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Abstract: In the paper the numerical aspects of the fictitious 
domain method for elliptic problems a.re considered. Theoretica.l re­
sults concerning the equiva.lence of origina.l and embedded doma.in 
elliptic problems a.s well a.s the convergence of discretization a.re re­
ca.lled. The dependence of a.ccuracy of numerical solutions to elliptic 
problems on the approximation of bounda.ry conditions as well as on 
the order of shape functions are disscussed. The numerica.J examples 
are provided. 
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l. Introduction 

The paper deals with the numerical solution of elliptic bounda.ry va.lue problems 
with hlixed boundary conditions by the fictitious domain method. The elliptic 
boundary value problem is formula.ted in a. bounded doma.in with Lipschitz 
continuous boundary. The a.im of the pa.per is to investiga.te the a.ccura.cy of 
numerica.l solutions to elliptic bounda.ry va.lue problems obta.ined by employing 
fictitious doma.in method with respect to a.pproxima.tion functions order. 

The fictitious doma.in method for solving the systems described by partia.! 
differential equations consists, see Ernst (1996), Glowinski, Pa.n, Peria.ux (1994a, 
b), Glowinski, Pan (1996), Necas (1967), Peichl, Kunisch (1995) , in transform­
ing the original system defined in the complicated geometry doma.in into a new 
system defined in a given fixed sirople geometry domain containing the original 
domain with the same differentia.l operator. This method allows to use fairly 
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structured regular meshes on a simple geometry domain conta.ining the actua.l 
one. Fast elliptic solvers can be used to solve the transformed problem. The 
solution of the state equation in the fictitious domain is enforced to satisfy the 
original boundary conditions. Embedding domain methods for solving elliptic 
equations with Dirichlet bounda.ry conditions were investigated in Glowinski, 
Pan, Periaux (1994a, b). The Neumann problem was investiga.ted in Głowin­
ski , Pa.n (1996), where a penalty a.pproach was employed to impose origina.l 
bounda.ry conditions and the numerica.l results were provided. 

Our work is motivated by a.pplica.tions of fictitious doma.in method in nu­
merical solving of optimal sha.pe design problems, see Cha.mbolle, Doveri (1996), 
Fancello, Haslinger , Feijoo (1993) , Haslinger (1993) , Ha.slinger, Hoffmann, Koc­
vara. (1993), Haslinger, Neittaanmaki (1988), Ha.slinger, Kla.bring (1995), Neit­
tanma.ki, Tiba. (1995), Peichl, Kunisch (1995). In these problems the doma.in 
where the elliptic boundary va.lue problem is formula.ted, is a. va.ria.ble subject 
to optimization. Another field of a.pplications concerns the numerica.l solution 
of topologica.l optimiza.tion problems, Sokołowski , Żochowski (1999), where the 
sensitivity of solutions to the elliptic sta.te problem with respect to the va.ria.tions 
of sma.ll holes or inclusions insicle the doma.in ha.s to be ca.lcula.ted. 

In classical approa.ches to solving these sha.pe optimization problems, the 
state problem, described by the elliptic bounda.ry va.lue problem, is solved many 
times on the doma.in which changes during the computa.tion. The bounda.ry 
or doma.in variation methods require ca.lculation of a. new discretiza.tion of the 
optimized doma.in, upda.ting the stiffness ma.trix and the loa.d vector at ea.ch 
itera.tion of the numerical a.lgorithm. Since the optimized doma.in ha.s usua.lly a 
complicated geometrical structure, the whole computationa.l process is tedious, 
time consuming, and expensive. To overcome this difficulty, in response to the 
growing number of industrial applications of the optimal sha.pe design problems, 
fixed domain methods for solving these problems are being developed. Fixed 
domain methods are based on using the fictitious or embedding doma.in method. 

The application of the fictitious domain method in solving the optimal sha.pe 
design problems leads to nonsmooth problems, Dankova., Ha.slinger (1996), Gris­
va.rd (1992), and low a.ccura.cy of optima.! solutions. In order to improve the 
a.ccura.cy of obtained optima.l solution one ha.s to improve the a.ccura.cy of solu­
tion to the sta.te problem by employing higher order elements or wa.velets, see 
Glowinski, Pa.n (1996), Peichl, Kunisch (1995). 

