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Abstract: Spectral properties of nonnegative matrices are con-
sidered. Asymptotic stability and stabilisation problems of positive
discrete-time and continuous-time linear systems by feedbacks are
discussed. The electric RC-networks are presented as examples of
positive systems. Numerical calculations were made using the MAT-
LAB program.
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1. Introduction
1.1. Nonnegative matrix

Let A = [a;;] be a real matrix. A real matrix is nonnegative if and only if
a;; > 0. For nonnegative A we will write 4 > 0. A vector with nonnegative real
components is called nonnegative vector. In this case we will write z > 0 .

Let A(A) be the spectrum of a square matrix A. Let A\;(A) € A(A) be
an eigenvalue of A. The spectral radius of a matrix A is denote by p(A) =
max; |A;(A)| and the growth constant of A is respectively denoted by a(A4) =
max; ReA;(A) .

Remark 1. For any matrix A > 0 there exists a real number A, € A(A)
such that Apae = p(A). See for example Gantmacher (1988, p. 334, 344).

Remark 2. Let n € R and A = [a;;] > 0. A real number 7 is greater than
the maximal eigenvalue A,.. = p(A4) of nonnegative matrix 4, i.e. M40 =
p(A) < n , iff all principal minors of matrix n- I — A are greater than zero, i.e.
Miln-I1—A]>0,i=1,2,....,n, where Mi[n-I — Al =n—ay;, Ma[n-I1—A] =
det | 77011 T2 } y ooy M, = det[n- I — A]. See for example Gantmacher

—az 77— a2
(1988, p. 349).
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Figure 1. Spectrum of a nonnegative matrix

Example 1. Consider the nonnegative matrix (Frobenius matrix)

o 1 0
F:[ 0 0 1 ]20. (1)
1/16 1/16 1/8

In this case A(F) = {—0.1875 + 0.2997i, —0.1875 + 0.2997:,0.5}, |\(F)| =
UA(F)], Pa(F), Ps(F)[} = {0.3536,0.3536,0.5} and Ames = p(F) = 0.5 (see
Fig.1).

Remark 3. G = [¢;;) < H = [hy;] ifand only if g;; < h;; . fFG >0, H >0
and G < H (G # H ), then p(G) < p(H). See for example Gantmacher (1988,
p. 335 and 350).

1.2. The Metzler matrix

A matrix A = [a;;] € R™™" is called the Metzler matrix if its all off-diagonal
entries are nonnegative, i.e. a;; > 0,7 # j .

Remark 4. It has been shown (Minc, 1988; Kaczorek, 1997) that e** > 0
iff A€ R"™™ is a Metzler matrix.
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Example 2. The matrix M = F — I , where F is given by (1), is a Metzler
matrix. In this case we have

-1 1 0
M= 0 ~1 1

1/16 1/16 —7/8

(2)

and A(M) = {—1.1875 + 0.2097, —1.1875 + 0.2997i, —0.5}. Let eM* = [e;;(2)].
For M given by (2) we obtain

. %e byt \/_.sm(t\/_/ll’)’) 7 cos(tv/3/16)]
e (t) = %e_%—e £ [Hzg/;sm tv/23/16) —cos(t\/2_3/16)]
i F = 11—8 g WL ‘/—sin(t\/fs/ls)—%écos(mfzﬁ/ls)]
ea(t) = ge"% i e-%‘?[%‘/ﬁ sin(tv/23/16) — . cos(t\/2—3/16)]
eaglt) = %e_%— -3 ‘6/9_ (c«/_/16)—§cm(n/_/m]
em(t)_é—%—e—%{‘r’és—mn(w—/w) —Los(t\/—/lﬁ)]
813()&):%&—%—6 ’f"é[”gaf_sn(m/_/w)+—cos(n/_/1s]
egg{t)—ge i e 16 (;0/7_3111@\/_/16)—~cos(t\/_/16)]
egg(t):%e_%—l— —%[g;sm(t\/_ﬂ(s) —cos(t\/_/lﬁ)]

It is easy to show that the elements of matrix e™*

i.e. e.gj(t) Z 0.

= [e;;(t)] are nonnegative,

LEMMA 1 For any Metzler matric M there ezists a real number Ayen € AM(M)
such that Apmaz = a(M) , where a(M) = max; ReM;(M), i = 1,2,...,n, is the
growth constant of M.

