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Abstract: In the paper the numerical aspects of the fictitious
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1. Introduction

The paper deals with the numerical solution of elliptic boundary value problems
with mixed boundary conditions by the fictitious domain method. The elliptic
boundary value problem is formulated in a bounded domain with Lipschitz
continuous boundary. The aim of the paper is to investigate the accuracy of
numerical solutions to elliptic boundary value problems obtained by employing
fictitious domain method with respect to approximation functions order.

The fictitious domain method for solving the systems described by partial
differential equations consists, see Ernst (1996), Glowinski, Pan, Periaux (1994a,
b), Glowinski, Pan (1996), Necas (1967), Peichl, Kunisch (1995), in transform-
ing the original system defined in the complicated geometry domain into a new
system defined in a given fixed simple geometry domain containing the original
domain with the same differential operator. This method allows to use fairly
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structured regular meshes on a simple geometry domain containing the actual
one. Fast elliptic solvers can be used to solve the transformed problem. The
solution of the state equation in the fictitious domain is enforced to satisfy the
original boundary conditions. Embedding domain methods for solving elliptic
equations with Dirichlet boundary conditions were investigated in Glowinski,
Pan, Periaux (1994a, b). The Neumann problem was investigated in Glowin-
ski, Pan (1996), where a penalty approach was employed to impose original
boundary conditions and the numerical results were provided.

Our work is motivated by applications of fictitious domain method in nu-
merical solving of optimal shape design problems, see Chambolle, Doveri (1996),
Fancello, Haslinger, Feijoo (1993), Haslinger (1993), Haslinger, Hoffmann, Koc-
vara (1993), Haslinger, Neittaanmaki (1988), Haslinger, Klabring (1995), Neit-
tanmaki, Tiba (1995), Peichl, Kunisch (1995). In these problems the domain
where the elliptic boundary value problem is formulated, is a variable subject
to optimization. Another field of applications concerns the numerical solution
of topological optimization problems, Sokolowski, Zochowski (1999), where the
sensitivity of solutions to the elliptic state problem with respect to the variations
of small holes or inclusions inside the domain has to be calculated.

In classical approaches to solving these shape optimization problems, the
state problem, described by the elliptic boundary value problem, is solved many
times on the domain which changes during the computation. The boundary
or domain variation methods require calculation of a new discretization of the
optimized domain, updating the stiffness matrix and the load vector at each
iteration of the numerical algorithm. Since the optimized domain has usually a
complicated geometrical structure, the whole computational process is tedious,
time consuming, and expensive. To overcome this difficulty, in response to the
growing number of industrial applications of the optimal shape design problems,
fixed domain methods for solving these problems are being developed. Fixed
domain methods are based on using the fictitious or embedding domain method.

The application of the fictitious domain method in solving the optimal shape
design problems leads to nonsmooth problems, Dankova, Haslinger (1996), Gris-
vard (1992), and low accuracy of optimal solutions. In order to improve the
accuracy of obtained optimal solution one has to improve the accuracy of solu-
tion to the state problem by employing higher order elements or wavelets, see
Glowinski, Pan (1996), Peichl, Kunisch (1995).

The aim of this work is to investigate the accuracy of numerical solutions
to the elliptic problem for finite element approximations. In this work, by us-
ing fictitious domain approach, we shall numerically solve the model Laplace
equation with Dirichlet and Neumann boundary conditions. We shall formulate
the problem in the fictitious domain and we shall show that the solution to the
fictitious domain problem is also the solution to the original problem. The finite-
dimensional model is introduced and the results concerning the convergence of
the finite-dimensional approximation are recalled. Numerical procedures for
solving Dirichlet and Neumann problems are proposed. Numerical solutions to
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both problems, using bilinear and bicubic test functions in the finite - dimen-
sional formulation, are calculated and their accuracy is discussed.

1.1. Model problem formulation

Let Q be a bounded domain in R? with piecewise C? continuous boundary T
The boundary I" consists of two parts, I'p and I'y. Consider the model Poisson
problem:

Au=—f in Q, (1)
with boundary conditions

u=g on I'p, %:qﬁ on I'y. (2)

Let us introduce a space and a set :

Vo={z€H Q) : z=0onTp}, Vi={z€HY Q) : 2=g onT'p}.
3)

Let f € L?(Q), g € H3?(Tp), ¢ € H'/?(Ty), be given. The problem (1)-(2)
has the following variational formulation Ne¢as (1967): find u € V} such that,

[VuV(pd:vm/f(pdz+/ dpds, Yo e V. (4)
Q Q Tn

For 'y = 0 we have a pure Dirichlet problem, for I'p # 0 and 'y # 0 it is the
mixed problem Aubin (1979), Grisvard (1985, 1992), Necas (1967). Together
with conditions concerning regularity of boundary data, we shall make some
additional assumptions about the domain:

1. Each of the parts I'y and I'p consists of finite number of C? arcs,

Ivn=JI; Tp=Iy

JEN JED

where N (respectively D) denotes the set of indices j for which the Neu-
mann (respectively Dirichlet) boundary condition is prescribed on arch I';
of the boundary T'.