The a.im of this work is to investiga.te the a.ccura.cy of numerica.l solutions 
to the elliptic problem for finite element a.pproxima.tions. In this work, by us­
ing fictitious doma.in a.pproa.ch , we sha.ll numerica.lly solve the model Laplace 
equation with Dirichlet and Neumann bounda.ry conditions. We sha.ll formulat e 
the problem in the fictitious doma.in and we sha.ll show tha.t the solution to the 
fictitious doma.in problem is a.lso the solution to the origina.l problem. The finite­
dimensiona.l model is introduced and the results cot1Cerning the convergence of 
the finite-dimensional approximation a.re reca.lled . Numerica.l procedures for 
solving Dirichlet and Neumann problems a.re proposed. Numerical solutions to 
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both problems, using bilinear and bicubic test functions in the finite - dimen­
siona.l formulation, are calculated and their accuracy is discussed. 

1.1. Model problem formulation 

Let n be a bounded domain in R2 with piecewise C2 continuous bonndary r. 
T he bonndary r consists of two parts, r D and r N. Consider the model Poisson 
problem: 

6.u=-f m n, (1) 

with bonndary conditions 

Bu="' r '+' on N· on (2) 

Let us introduce a space and a set : 

Vo ={z E H 1 (n) : z= 0 on f D}, V1 ={z E H 1 (n) z= g on fD}. 
(3) 

Let f E L2 (n), g E H 312 (rD) , qy E H 112 (fN ), be given. The problem (1)- (2) 
has the following variational formulation Necas (1967): find u E Vi such that, 

{ \1u\1rpdx = { frpdx + { qyrpds, Vrp E Vo. 
Jn ln lrN (4) 

For r N = 0 we have a pure Dirichlet problem, for r D =!= 0 and r N =!= 0 i t is the 
mixed problem Aubin (1979), Grisvard (1985, 1992), Necas (1967) . Together 
with conditions concerning regularity of bonndary data, we shall make some 
additional assumptions a.bout the domain: 

l. Each of the parts rN and rD consists of finite number of C2 arcs, 

where N (respectively D) clenotes the set of indices j for which the Neu­
mann (respectively Dirichlet) bonndary condition is prescribed on arch rJ 
of the bonndary r . 

2. The neighbouring arcs fi, rJ make a.n internal a.ngle w satisfying 

O < w < 2II if i, j E N or ) , l E D, 

O <w <II if i E N and l E D. 

Then there exists a unique variational solution to ( 4) in V1 . Moreover , this 
solution ha.s higher regula.rity, Grisvard (1985), namely u E H 312+"(D), for 
some, possibly smali, E> O. 
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2. Fictitious do main formulation 

Let us denote by n a bounded domain containing n, i.e., n c n. By f we denote 
the Lipschitz continuous boundary of domain n, l clenotes the extension by zero 
of function f, i.e., l= f in the domain n, and l= o in the domain nc =n\ n. 
Finally, V0 = HJ(n). 

2.1. Dirichlet boundary condition 

Assume r N = 0. We shall consider the following problem in the domain n: 
find u satisfying 

D. u=-f in n, (5) 

with boundary conditions: 

u= O on f, (6) 

(7) 

This can be written in the variational form: find (u, AD) E V0 x H- 112 (fD) 
such that, 

(8) 

(9) 

LEMMA l There exists a unique solution (u, AD) E V0 x H-112(fD) to the sys­
tem {8)-{9). 

Proof. Define the functional J Vo ----+ R, 

J(z) = ~ f \lz\lzdx- f lzdx, 
2 l n l n 

(lO) 

and a set 

K = {z E Vo l z = g on r D } . (11) 

Since the functional (10) is strictly convex and the set K is a closed and convex 
subset of V0 , there exists a unique element u E V0 satisfying 

J(u) :<:;: J(z) \/z E K. 
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From surjectivity of the trace operator on boundary r, Aubin (1979), Necas 
(1967), follows the existence of a Lagrange multiplier AD ensuring that the 
Lagrangian L, 

(12) 

is stationary at u. Hence (u, AD) solves (8)-(9). From uniqueness o f u, surjec­
tivity of the trace operator and the equation (8) follows the uniqueness of AD· 

• 
LEMMA 2 Let (u,>.D) E V0 xH- 112(rD) be a solution to problem (8) -(9). Then 
u= uln is a solution to the Dirichlet problem. 