Proof. For every matrix M there exists a real number n > 0 such that
matrix n- I + M = A is nonnegative. Let s € A(A) . Then s —n = A € A(M)
and (see Remark 1) real number p(A) —n = a(M) € A(M). I

Consequently, from Remark 3 and Lemma 1 we have the following theorem:

THEOREM 1 Let Mypin, M, My,q. be Metzler malrices. If Mpin < M < Myaz,
then a(Mpin) < a(M) < a(Miyez) -
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2. Asymptotic stability of positive linear systems
2.1. The discrete-time system
Let us consider a discrete-time linear system described by equations

z(k +1) = Az(k) + Bu(k), x(0) € R™.
y(k) = Cz(k), y(k) € R™, wu(k)e€ R". (3)
E=0,1,2,..

where z(k), w(k) and y(k) are the state vector, input vector and output vector
respectively, A, B, C are real matrices of appropriate dimensions.

The system (3) is called positive if for any 2:(0) > 0 and «(k) > 0 we have
a(k) = 0 and y(k) > 0 for £ > 0 . The discrete-time system (3) is positive if
and only if A >0,B > 0,C > 0 (see Kaczorek, 1997, p. 35).

Remark 5. It is well known that the system (3) is asymptotically stable if
and only if p(A) = max; |A\;(A4)] < 1, where p(A) is the spectral radius of A .
For A>0 p(4)<1ifandonlyif M;[I —A] >0, i =1,2.....u (see Remark 2
with n = 1). .

Example 3. For F given by (1) we have

1 -1 0
I-F= 0 1 -1 (4)
~0.0625 —0.0625 0.875

and Mi[l —F]=1>0, Myll —F]=1>0, Mg[I—F] =0.75>0. Thus
N(F)| <1, i=1,2,3 (see Example 1).

2.2. The continuous-time system
Let us consider a continuous-time linear system described by the equations

2(t) = Az(t) + Bu(t), «(0)e R", t>0, &
y(t) = Cz(t), y(t) e R™, u(t) € R, (5)

where z(t), u(t) and y(t) are the state vector, input vector and output vector
respectively, A, B,C are real matrices of appropriate dimensions.

The system (5) is called positive if for any x(0) > 0 and u(t) > 0 we have
z(t) = 0 and y(t) = 0 for t > 0 . The continuous-time system (5) is positive iff
A is a Metzler matrix and B > 0,C > 0 (see Kaczorek, 1997, p. 35).

Remark 6. It is well known that the system (5) is asymptotically stable
iff ReXi(A) <0, i=1,2,....,n. When A4 is a Metzler matrix Re\;(4) < 0
iff M;[—A] >0, 7= 1,2,..,n (there exists a real number 3 such that ma-
trix n - I + A is nonnegative matrix and see Remark 2 with n = 0). We can
notice that M;[—A] > 0, @ = 1,2,...,n if and only if M[4] < 0. Ms3[4] >
0,..c., (~1")M,[A] > 0 (Turowicz, 1995, p. 195). We can also notice that
ReXi(A) < 0if a(4) < 0.
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Example 4. For M given in (2) we have M;[M] = -1 < 0, My[M] =
1>0, M3[M]=-0.75 <0. Thus ReX;(M) <0, ¢=1,2,3 (see Example 2),
i.e. M given by (2) is an asymptotically stable Metzler matrix.

LeEMMA 2 Let A = [a;;] be a Metzler matriz, i.e. a;; >0, i # j. Let det[A- I —
Al = A"+ ap 1 A" 1+ ..+ a1A + ap . In this case a(A) < 0 (or Re)i(A) <
0, i=12,..,n) iff a; >0, i=0,1,2,....,n—1 (Kaczorek, 1999 B, p. 18).

Proof. If ReX;(A) <0, i = 1,2,...,n , then it is clear that a; > 0, i =
0,1,2,...n—1. Now let a; >0, :=0,1,2,....,n — 1. If A is a Metzler matrix,
then the real number a(A) = max; ReX;(A4), 1= 1,2,...,n, is an eigenvalue of
A . For a; > 0 and real X > 0 the characteristic polynomial det[A - I — A] =
A"+ an A" 4 .4 a1 ) 4 ag > 0 . Thus, the characteristic polynomial has
no real nonnegative roots. But a Metzler matrix has a real eigenvalue a(A) .
Consequently, we have a(4) <0 .

This proof is similar to Kaczorek’s (1999b, p. 18), but it does not assume
that a Metzler matrix has real eigenvalues only.

