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1. Introduction 

1.1. Nonnegative matrix 

Let A = [aij] be a real matrix. A real matrix is nonnegative if and only if 
aij 2: 0. For nonnegative A we will write A 2: 0. A vector with nonnegative real 
components is called nonnegative vector. In this case we will write x 2: 0 . 

Let >.(A) be the spectrum of a square matrix A. Let Ai(A) E .A(A) be 
an eigenvalue of A. The spectral radius of a matrix A is denote by p(A) = 
maxi 1>-i(A)I and the growth constant of A is respectively denoted by a(A) = 
maxi Re>.i(A) . 

Remark 1. For any matrix A 2: 0 there exists a real number Amax E .A(A) 
such that Amax = p(A). See for example Gantmacher (1988, p. 334, 344). 

Remark 2. Let 77 ER and A= [aij] 2: 0 . A real number 77 is greater than 
the maximal eigenvalue Amax = p(A) of nonnegative matrix A, i.e. Amax = 
p(A) < 77 , iff all principal minors of matrix 77 ·I- A are greater than zero, i.e. 
Mi [77 ·I- A] > 0, i = 1, 2, .... , n, where M1 [77 ·I- A] = 77 - a11, M2 [77 · I- A] = 

det [ 77- au -a12 ] , .... , Mn = det['Tf ·I- A]. See for example Ga.ntmacher 
-a21 77- a22 

(1988, p. 349). 
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Figure 1. Spectrum of a nonnegative matrix 

Example 1. Consider the nonnegative matrix (Frobenius matrix) 

F=[ ~ ~ ~ ] >o . 
1/16 1/16 1/8 

(1) 

In this case )..(F) = { - 0.1875 + 0.2997i, - 0.1875 + 0.2997i, 0.5}, IA(F)I = 
{ IAl(F)I, IAz(F)I, IA3(F)I} = {0.3536, 0.3536, 0.5} and Amax = p(F) = 0.5 (see 
Fig.1). 

Remark 3. G = [gij] :::; H = [hij] if and only if 9iJ :::; hij . If G 2': 0, H 2': 0 
and G:::; H (G =/=H), then p(G) :::; p(H). See for example Gantmacher (1988, 
p. 335 and 350). 

1.2. The Metzler matrix 

A matrix A = [aij] E Rnxn is called the Metzler matrix if its all off-diagonal 
entries are nonnegative, i.e. aij 2': 0, i f=- j . 

Remark 4. It has been shown (Mine, 1988; Kaczorek, 1997) that eAt 2': 0 
iff A E Rnxn is a. Metzler matrix. 
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Example 2. The matrix M= F- I , where F is given by (1), is a Metzler 
matrix. In this case we have 

M= [ ~1 ~1 ~ l 
1/16 1/16 -7/8 

(2) 

and .\(M)= {- 1.1875+0.2997i,-l.1875+0.2997i,-0.5}. Let eMt = [e;j(t)]. 
For M given by (2) we obtain 

2 t 19 t 5 V23 r;:;;; 7 r;:;;; 
en (t) = 9e-2 + e-16 [ 

207 
sin(tv 23/16) + g cos(tv 23/1 6)] 

( ) 1 t 19t [ 11 V23 ( r.;;;/ ) 1 ( r.;;;/ )] e21 t = ge-2-e-16 ~sintv2316 +gcostv23 16 

l t 1 9t 7 V23 r;:;;; l r;:;;; 
e31(t) = 

18
e- 2 +e-16[ 

414 
sin(tv23/16)-

18 
cos(tv23/l6)] 

2 t 19 t 2 6 V23 r;:;;; 2 r;:;;; 
e12 (t) = 3e-2 +e- 16[~sin(tv23/16)- 3 cos(tv23/16)] 

( ) 1 t 19t [ 2V23' ( r.;;;/ ) 2 ( r;:;;; l e22 t = 3e-2 - e-16 ~sin tv 23 16 - 3 cos tv 23/16) 

) 
1 , 19t [ 5V23 r;:;;; ) 1 r;:;;; e32(t = 6e-2- e-16 

138 
sin(tv23/16 + 6 cos(tv23/16)] 