Proof. Let u1 E Vi be a solution to a problem: 

(13) 

Since f E L2 (0.), the normai derivative 8ul/8n E s-112 (fD), and the following 
Green formula holds: 

(14) 

Hence, 

- f fJ!lul <pds = r f<pdx- r V ul \l<pdx . 
lrv un Jn Jn 

(15) 

Let us introduce a space and a set: 

Vo={<pEH1 (fnl<p=O on80}, 1fl = {<pEVol<p =g onrD}. 
(16) 

Let U2 E vl be given. Since there exists a continuous extension ma.pping T from 
nc on n the formula 

(17) 

defines the linear continuous functional on Vo, i.e ., there exists AD E s- 112(r D) 
such that, 

(18) 



310 A. MYŚLIŃSKI and A. ŻOCHOWSKI 

and >.n is bounded in H-112 (fn) norm. From (15) and (18) we have: 

1 \i'ul \i'<pdx + 1 \7u2 \i'<pdx = 1 f<pdx + r AD<pds '</<p E Vo. (19) 
n nc n lrv 

Since frv >.n<pds =O for all <p E Vo, (19) holds for all <p E V. Let u= 1t1 on D 
and u= U2 on De. Then (19) is equivalent to 

r \i'u\i'<pdx = ( f<pdx + r AD<pds '<!<p E V. 
Jn Jn lrv 

(20) 

• 
2.2. Mixed boundary condition 

We shall consider the following problem in the doma.in n: find u sa.tisfying 

D.u = -J in n, (21) 

with boundary conditions 

u= O on f, (22) 

(23) 

Le t 

U = {h E H 1 (f N) l h = g on f' N n f' D if f' N n f' D i=- 0 } . 

Instead of solving the mixed problem (21)-(23) we shall solve the following 
optimiza.tion problem: find h E U minimizing the cost functional 

J(h) = r [8
8 

u(h) -1>] 2 ds, 
JrN n 

where u(h) is a restriction of the solution of the pure Dirichlet problem, 

to the domain D, namely u(h) = uin. 

(24) 

(25) 

LEMMA 3 There exists a unique solution h* to the problem {24) - {25) . Mor-e­
over, u* = u(h*) is a solution to {4) . 



Fictitious domain approach for numerical solution of elliptic problems 311 

Proof. Let u be a unique solution to (4). Ta.ke h*= ulrN" From the H 312+'(n) 
regula.rity of u it follows that h* E U, and obviously J(h*) =O. 
Now a.ny h may be expressed a.s h= h*+ v , where v E Uo and 

Uo={vEH1(fN) i v=0 on fNnfv if f'Nnf'vi0}. 

The solution u(h) decomposes a.ccordingly into u(h) = u(h*) + w(v) for w(v) 
satisfying the equation 

6w = 0 in n, W= 0 on fv, W= V on fN. (26) 

Then, (24)-(25) is equiva.lent to finding the minimum in U0 of 

1 f) 2 
Jo(v) = [-;::;-w(v)] ds. 

rN un 
(27) 

We ha.ve Jo(O) =O, Uo is convex and obviously 

w( tv1 + (1- t)v2) = tw(vl) + (1 - t)w(v2) 

for any VJ,V2 E Uo and t E (0,1). The element v =O in (27)-(26) corresponds 
to h= h* in (24)-(25) . 

By i ts construction Jo( v) is convex. We sha.ll prove that i t is strictly convex. 
Assume to the contrary, 

Jo( tv1 + (1- t)v2) = tJo(vl) + (1- t)Jo(v2)· 

Then, after easy tra.nsforma.tion, 

f) 
on [w(vl)- w(v2)] = 0 on f N. 

Hence w(vl) -w(v2) satisfies homogeneous equa.tion with zero Neumann bound­
ary conditions on r N and zero Dirichlet conditions on r D. Therefore w( vl) = 
w(v2) and the same concerns their traces on rN, v1 = v2 , which proves the 
thesis. • 

3. Finite element approximation 

In order to solve numerically the problem (8)-(9) we discretize it by employing 
a eonforming finite element method, Cia.rlet (1978) . 
For the sake of computational siroplicity we assume, that D is a. recta.ngle, 
and n is a polygona.l doma.in. By Th we denote a regula.r fa.mily of partitians 
of domain n, Ciarlet (1978), depending on the discretiza.tion parameter h, such 
that h -+ o+. The size of his given by division of the domain D into qua.drila.tera.l 
elements oi, i = l, ... , J: 

I 

D= Uoi. 
i=l 
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Similarly we cover r with straight segments S i, in such a way t h at the ends o f 
arcs creating r coincide with points of division, and 