3. Examples of positive electric RC-networks
3.1. Discrete electric RC-network

Let us consider an electric RC-network (see Kaczorek, 1997, p. 34) shown in
Fig. 2. The parameters of the network, R, > 0 and C; > 0, are known. Let
y(t) = 21(t) + z2(t). The system shown in Fig. 2 is described by equations (5),
where z(t) = [ z1(t) z2(t) ]3, andfor Ry =1, R =1,C1 =1,Cy =1, we
get

a=d[ o 1] m=d L] o=l1 1T ©

It is obvious that the system (5), (6) is positive because A is the Metzler
matrix and B > 0,C > 0.

Let t=kh, h>0, k=0,1,2,3,... and y(t) in (5) be approximated by y(k),
and u(t) in (5) for t € [kh, (k + 1)h) be approximated by w(k). Then, from (5)
we obtain (3), where (see for example Mitkowski, 1991, p. 141)

h
A:=e*t, B:= / el*Bdt, C:=C. (7)
0

For matrices given by (6) we have

an_ _1 | en(h) ena(h)
Y [ ez1(h) ezn(h) } : ®)
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x,(¢) X, (2)
—p <
— i
- - & G, =
R, R, R,
u(t)

Figure 2. Positive RC-network

where e11(h) = (/3 — 1)eMh + (VB + 1)e*h,  eja(h) = 2(eMh — er2h),
ez1(h) = eMh — M, egp(h) = (V3 + 1)t + (V3 — 1),
A =(=3++3)/6, )= (-3—+3)/6and

h 4 | (3_;.\/9:)(1 _eAlh) “(3—\/5](1-*8’\2';‘)
/0 3 Bl 6 [ (2v3 4 3)(1 —eMM) — (23 =3)(1 —e2h) |° &)

Example 5. For h =1 from (8) and (9) with (6) we obtain positive system
(3), where

0.5295 0.2050 0.0349
A"[0.1025 0‘7345]’ B:[O.IGSO}’ ¢=[1 1] (10)

and A(A) = {0.4544,0.8095}. Let us consider also the scalar linear feedback
u(k) = Ky(k), K € R. (11)
The matrix of the closed-loop system (3), (10), (11) is given by

A+ BKC — [ 0.5295 0.2050 } K[ 0.0349 0.0349

0.1025 0.7345 0.1630 0.1630 |- )

The matrix (12) is positive if and only if K > —0.6288 . M[l — A — BKC] >
0 & K < 134813 and M3[] — A— BKC] > 0 & K < 0.8451. Consequently,
from Remark 5 we obtain the following condition of asymptotic stability

A+BKC >0and p(A+ BKC) < 1< K € [—0.6288,0.8451).  (13)
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3.2. Electric RC-ladder network

Let us consider an electric RC-ladder network shown in Fig. 3 (for n = 3 ). The
parameters of the network, R; > 0 and C; > 0, are known. The system shown
in Fig. 3 is described by the equations (Mitkowski, 1997)

i‘,ﬁ(t) = a,-;vi_l(t} + bt-x‘f(t) + Ci$¢+1(t), = 1, 2,3, iy T8 (]4)

where zo(t) =0, z,41(t) =0 and
1 1
=5 G=5—= b=—(a+a), 1=1,23,.,n 15

a .G, G R (@i + ), 1 n (15)
The RC-ladder system can be described by the equation

. T

#(t) = Az(t), o(t)=[ 21(t) 22) . @f®) |7 (16)

where A is the n x n tridiagonal real Jacobi matrix with parameters given in
(15). Forn =25 A is given by

b] C1 0 0 0
ag by e 0 0
A=| 0 a3 b3 ez O (17)
0 0 g b4 Cyq
0 0 0 as b5
or
A=dia‘9(&'1‘é}!~é%?'@%? ._C'l;’).i‘}‘{'.‘
(18)
M=-L- diag(n,r;,m,m,%) i LT:
where
1 -1 0 0 0 0
0 1 -1 0 0 0 1
L=10 0 1 -1 0 01, ri:?, P =123 50 T
0 0 0 1 -1 © i
0 0 0 0 1 -1

Ifajy1e; >0fori=1,2,3,.....,n—1, then tridiagonal matrix is called Jacobi
matrix. The tridiagonal real Jacobi matrix has only single real eigenvalues (Ilin
and Kuznyetsow, 1985, p. 83, p. 104). The matrix A is diagonalizable. The
Jordan canonical form of A is J = A = diag(A\1, Az, ..., An), where Ay, Ag, .., Ay
are real eigenvalues of A . From the Gershgorin’s criterion (Gantmacher, 1988,
p. 390) A\, € [-m,0], k = 1,2,...,n, m = maxg(|ak| + |ek|). From (15) a; > 0
and ¢; > 0. RankL = n (rank of matrix L), R; > 0 and C; > 0. Consequently,
(see (18)) we have det A # 0 (RankA = n). Thus \x € [-m,0), k=1,2,...,n.