16 t 19t[176)23 r;:;;; 16 r;:;;; 
e13 (t) = 9 e-2- e-16 

207 
sin(tv23/16) + 9 cos(tv23/16)] 

8 t 19 t 56 V23 r;:;;; 8 r;:;;; 
e23 (t) = 9e-2 + e-16[2Q7 sin(tv23/16) - g cos(tv23/16) ] 

e33 (t) = ~e-~ + e- W [: sin(tv'23/l6) + ~ cos(tv'23/16)] 

It is easy to show that the elements of matrix eMt = [ e;j ( t)] are nonnegative, 
i.e. e;j(t) 2: 0. 

LEMMA 1 For any Metzler matrix M there exists a real number Amax E .\(M) 
such that Amax = a(M) , where a(M) = max; Re.\;(M), i = 1, 2, ... , n , is the 
growth constant of M . 

Proof. For every matrix M there exists a real number 7) 2: 0 such that 
matrix 7) · I+ M = A is nonnegative. Let s E .\(A) . Then s- 7) = .\ E .\(M) 
and (see Remark 1) real number p(A) -7) = a(M) E .\(M). • 

Consequently, from Remark 3 and Lemma. 1 we have the following theorem: 

THEOREM 1 Let Mmin, lvf, Mmax be Metzler matrices. If Mmin :S M :S !VImax 1 

then a(Mmin) :S a(M) :S a(Mmnx) . 
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2. Asymptotic stability of positive linear systems 

2.1. The discrete-time system 

Let us consider a. discrete-time linear system described by equation s 

x(k + 1) = Ax(k) + B1t(k:) , 
y(k) = Cx(k), y(k) E Rm, 
k = 0, l, 2, ... 

;t(O) E Rn. 
u(h:) E R'", (3) 

where x(k) , u(k) and y(k) are the state vector, input vec tor and output vector 
respectively, A, B, Care real matrices of appropriate dimensions. 

The system (3) is called positive if for any x(O) ;::o: 0 and u(k) ;::o: 0 we have 
x(k) ;::o: 0 and y(k) ;::o: 0 fork > 0 . The discrete-time system (3) is positive if 
and only if A ;::o: 0, B ;::o: 0, C ;::o: 0 (see Kacwrek, 1997, p. 35). 

Remark 5. It is well known that the system (3) is asymptoticall y stable if 
and only if p(A) = maxi I.Ai(A)I < 1, where p(A) is the spectral radius of A . 
For A ;::o: 0 p(A) < 1 if and on ly if Mi[I- A] > 0, i = 1, 2, ... , u (see Remark 2 
with T) = 1). 

Example 3. For F given by (1) we have 

[ 

1 - 1 0 l 
I-F = 0 1 - I 

-0.0625 -0.0625 0.875 
(4) 

and MI[I - F] = 1 > 0, Nh [I- F] = 1 > 0, M3 [I - F] = 0.75 > 0 . Thus 
I.Ai (F)I < 1, i = 1,2,3 (see Example 1). 

2.2. The continuous-time system 

Let us consider a. continuous-time linear system described by the equ ations 

x(t) = Ax(t) + Bu(t) , x(O) ERn, t ;::o: 0, 
y(t) = Cx(t) , y(t) E Rm , u(t) E R'" , 

(5) 

where x(t) , u(t) and y(t) are the st ate vector , input vector an d output vector 
respectively, A, B, C are real matrices of appropriate dimensions. 

The system (5) is called positive if for any x(O) ;::o: 0 and ·u(t) ;::o: 0 we have 
x(t) ;::o: 0 and y(t) ;::o: 0 fort > 0 . The continuous-time system (5) is positive iff 
A is a. Metzler matrix and B ;::o: 0, C ;::o: 0 (see Kaczorek, 1997, p. 35). 