Observe that this subdivision is described by the same parameter h. We sha.ll 
approximate function u E V using C0 and C 1 finite elements. As C0 finite 
element we shall employ bilinear functions oneach połygon Oi. As C 1 finite el­
ement we shall employ Bogner - Fox - Schmidt finite element where the function 
is approximated by bicubic functions on ea.ch element Oi, Ciarlet (1978). 
Let us introduce the finite dimensional space vh approximating the space Vo: 

(28) 

where Pk (O i) clenotes the set of polynomia.Js containing all full polynomials of 
degree less then or equal to k on the element Oi E Th. For C 1 approximation it 
is P3 , for C0 it is P1 . The space s-112 (f) is approximated by 

(29) 

and for H 1 (f) we use 

(30) 

The functions f and cp are approximated, respectively, by piecewise constant 
functions !h and c/Jh E A~ (f N). The function g is approximated by piecewise 
linear function g h E A~ (r D). Thus the discrete model can be characterized by 
one parameter h. 

3.1. Approximation of the Dirichlet problem 

The state system (8)-(9) is a.pproximated by the following discrete variational 
equations: find (uh, ADh) E vh X A~(rD), 

1 f.L(uhirnh- gh)ds = 0 \111 E A~(rD)· (32) 
rn~. 

LEMMA 4 There exists a unique solution (uh, AD h) E V h x A~ (f D) to the system 
{31)-{32). 
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Proof. The proof is paraHel to the proof of Lemma l. For details see Haslinger 
(1993), Peichl, Kunisch (1995). • 

Note that the system (31) - (32) satisfies the LBB condition ensuring the 
existence and uniqueness of solutions to (31) - (32) for finite dimensional spaces 
(28), (29), (30), Brezzi, Fortin (1991), Ciarlet (1978) . Using the finite dimen­
sional space (29) we assume that the solution to the system (8) - (9) is more 
regular and t he LBB eoncli t i on i s satisfied in L2 (r D) s pace, Haslinger, Klabring 
(1995). LBB condition is satisfied in H- 112 (fD) space if the solution to the 
system (8) - (9) is assumed to be in Hl+"'(n), E> O. 

LEMMA 5 !f (uh,ADh) E Vh X A~(fD) is a solution to the system (31) - (32), 
then there exist subsequences {uh'} , {AD h'}) and elements u E Vo, AD E L2(rD) 
such that, 

uh' ___. u in Vo, 

ADh'---+ AD in L2(fD), (33) 

and (u, AD) E V0 x L2(fD) is a solution to the problem (8)-(9). 

Proof. For details of the proof see Glowinski, Pan (1996), Grisvard (1992), 
Haslinger (1993), Peichl, Kunisch (1995). • 
The rate of convergence was investigated in Glowinski, Pan, Periaux (1994b). 
Assuming that n is more regular, i.e., n is a bounded C2 domain and the 
solution u E H 2 (n), Uh converges to u linearly in H 1 (n) and quadratica.lly in 
L 2 (n). 

3.2. Approximation of the mixed problem 

The generał mixed problem is approximated by finding vh minimizing the cost 
functional 

(34) 

where uh is a solution to the problem 

(35) 

and 9h E A~(rD), vh E A~(rN ). In addition, vh E Uh, where the admissible set 
U h has the form 

LEMMA 6 There exists a unique solution uh to the problem (34) - (35 ). 

Proof. The proof is parallel to the proof of Lemma 3. Namely, it is easy to 
show that the functional J is strictly convex on Uh. 
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LEMMA 7 If(uh ,vh) E Vh X A~(fN) is a solution to the system (34) - (35), then 

there exist subsequences {uh' } , { vh'}, and elements {L E f"o, v E H 1 (f N) such 
that, 

uh'~ u in Vo, 

Vh' ~V m H 1(rN), (36) 

and (u, v) E V x H 1 (f N) is a solution to the problem (24) - (25). 

Proof. Let ilh be a unique solution to (34)-(35) and u a. solution to the con­
tinuous problem (24)- (25). Define vt. = (ulrN)A},(fN)' Then, vt. E uh, and 
therefore 

Since J(vł.) ~O, we have J(vh) ~O, and consequently 

Hence uh(vh) ~u in Vo, wha.t implies the thesis. • 
4. N umerical aspects o f t he fictitious do main met ho d 

Let us a.ssume that the reference domain n c IR2 constitutes a recta.ngle, and 
tha.t i t ha.s already been discretized into squa.res of size h. Two types of approx­
ima.tions will be tested: bilinear of C 0 regula.rity and bicubic of C1 regularity. 
The original domain D will be contained in n, so that dist(8D, an) > idiam(n). 