2. The neighbouring arcs I';, I'; make an internal angle w satisfying

O<w<2l if i,jEN or ),| €D,
O<w<Il if ieN and |€D.

Then there exists a unique variational solution to (4) in V;. Moreover, this
solution has higher regularity, Grisvard (1985), namely u € H*/2%¢(Q), for
some, possibly small, € > 0.
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2. Fictitious domain formulation

Let us denote by Q a bounded domain containing 2, i.e., 2 C Q. By I we denote
the Lipschitz continuous boundary of domain §, f denotes the extension by zero
of function f, i.e., f = f in the domain 2, and f = 0 in the domain Q¢ = Q\ Q.
Finally, Vo = H}(9).

2.1. Dirichlet boundary condition

Assume I'y = 0. We shall consider the following problem in the domain (0%
find % satisfying

Ad=—f in (5)
with boundary conditions:

=0 on T, (6)

=5

U, =g on I'p. (7)

This can be written in the variational form : find (4, Ap) € Vo x H™/2(T'p)
such that,

[ ViaVads — / fodr + / Ap@p, ds =0 VeV, (8)
Q 9] T'p

/r p(iy,, —g)ds =0 Yue H'2(Ip). (9)
D

LEMMA 1 There ezists a unique solution (i, \p) € Vo x H=Y2(I'p) to the sys-

tem (8)(9).

Proof. Define the functional J : Vy — R,

J(z) = 1/ Vsza’:c—/ fzdz, (10)
2Ja a
and a set
K={2€eVy|z=g onTp}. (11)

Since the functional (10) is strictly convex and the set K is a closed and convex
subset of Vp, there exists a unique element @ € Vj satisfying

J(u) < J(z) Vz€eK.
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From surjectivity of the trace operator on boundary I', Aubin (1979), Necas
(1967), follows the existence of a Lagrange multiplier Ap ensuring that the
Lagrangian L,

L(8, Ap) = J(@) + / Ap (@ — g)ds. (12)

is stationary at 4. Hence (4, Ap) solves (8)—(9). From uniqueness of #, surjec-
tivity of the trace operator and the equation (8) follows the uniqueness of Ap.
i

LEMMA 2 Let (i, A\p) € Vox H=Y/2(T'p) be a solution to problem (8)~(9). Then
u =1, is a solution to the Dirichlet problem.

Proof. Let u; € V) be a solution to a problem:

/VmV(pdx:/f{pd:s Yo € V. (13)
Q Q

Since f € L?(Q), the normal derivative du; /8n € H='/2(I'p), and the following
Green formula holds:

/VulV"(pdx ffnpd:c-i—/ <pds Yo € H(Q). (14)
I'p
Hence,
- _godS—j ftpd:z:—/VulV{pda. (15)

Let us introduce a space and a set:

Vo={pe H'(Q) |¢=00n08Q}, Vi={peVo|le=g onTp}.
(16)

Let ug € V; be given. Since there exists a continuous extension mapping T from
Q¢ on §2 the formula

P — V’u:thpdx-i—/ %{pds, Yo € Vj, (17)
Qc FD 871

defines the linear continuous functional on Vp, i.e., there exists \p € H~Y/2(I'p)
such that,

/\D(pds=/ Vu;zV(pda:-I-/ %(pds Yo € Vg, (18)
Qe r 5?‘1

PD D
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and Ap is bounded in H~/2(I'p) norm. From (15) and (18) we have:

/Vu1V(pd$+/ Vu;;\?god:c:/f(pdx-k Appds Yo e V.  (19)
Q o 9) Tp

Since frg Apeds = 0 for all p € Vo, (19) holds for all o € V. Let @ = w; on Q
and i = ug on °. Then (19) is equivalent to

[ ViVedz = / fedz + / Apwds YoeV. (20)
ﬂ Q FD

2.2. Mixed boundary condition

We shall consider the following problem in the domain €: find 4 satisfying
Ni=—f in (21)

with boundary conditions

o
=]
=
—_
—_
o]
Lov]
—

4=

i
Bn Irx=¢ on Ty. (23)
Let

U={he H'(T'y)|h=g on TyNTp if TyNTp #0}.

