote short run simulations. In the
Table the number is an identifier for buffer allocations. For example, 169 is the
buffer allocation eopt = (1 0 0 4 3) which is the long run optimal allocation for
the considered system. Different experiments, with different realizations of the
stocha.stic process, are reported in the Table. Observe that choosing, after a
short run simulation, the best estimated buffer allocation provides very often
one of the two best long run solutions while just twice a worse solution was
achieved.

In the implementation of the Time Local Control Algorithm, we took as
control period (or observation period) duration Tc, the time needed by the system
to service a given constant number M of customers.

In the following we have considered a global control scheme, i.e. Gm = G
't:/m, and a local control scheme, with Gm comprising buffer allocations which
differ from the current one by moving just one buffer slot from one queue to
another.

If the Gm considered contains parameter values under which the current ex
tended state (i.e. the state at time tm+J) is not admissible, it could happen that
the current extended state is not admissible under the parameter vector value
e* selected by the algorithm. This is because there can be some buffers whose
current content exceeds the new capacity assigned through e*. In these cases,
some temporary buffer slots have been added in order to store the exceeding
customers. These buffer slots disappear as soon as the exceeding customers are
serviced.

In the simulation experiments, all the service times, whose probability dis
tribution is unknown to the control algorithm, are exponentially distributed,
with mean service time equal to 0.5, 1, 3, 2, 1, and 1, for nodes from 1 to 6,
respectively. The exponential probability distribution is not needed, however,
for the application of the algorithm which works under very general conditions.
In particular, we do not make any assumption on the stochastic process charac
terizing the system. The sum Btat of the buffer capacity of the controlled queues
is chosen equal to 8 (without taking into account customers under service) while
the initial allocation is e = (1 2 2 2 1).

It is assumed that the routing probabilities are unknown, and describe a dis
turbance acting on the system, that has to be rejected by the control scheme.
Both the cases of stationary and time-varying routing probabilities have been
considered. In the stationary case, the routing probabilities from node 2 to
nodes 3, 4, and 5 have been chosen equal to 0.05, 0.05, and 0.9, respectively. In
the time-varying case, the routing probabilities are subject to step-wise changes,
with initial values as in the previous case, then the values are set to 0.9, 0.05
and 0.05, respectively, and finally they become 0.05, 0.9 and 0.05, respectively.
The control period M has been chosen as M = 500. The long term tl1roughput
in the stationary scenario of the system controlled by the Time Local Control

Dynamic control of DEDS

0.84

0.7

0.68

0.66

0.5 1.5 2 2.5
Customers serviced at node 6

3.5

X 10~

291

Figure 2. Global and local control scheme: throughput behavior (solid above:
optimal; dashed: globally controlled; dotted: locally controlled; solid below:
uncontrolled).

I Buffer allocation I Buffer allocation identifier I Percentage I
e1 = (10043) 169 51.67
e2 = (10034) 168 31.67
e3 = (11033) 204 10
e4 = (10133) 176 3.3
e5 = (10052) 170 1.67
e6 = (12221) 242 1.67

Table 2. Frequency selection of buffer allocations.

Algorithm (using a global and a local scheme) is reported in Fig. 2 and com
pared with the performance of the system without control scheme, and with two
different choices for the buffer capacity. The first choice, B = (1 2 2 2 1), is a sym
metric buffer allocation: the capacity is 1 for queues 1 and 6 and 2 for queues
3,4 and 5. The second choice is the optimal buffer allocation Bopt = (10043).
The diagram clearly indicates the strong improvement on system performance
achieved by the proposed control scheme: as a matter of fact, the performances
of the controlled system are almost equal to the optimal one.

Observe also that the performance in the global case (dashed) is slightly bet
ter in the short term, and becomes identical in the long term to the performance
of the local control scheme (dotted).

The computation time required to run the local control scheme here has
been about 3% of the time required by the global control scheme.

Table 2 illustrates the frequency with which each buffer allocation has been

292 F. MARTINELLI, S. NICOSIA and P. VALIGI

chosen by the control scheme in the global case. Notice that only 6 allocations
have been chosen by the controller out of the total of 495. Observe the accor
dance between data reported in this table and the ones corresponding to the
long run estimated order between buffer allocations.

Finally, the control scheme has been tested under the effect of the time vary
ing routing probabilities with the changes cited earlier , where the firs t change
happens after 10000 customers have been serviced at node 6 and the second
change after 20000 customers have been serviced at node 6. To make appar
ent the control action in this time-varying scenario, Fig. 3 does not report the
long term throughput as done in Fig. 2. Rather, the total simulation time
has been partitioned into 30 intervals , where each interval corresponds to the
time required to provide service to 1000 customers, and the throughput of every
interval has been computed and reported in Fig. 3. Notice that the time of
the change is not known by the controller. The effectiveness of the Time Local
Control Algorithm is apparent: as a matter of fact the algorithm selects very
often in each steady interval the first two better allocations in that interval (e.g.
allocations 169 and] 68 in the first steady interval) . In particular, in each steady
interval, the percentage of times the best two allocations in that interval have
been selected are 100%, 70%, and 90% respectively.

0.9,.---~--~--~--~--~---,

0.7

' I
0.5

0.4

0·3o'---~o.s=------~, ---.,.,_':-5 --~2---,2~.s---'3

Customers serviced at node 6 x 1 0
4

Figure 3. Throughput behavior (time-varying routing; dotted: controlled, solid:
uncontrolled) .