4.1. Imposing Dirichlet boundary conditions 

Consider first the Dirichlet problem (5)-(7) , where fD = 8[2 and j =O, 

D.u =o in n, (37) 

As ha.s been stated before , the Lagrange functional L for the Dirichlet problem 
(37) has t he form (12). Le t us introduce the notation: 

(38) 

where sh denotes lVI X M stiffness matrix for the Laplace equa.tion (37) ) fLh 
approximates the solution u to system (5)- (7), Uh = [ul, ... , nM] is a vector 
of coefficients. We denote by rDh = polyline(pl , ... ,PK+d · For sirnplicity we 
assume here that rDh has only one component, and PK+ :I = P1 (closecl line). vVe 
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assume also that ~h < dist(pi, Pi+d < h, because finer subdivision of the bound­
ary does not improve accuracy. Moreover, !et g h = [g1, ... , gK ]T denote the val­
ues in vertices for the piecewise linear approximation of g. The multiplier ADh is 
approximated by the piecewise constant function, so that ADh = [).. 1, . . . , AK]T. 
Using this notation, the discretized version of (12) may be written as: 

K 

L( uh, )..Dh) = ~u{Shuh- I>i 1 (uh- gh) ds. 
2 i= l [p; ,p.;+l] 

(39) 

It is obvious, how to compute 

di = 1 gh ds = ~dist(pi , Pi+l)(gi + gi+l), 
[pi,Pi+I] 

( 40) 

and we denote d D = [dl, .. . , dK ]T. 
T he integral o f uh is computed using numerical Gauss quadrature. Let (~i, Wi), i = 
l, ... 8 be po in ts and weights for the in te gra! over [0, 1]. Then 

8 

r Uh ds = dist(pi,Pi+d L Wkuh(Pt,,J, PĘ,k =(l- ~k)Pi + ~kPi+l· 
J[pi,Pi+I] k=l 

( 41) 

On the other hand, each value uh (Pr;k) may be expressed as a sum of no dal 
values of uh, with easily computed coefficients. First, we identify the square 
in which Pt.k is located, then its relative position with respect to corners, and 
finally the coefficients depending on the type of approximating functions. The 
fina! result is the representation 

1 uhds=ui·ci, (42) 
[Pi,Pi+I] 

where Ci represents a constant column vector of the same size M as uh. 
Let us denote by CD= [c1, ... ,cK] the matrix of dimensions M x K. Then, 
the functional (39) takes on the form: 

l T T T L( uh, ADh) = 2uhShuh- ADh ·(uh· CD- d D)· (43) 

For this purely discrete problem we may write down the necessary optimality 
conditions, 

Shuh - CDADh = O, 

u{ CD- db =O. 

(44) 

( 45) 

Note that since the employed finite elements satisfy discrete LBB condition, 
Brezzi, Fortin (1991 ), Ciarlet (1978), i t follows that there exists a unique solution 
to the system ( 44)-( 45). 
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This system may be solved simultaneously for both uh a.ncl the multiplier 
AD ho From ( 44) we find 

After substitution in to ( 45) one gets 

In pra.ctice, the order of opera.tions is as follows: 

4.2. Impasing the Neumann boundary conditions 

Consider the mixed bonndary value probl em (21)-(23) . Let r Nh = polyline(q1, 
o o o ,qL), rDh = polyline(p], ... ,prd, wherepg = ql and qL = Pl· SirniJa.rly a.s 
in previous subsection, we approximate g by g h = [.g1, ... , g f{ V, but for ~ we 
use a. piecewise eonstan t representa.tion ~h = [~l, .. . , ~L-l r. T hen we shall 
solve the problem (34)-(35). 