Example 6. Consider the tridiagonal real Jacobi matrix A with a; =
a, bj = b, ¢; = c. In this case we have analytic formula for eigenvalues of
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Figure 3. Positive RC-ladder network.

in the following form (Bellman, 1960, p. 215; Ilin and Kuznyetsow, 1985, p.
159; Lancaster, 1969, p. 104):
km

Ax = b+ 2v/accospg, @ =
n+ 1

: (19)

k== 10203, et
Remark 7. The tridiagonal real matrix A (see (17)) with (15) is a Metzler
matrix.

THEOREM 2 Consider the Jacobi matriz A (see (17)) with a; > 0 and ¢; > 0.
Let Giiue = 8% 04, Ggn = Mg 05, 1 =2,3,.40, buas = max; by, buin =
min; by, ¢ = 1,2, Chas = MaX; 8y Cmin = minge;, & = 1,2,.,n— 1.
Then

bmin + 2\/ AminCmin COS 2 :r_ 1 < Q(A) £ bisga + 20/ Grnigs Crngs 008 : I T (20)
L
Proof. Using Theorem 1 and (19) we obtain (20). |
Example 7. Let us consider an electric RC-ladder network shown in Fig.
3. Let Riy=1, Ro =009, Rg=11, R4=08, C; =1, C3=1, C3=1.1n
this case we obtain

—2.1111 11111  0.0000
A= | 11111 -2.0202 0.9091 |,

0.0000  0.9091 —2.1591

(21)

0.9091 —2.1591 0.9091

—2.1591 0.9091 0.0000
Amin = s
0.0000 0.9091 —2.1591

(22)

1.1111 —2.0202 1.1111

—2.0202 1411 0.0000
Amax —
0.0000 1.1111 —2.0202
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From numerical calculations we obtain A(A) = {—3.5122. —2.1398. —0.6384}
and a(A4) = —0.6384 . Using inequalities (20) for eigenvalues of the matrices
(22) we obtain the following estimation: a(A4) € [—0.8734, —0.4489)].

4. Positive Frobenius systems

Consider the system (3) or (5) with A=F,B=[0 0 ... 0 | ]T, =0,
where F' is a real Frobenius matrix. For n = 3 we have
0 1 0

F=| 0 0 1 |anddet]A-T—F]=X +a)?+ a1\ +aq. (23)

—ay —a; —as
Let us consider the scalar linear state-feedback v = Kz, K = [ ko k1 ... kno ]
The matrix of the closed-loop system (for n = 3) is given by

0 1 0
F+ BK = 0 0 ] ; (24)

ko —ag ki —ay ke —as
It is clear that

det[\- I — F — BK] =A% + (ag — ko)A + (a1 — ky)A +ag — ko.  (25)

Remark 8. For any I there exists a real matrix K = [ B0 o e Kimed ]
such that p(F' + BK) < 1 and F + BK > 0. Particularly, for k; = a; we have
Xi(A) =0 (see (24)). But areal matrix K = [ ko ki ... knp— |, such that

ReA(F + BK) <0 and F + BK > 0, does not exist .

Remark 9. If a; < 0, then matrix F > 0 (see (23)). In this case from
the Descartes criterion the matrix F > 0 has only one real eigenvalue A a0 > 0
(Turowicz, 1967, p. 37). It is clear that p(F') = A0

Example 8. For n =5 we have

0 1 0 0 O
0 0 1 0 O
F=)10 0 0 1 0
0 0 0 0 1
110 1 15 1

and A(F) = {4.4972,0.0366 -+ 0.80154, 0.0366 — 0.80154, —0.0995, —3.4709}.

5. Concluding remarks

The finite dimensional positive discrete-time and continuous-time linear systems
were considered. The effective conditions of asymptotic stability were given.
The results obtained in Section 3 can be extended to the nonuniform ladder
networks of the RL and GC-type. The positive ladder networks can be applied
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in approximation of some positive distributed parameter systems (Schanbacher,
1989). A very interesting method for stabilization of positive linear systems
by state-feedback with single input was considered in Kaczorek (1999a). The
Kaczorek’s method is based on Gersgorin’s theorem and quadratic program-
ming. The reachability and controllability of positive systems were considered
in papers by Klamka (1998) and Kaczorek (1999c).

The work reported was sponsored by the KBN - AGH Contract No. 11 11
120 230.
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