Remark 6. It is well known that the system (5) is asymptotically stabl e 
iff Re.Ai(A) < 0, i = 1, 2, ... , n. When A is a Metzler matrix Re.A;(A) < 0 
iff Mi[-A] > 0, i = l , 2, ... , n (there exists a real number 11 such t.bat ma-
trix TJ ·I+ A is nonnegative matrix and see Remark 2 with 17 = 0). vVe can 
notice that Mi[-A] > 0, i = 1,2, ... ,n if and only if M 1 [A] < 0, Nh[A] > 
0, .... , ( -1 n)Mn[A] > 0 (Throwicz, 1995, p. 195) . We can also notice that 
Re.Ai(A) < 0 if a(A) < 0. 
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Example 4. For M given in (2) we have M1 [M] = -] < 0, M2 [M] = 
1 > 0, M3[M] = -0.75 < 0. Thus ReAi(M) < 0, i = 1, 2, 3 (see Example 2), 
i.e. M given by (2) is an asymptotically stable Metzler matrix. 

LEMMA 2 Let A= [aij] be a Metzler matrix, i.e. aij ~ 0, i-=/= j. Let det[A ·I
A] =An+ an-lAn-l + .... + a1A + ao . In this case a(A) < 0 (or ReAi(A) < 
0, i=1,2, ... ,n)iff ai>O, i=0,1,2, ... ,n-1 (Kaczorek, 1999B, p. 18). 

Proof. If ReAi(A) < 0, i = 1, 2, ... , n , then it is clear that ai > 0, i = 
0, 1, 2, ... , n- 1 . Now let ai > 0, i = 0, 1, 2, ... , n- 1. If A is a Metzler matrix, 
then the real number a( A) =maxi ReAi(A), i = 1, 2, ... , n, is an eigenvalue of 
A . For ai > 0 and real A ~ 0 the characteristic polynomial det[A · I -A] = 
An + an-lAn-l + .... + a1A + a0 > 0 . Thus, the characteristic polynomial has 
no real nonnegative roots. But a Metzler matrix has a real eigenvalue a(A) . 
Consequently, we have a(A) < 0 . 

This proof is similar to Kaczorek's (1999b, p. 18), but it does not assume 
that a Metzler matrix has real eigenvalues only. 

3. Examples of positive electric RC-networks 

3.1. Discrete electric RC-network 

Let us consider an electric RC-network (see Kaczorek, 1997, p. 34) shown in 
Fig. 2. The parameters of the network, Ri > 0 and Ci > 0, are known. Let 
y(t) = x1 (t) + x2(t). The system shown in Fig. 2 is described by equations (5), 

where x(t) = [ Xl(t) x2(t) ( ,and for Rl = 1, R2 = 1, cl= 1, c2 = 1 'we 
get 

1 [ -2 1 ] 1 [ 1 ] 
A= 3 0.5 -1 ' B = 3 0.5 ' C = [ 1 1 J . (6) 

It is obvious that the system (5), (6) is positive because A is the Metzler 
matrix and B ~ O,C ~ 0 . 

Let t = kh, h > 0, k = 0, 1, 2, 3, ... and y(t) in (5) be approximated by y(k ), 
and u(t) in (5) fortE [kh, (k + 1)h) be approximated by u(k). Then, from (5) 
we obtain (3), where (see for example Mitkowski, 1991, p. 141) 

A := eAh, B := fah eAt Bdt, C := C. (7) 

For matrices given by (6) we have 

(8) 
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u(t) 

Figure 20 Positive RC-network 

where eu(h) = (v'3 -1)e>-1 h + (v'3 + 1)e>-2 h, e12(h) = 2(e>- 1 h - e>- 2 h), 
e21(h) = e>- 1 h- e>- 2 h, e22 (h) = (v'3 + 1)e>- 1 h + (v'3 - 1)e>- 2 h, 

)q = ( -3 + v'3)/6, >-2 = ( - 3- v'3) / 6 and 

tAt 1 [ (3+v'3)(l-e>- 1 h)-(3-v'3)(1-e>-2 h) ] 
}0 e Bdt = 6 (2v'3 + 3)(1- e>- 1h)- (2v'3- 3)(1 - e>- 2 h) 0 (9) 

Example 5. For h = 1 from (8) and (9) with (6) we obtain positive system 
(3), where 