I t is evident tha.t we ca.nnot escape from t he problem of a.pproxima.ting {hL/ on 
on the bounda.ryo In a.ddition, we must be careful: ov.j on clenotes here a limit 
o f the norma.l deriva.tive, as the current point approa.ches r N from the insicle o f 
n. This mea.ns tha.t in order to get ov.jon we rnust use only values of 11. im;i de 
n. In pra.ctice, one of the solutions, whicb we use here, is a.s follows. In the 
ca.se of bilinea.r a.pproximation we estima.te o·n/on using three poiuts Jocated 
on the interna] normal to the bonndary at the distances 0.5h, h, ·1. 5h from the 
bonndary point and extrapola.tion. In case of the C 1 approxim a.tion we ta.ke 
as a.n estimate the value of 01Lj8n in the point on the interna.! normaJ at. t he 
clistance Oo5h from the boundary. 
Leaving out the deta.ils of the discretization, the optimization pmblem (34)-(35) 
ta.kes the form: 

Sh1ih = CDADh + CNANh, 

C'};uh = dD, 

C'Jru" = dN, 

( 46) 

( 47) 

(48) 

where s" , Uh a.re defined by (37), dD and CD are defined in previous subsection, 
CN is ma.trix L x L, and dN is vector l x L dependent on ·u. Tbe metbod of 
computing eN and d N is simil a.r t o computing c D and clD. Since the ernployed 
finite elements satisfy discrete LBB condition, Brezzi , Fortin (:1 991), Ciarlet 
(1978), it follows that there exists a unique solution to the system (46)- (48). 
The goal functional (34) ma.y be expressed a.s 
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with l resulting from integrating cjJ over rN as in (40). The matrix LN is 
obtained in a similar way as CD by numerical integration and approximation of 
ailh/an in the way described above. 
The solution algorithm for the system ( 46)-( 48) consists of severa.l steps: 
l. We transform (47),(48) into 

C};SJ; 1CD · ADh + C};SJ; 1CN · ANh = dD, 

C'J.SJ: 1CD. ADh + C'J.SJ: 1CN. ANh =dN. 

Derroting A = [ADh, ANhjT, we may write this as 

( 49) 

(50) 

(51) 

2. Observe that the solution A is a sum of two componenets: A = AJ + A2, 
where 

and 

A2 = H- 1 
[ d~ ] = (H- 1 P) ·dN. 

Here P is a matrix of the form 

and IN is an identity matrix of the same size as dN. 
3. The solution uh may be split in a similar way: uh 
F= [CD, CN]. Then 

uh1 =SJ; 1F·A 1 , 

Uh2 = SJ; 1F. A2· 

Finally, let z1 bean error of Uhl in satisfying the Neumann bonndary condition, 

Zl=l-L~·Uhl· 

T hen t he functiona.l J h (d N) red u ces to 

Jh(dN) = IIL~SJ; 1F(H- 1 P) ·dN -zd2
, 

from which we may ca.lculate dN: 

c= L~SJ: 1F(H- 1 P) '* d N = c-1 
z1. 

Finally we substitute back: 

A2=H- 1P·dN =? Uh2=SJ; 1F·A2. 

Let us comment here that we cmmot simply find A2 without getting dN first, 
because we have too little information. 
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Figure l. On the left: the solution for the first example using the fine C 1 

mesh. On the right: the difference between true and discrete solutions a.long 
the boundary for C0 ( dashed line) and C1 fine approxima.tions with the same 
number of unknowns. 

4.3. Numerical examples 

In the numerica.l examples we will have always n = [ -1 , -l] X [ - 1 , 1]. As i t was 
mentioned before, we shall use the C 0 finite element approximation (bilinear) on 
elementary squares, with one degree of freedom per vertex (function value), and 
the C1 bicubic approximation, using well known Hermitian elements, with four 
degrees of freedom ( value, x 1- derivative, x2-derivative, x1 x2-derivative). For 
the C 1 case two discretizations are used: coa.rse, with 20x20 division of n, and 
fine 40x40, with twice smaller elements. The corresponding C0 discretizations 
having the same number of unknowns have the sizes 40x40 and 80x80. The 
approximate solutions are compared with the ana.lytical ones, i.e. the error 
e = uh - u is computed. 
First example. The equation is defined in the circle, 

D..u =o in n= {x lllxll ::::: 0.5} , 

u= x1 on on, 
where 11 · 11 clenotes a Euclidean norm. The known smooth solution is obviously 
u = x 1 . Both types of approximations work very well. In Fig.l we see the 
results for the C 1 fine mesh. The grid ha.s more points tha.n discretiza.tion, since 
the C 1 basis functions a.llow computing functions va.lues a.lso inside elements. 
The C1 approxima.tion gives much more accura.te results for both resolutions . 
Second example. This is the mixed problem defined in the ring, 

D..u =o in n= {x l 0.3::::: ll xll ::::: 0.7}, 

U= X1 on f D= {x l llx[[ = 0.7}, 

ou = 0 on fN = {x l[[xll = 0.3}. on 
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Figure 2. On the left: the solution for the second example using the fine C 1 

mesh. On the right: the distribution of error along the Neumann bonndary 
for C0 ( dashed line) and C 1 fine approximations with the same number of 
unknowns. 