As a concluding remark, observe that the ba.sic idea of the control scheme
considered in this paper is to use the Marking Algorithm to simultaneously
estimate system performance for the set of parameter vectors Gm. The process
of simultaneous estimation is inherently parallel: it amounts to executing several
times the Marking Algorithm, with the same observed input sequence, the same
observed initial extended state, and different parameter vectors. Once the input

Dynamic control of DEDS 293

sequence has been determined, the state reconstruction for all the parameters in
8m can be carried out independently, and in a concurrent manner. A concurrent
state reconstruction algorithm has been presented in Martinelli, Nicosia. and
Valigi (1997a.).

6. The extensions to general DEDS

The control algorithm described in this paper can be easily extended to general
DEDS. In particular, equation (1) can be seen as the dynamic equation of any
DEDS described through the GSMP formalism. Service times of the machines
must be considered, in the general case, as event lifetimes; random schedul
ing and routing as non-deterministic state transitions in the graph associated
with the considered DEDS. The notions of parameter allocations and admissible
states depend on the particular DEDS considered.

7. Conclusions

In this paper a.n exact state reconstruction algorithm for DEDS ha.s been
proposed, based on data. observed from the system we are controlling, and on a.
suitable model of the system itself. The algorithm allows to exactly reconstruct
the state of the system, under perturbation on the parameters characterizing
it. The algorithm has then been used to implement dynamic control schemes
for DEDS. In particular, in this paper a globa.l and a local control scheme for
dynamic allocation of buff(·r capacities is proposed, and its application to a.
manufacturing system is described in detail. A parallel implementation of the
whole control scheme is also mentioned. The proposed control scheme can be
easily extended to general DEDS and can be successfully applied to control
non-stationary DEDS, where the optimal allocation is not always the same in
time.

References

CASSANDRAS, C. (1993A) Discrete Event Systems: Modeling and Performance
Analysis. Irwin & Aksen, Boston, MA.

CASSANDRAS, C . (1993B) Rapid learning techniques for discrete event systems:
Some recent results and applications to traffic smoothing. In: 12th IFAC
World Congress, 3, 323- 326, Sydney, Australia ..

CASSANDRAS, C . AND PANAYIOTOU, C. (1996) Concurrent sample path analy
sis of discrete event systems . In: Proc . of the 35th Conference on Decision
and Control, 3332-3337, Kobe, Japan.

CASSANDRAS, C. AND STRICKLAND, 8. (1989) Observable augmented systems
for sensitivity analysis of Markov and semi-Markov processes. IEEE Trans.
on Automatic Control, 34, 10, 1026-1037.

294 F. MARTINELLI, S. NICOSIA and P. VALIGI

DAI, L. AND CHEN, C. H. (1997) Rates of convergence of ordinal comparison
for dependent discrete event dynamic systems. Journal of Optimization
Theory and Applications, 94, 1, 29-54.

DAr, L. Y. (1996) Convergence properties of ordinal comparison in the simu
lation of discrete event dynamic systems. Journal of Optimization Theory
and Applications, 91, 363-388.

Dr MASCOLO, M., FREIN, Y., DALLERY, Y., AND DAVID, R. (1991) A uni
fied modeling of Kanban systems using Petri nets. The Int. Journal of
Flexible Manufacturing Systems, 3, 275-307.

GLASSERMANN, P. (1990) Gradient Estimation Via Perturbation Analysis.
Kluwer.

Ho, Y. AND CAO, X . (1991) Perturbation Analysis of Discrete Event Dynamic
Systems. Kluwer.

LIBERATORE, G., NICOSIA, S . , AND VALIGI, P. (1995A) Dynamic allocation
of kanbans in a manufacturing system using perturbation analysis . In:
Proc. of the 1995 INRIA/IEEE Conference on Emerging Technologies
and Factory Automation, Vol. 3, 595-600, Paris, France.

LIBERATORE, G. , NICOSIA, S., AND VALIGI, P. (1995B) Path construction tech
niques for dynamic control of kanba.ns systems. In: Proc. of the 34th
Conference on Decision and Control, 2610- 2611, New Orleans, 10.

LIBERATORE, G., NICOSIA, S., AND VALIGI, P. (1997) Dynamic allocation of
buffer capacity in discrete event systems. Intelligent Automation and Soft
Computing: An International Journal, 2, 4, 407-422.

MARTINELLI, F., NICOSIA, S., AND VALIGI, P. (1997 A) Dynamic control sch
emes for manufacturing systems. In: 2nd IFAC Workshop on New Trends
in Design of Control Systems, 393-398, Smolenice, Slovakia.

MARTINELLI, F., NICOSIA, S., AND VALIGI, P. (1997B) A state reconstruc
tion algorithm for parameter dependent discrete event dynamic systems.
In: Proc. of the 5th IEEE Mediterranean Conference on Control and Sys
tems, Cyprus.

PARK, Y. AND CHONG, E. (1995) Distributed inversion in timed discrete event
systems. Discrete Event Dynamic Systems: Theory and Applications, 5,
219-241.

PEPYNE, D. AND CASSANDRAS, C. (1997)Adaptive dispatching control for el
evator systems during up-peak traffic. In: 36th Conference on Decision
and Control, San Diego, USA.

VAKILI, P. (1991) A standard clock technique for efficient simulation. Opera
tion Research Letters, 10, 455-452 .