[ 
005295 002050 ] [ 000349 ] 

A= 001025 007345 ' B = 001630 ' C = [ 1 1 J (10) 

and .A( A) = {0.4544, 008095}0 Let us consider also the scalar linear feedback 

u(k) = Ky(k) , K ER. (ll) 

The matrix of the closed-loop system (3) , (10) , (11) is given by 

A+ BKC = [ ~:~~;~ ~:~~~~ ] + K [ ~:~~~~ ~:~~~~ ] 0 

(12) 

The matrix (12) is positive if and only if K ;:,. - 006288 0 M1 [I- A - BKC] > 
0 {o} K < 13.4813 and M2[I - A- BKC] > 0 {o} K < 008451 0 Consequently, 
from Remark 5 we obtain the following condition of asymptotic stability 

A+ BKC;:,. 0 and p(A + BKC) < 1 {o} K E [-006288 , 008451)0 (13) 
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3.2. Electric RC-ladder network 

Let us consider an electric RC-ladder network shown in Fig. 3 (for n = 3 ). The 
parameters of the network, R; > 0 and C; > 0, are known. The system shown 
in Fig. 3 is described by the equations (Mitkowski, 1997) 

i:i(t) = aixi-1 (t) + b;xi(t) + cixi+l (t), i = 1, 2, 3, ... , n 

where xo(t) = 0, Xn+l (t) = 0 and 

(14) 

1 1 
ai = R,C,, c; = R · C , b; = -(a;+ c;), i = 1, 2, 3, ... , n. (15) 

0 0 ·i+ l i 

The RC-ladder system can be described by the equation 

i:(t) = Ax(t), x(t) = [ x1(t) x2(t) (16) 

where A is the n x n tridiagonal real Jacobi matrix with parameters given in 
(15). For n = 5 A is given by 

bl c1 0 0 0 
a2 b2 C2 0 0 

A= 0 a3 b3 C3 0 (1 7) 
0 0 a4 b4 C4 

0 0 0 a5 b5 

or 

A d . ( 1 1 1 1 1 ) M!f = zag C1 ' C2 ' C3 ' C4 ' Cs · ' 
(18) 

where 

1 - 1 0 0 0 0 
0 1 - 1 0 0 0 1 

L= 0 0 1 -1 0 0 
' 

r ·- - i = 1,2,3, ... ,n. 
0 0 0 1 - 1 0 

' - R;' 

0 0 0 0 1 -1 

If ai+ 1c; > 0 fori = 1, 2, 3, .. .. , n-1, then tridiagonal matrix is called Jacobi 
matrix. The tridiagonal real Jacobi matrix has only single real eigenvalues (Ilin 
and Kuznyetsow, 1985, p. 83, p. 104). The matrix A is diagonalizable. The 
Jordan canonical form of A is J =A = diag(>'l , A2, ... , An) , where AJ , A2 , ... , An 
are real eigenvalues of A . From the Gershgorin's criterion (Gantmacher, 1988, 
p. 390) Ak E [-m,O], k = 1,2, ... ,n, m= maxk(iaki + lckl). From (15) a;> 0 
and c; > 0. RankL = n (rank of matrix L), R; > 0 and C; > 0. Consequently, 
(see (18)) we have detA -=f. 0 (RankA = n). Thus Ak E [-m, O) , k = 1,2, ... ,n. 

Example 6. Consider the tridiagonal real Jacobi matrix A with ai = 
a, b; = b, ci = c. In this case we have anaJytic formula for eigenvalues of 
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Figure 3. Positive RC-ladder network. 

in the following form (Bellman, 1960, p. 215; Ilin and Kuznyetsow, 1985, p. 
159; Lancaster, 1969, p. 104): 

k = 1, 2, 3, .... , n. 

k1r 
<pk = n + 1 ' (19) 

Remark 7. The tridiagonal real matrix A (see (17)) with (15) is a Metzler 
matrix. 