We see that r D nr N = 0, and as a result the solution is smooth and has a form, 
Sokołowski, Żochowski (1999) 

R2 P2 
u= R2 2 (1 + 2 )xl, +p T 

where R = 0.7 , p= 0.3, T2 = xi + x~ . Some of the results of computations are 
shown in Fig.2. In addition, we may compute here the rate of convergence q for 
both approximations. The result is q = 1.6 for C0 elements, and q = 2.1 for C 1 . 

In theory, we should expect q = 2. Here C 1 approxima.tion is also much more 
accurate for both resolutions. 
Third example. This is also a mixed problem defined ·in the circle with one 
quarter cut out, 

3 
.6.u = 0 in D = {(r ,e) l 0::::; T ::::; 0.5, 0 ::::; e::::; 21r} , 

3 
U= V0.125cose on fD = {(T, e) l T = 0.5, 0 :s; e :s; 21r} , 

OU = 0 on fN = {(r,e) l 0 ::::; T ::::; 0.5,e = 0 Or e= ~2 1r}. on 
where T and e denote polar coordina.tes. The exa.ct solution , Grisvard (1985), is 

2 
u = T 213 cos -e 

3 ' 

and does not have full regula.rity, narnety u E H 513
- •, for a.ny E > O, Grisva.rd 

(1992). This fact should change the convergence of the approximation in com­
pa.rison with the second example, lowering it to q= 1.66. From the experiment 
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Figure 3. On the left: the solution for the third example using the fine C1 mesh. 
On the right: the distribution of error along the line at half the clistance from the 
origin to Dirichlet boundary, for C0 ( dashed lin e) and C1 fin e approximations 
with the same number of unknowns. 

we obtain q = 1.56 and q = 1.20, corespondingly. In addition, C 1 is now about 
two times more a.ccura.te in terms of the L2- norm. However, for such prob­
leros with !ower regularity of solutions, the pointwise error of smooth elements 
ma.y be sometimes bigger tha.n for simple linea.r ba.sis functions. The results of 
computation in this case are presented in Fig.3. 

In Fig.4 we see the a.ccuracy, with which the va.lue of the solution a.long the 
Neumann boundary for the second and third exa.mples are reproduced. 

5. Concluding remarks 

The formulae derived here work well in pra.ctice, but it is evident that the 
theoretica.l a.na.lysis of their sta.bility would be extremely difficult. We do not 
a.ttempt it here. 

It should be a.dded that the seemingly !ower convergence ra.tes of C1 elements 
for singular problems are probably the result of the less sophistica.ted estimation 
of the norma.! deriva.tive along the boundary. Construction of good formula.e 
is here a.n open problem. Nethertheless, for the same number of unknowns, 
they a.re in ea.ch ca.se much more accura.te and give good results even in a. very 
straightforward implementa.tion. 

Another very visible fea.ture of the fictitious doma.in approach is i ts simila.rity 
to the bonndary element method. In both ca.ses we must solve nonsymmetric, 
dense systems of equations for certain values given on the bounda.ry. Here the 
role of fundamental solutions is played by the inverse of the stiffness ma.trix 
S. There is a.lso a.n a.dditional element: a subtle interdependence between the 
discretiza.tion of n and the discretiza.tion of the bounda.ry of n, which is a.bsent 
in the boundary element method. However, both methods share the inability 
to cope with doma.ins conta.ining na.rrow "necks" and lose some of their at-
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Figure 4. The comparison of absolute errors for the C 1 a.pproximation using 
coarse (da.shed line) and fine mesh. On the left: mixed problem and Neumann 
boundary, on the right: singular problem and Neumann boundary. 

tractivness for the nonhomogeneous case. In one respect the fictitious domain 
method has an advantage: the computa.tion of ma.trices needed for solving the 
intermediate problems is easier. 

There are also cases where the fictitious domain method seems indispensable, 
i.e. for domains with holes (see Chambolle, Doveri, 1996) , and indeed works 
there very well. 
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