THEOREM 2 Consider the Jacobi matrix A (see (17)) with ai > 0 and Ci > 0. 
Let amax =maxi ai, amin =mini ai, i = 2, 3, ... , n, bmax =maxi bi, bmin = 
mini bi, i = 1, 2, ... , n, Cmax = maxi Ci, Cmin = mini Ci, i = 1, 2, ... , n- 1. 
Then 

K K 
bmin + 2ylaminCmin cos-- :::; a( A):::; bmax + 2ylamaxCmax cos --. (20) 

n+1 n+1 

Proof. Using Theorem 1 and (19) we obtain (20). • 
Example 7. Let us consider an electric R.C-la.dder network shown in F ig. 

3. Let R 1 = 1, R 2 = 0.9 , R3 = 1.1 , R 4 = 0.8, C1 = 1, C2 = 1, C3 = 1 . In 
this case we obtain 

[ 

- 2.1111 1.1111 0.0000 l 
A= 1.1111 -2.0202 0.9091 , 

0.0000 0.9091 -2.1591 

[ 

-2.1591 
Amin = 0.9091 

0.0000 

-2.0202 
1.1111 
0.0000 

0.9091 
-2.1591 

0.9091 

1.1111 
- 2.0202 

1.1111 

0.0000 l 
0.9091 ' 

-2.1591 

0.0000 l 
1.1111 0 

-2.0202 

(21) 

(22) 
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From numerical calculations we obtain .A( A) = { -3.5122 , -2.1398 , -0.6384} 
and a(A) = -0.6384 . Using inequali ties (20) for eigenvalues of the matrices 
(22) we obtain the following estimation: a(A) E [-0.8734, -0.4489] . 

4. Positive Frobenius systems 

Consider the system (3) or (5) with A = F, B = [ 0 0 
where F is a real Frobenius matrix. For n = 3 we have 

0 I f, C = 0, 

F = [ ~ 
-ao 

1 
0 ~ ] and det[.A ·I-F] = ..\3 + a 2 .A 2 + a 1 .A + a0 . 

-a2 

Let us consider the scalar linear state-feedback u = K x, K = [ k0 k1 

The matrix of the closed-loop system (for ·n = 3) is given by 

F -1 BK ~ [ 

It is clear that 

0 
0 

ko- ao 

(23) 

(24) 

det[.A ·I-F- BK] = ..\3 + (a2 - k2 ).A2 + (a 1 - kl).A + a0 - k0 . (25) 

Remark 8. For any F there exists a real matrix K = [ ko k1 kn-1 J 
such that p(F + BK) < 1 and F + BK ~ 0 . Particularly, for ki = ai we have 
Ai(A) = 0 (see (24)). But a real matrix K = [ ko k1 kn-1 ], such that 
Re.A(F + BK) < 0 and F + BK ~ 0, does not exist . 

Remark 9. If ai < 0 , then matrix F ~ 0 (see (23)). In this case from 
the Descartes criterion the matrix F :::>: 0 has only one real eigenvaJue Amax > 0 
(Turowicz, 1967, p. 37). It is clear that p(F) = Ama.x· 

Example 8. For n = 5 we have 

0 ] 0 0 0 
0 0 1 0 0 

F= 0 0 0 1 0 
0 0 0 0 
l 10 15 

and .A(F) = {4.4972, 0.0366 + 0.8015i, 0.0366- 0.8015·i, -0.0995, -3 .4709}. 

5. Concluding remarks 

The finite dimensional positive discrete-time and continuous-time linear systems 
were considered. The effective conditions of asymptotic stability were given. 
The results obtained in Section 3 can be extended to the nonuniform ladder 
networks of the RL and GC-type. The positive ladder networks can be applied 
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in approximation of some positive distributed parameter systems (Schanbacher, 
1989). A very interesting method for stabilization of positive linear systems 
by state-feedback with single input was considered in Kaczorek (1999a). The 
Kaczorek's method is based on Gersgorin's theorem and quadratic program
ming. The reachability and controllability of positive systems were considered 
in papers by Klamka (1998) and Kaczorek (1999c). 

The work reported was sponsored by t he KBN - AGH Contract No. 11 11 
120 230. 
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