Instead of solving the mixed problem (21)-(23) we shall solve the following
optimization problem: find h € U minimizing the cost functional

70)= [ [gmu(h) - o ds, 24)
where u(h) is a restriction of the solution of the pure Dirichlet problem,

Ai=—f inQ, @4=g onTp, @=h on Iy, (25)
to the domain Q, namely u(h) = ilq.

LEMMA 3 There ezists a unique solution h* to the problem (24)-(25). More-
over, u* = u(h*) is a solution to (4).
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Proof. Let u be a unique solution to (4). Take h* = ulr,. From the H3/2+¢(Q)
regularity of w it follows that h* € U, and obviously J(h*) = 0.
Now any h may be expressed as h = h* + v, where v € Up and

Ug={‘UEH1(FNJlU=0 on UyNTp if f‘Nﬂf‘D#@}‘

The solution u(h) decomposes accordingly into u(h) = u(h*) + w(v) for w(v)
satisfying the equation

Aw=0 in Q, w=0on I'p, w=v on I'y. (26)
Then, (24)—(25) is equivalent to finding the minimum in Uy of
d
Jo(v) = —w(v))* ds.
o) = [ (ru)Pds (27)

We have Jy(0) = 0, Uy is convex and obviously
w(tvy + (1 —t)vy) = tw(vy) + (1 — t)w(vg)

for any v1,v2 € Up and ¢ € (0,1). The element v = 0 in (27)—(26) corresponds
to h = h* in (24)-(25).

By its construction Jy(v) is convex. We shall prove that it is strictly convex.
Assume to the contrary,

Jg(t‘Ul + (1 = t)'vg) = tJ{)(Ul) I (1 = t)‘]u('vz).
Then, after easy fransformation,

%[w(vl) —w(vz)] =0 on Iy.

Hence w(v; ) —w(vy) satisfies homogeneous equation with zero Neumann bound-
ary conditions on I'y and zero Dirichlet conditions on I'p. Therefore w(v;) =
w(vy) and the same concerns their traces on I'y, vy = vy, which proves the
thesis. i

3. Finite element approximation

In order to solve numerically the problem (8)-(9) we discretize it by employing
a conforming finite element method, Ciarlet (1978).

For the sake of computational simplicity we assume, that  is a rectangle,
and 2 is a polygonal domain. By 7, we denote a regular family of partitions
of domain €, Ciarlet (1978), depending on the discretization parameter h, such
that h — 0%, The size of h is given by division of the domain € into quadrilateral
elements O;, i =1,...,1I:
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Similarly we cover I with straight segments S;, in such a way that the ends of
arcs creating I' coincide with points of division, and

K
r=J8, diam(S;) <h.

Observe that this subdivision is described by the same parameter . We shall
approximate function @ € V using C° and C! finite elements. As C° finite
element we shall employ bilinear functions on each polygon O;. As C! finite el-
ement we shall employ Bogner - Fox - Schmidt finite element where the function
is approximated by bicubic functions on each element O;, Ciarlet (1978).

Let us introduce the finite dimensional space V}, approximating the space Vp:

T;’h = {z € 1}0 | zj0; € [Pk(O,v)], VO; = ﬂ} (28)
where P, (O;) denotes the set of polynomials containing all full polynomials of
degree less then or equal to k on the element O; € 7. For C! approximation it
is Py, for C° it is P;. The space H~/2(T") is approximated by

A(T) = {z € La(T) | 210, € [Po(S:)], VS: €T}, (29)
and for H'(T") we use

My(T) = {z € H'(T) | 20, € [P1(S)), VS; CT}. (30)
The functions f and ¢ are approximated, respectively, by piecewise constant
functions fj and ¢n € AY(I'x). The function g is approximated by piecewise

linear function g, € A} (I‘D) Thus the discrete model can be characterized by
one parameter h.

3.1. Approximation of the Dirichlet problem

The state system (8)—(9) is approximated by the following discrete variational
equations: find (4ip, Apr) € Vi x A)(Tp),

~ VapVedz — fhnpdx / ;\Dhgah. ds=0 Vge Vi, (31)
Qn , Tpon

jr s, —)ds =0 ¥ €ANTD). (32)
Dh

LEMMA 4 There ezists a unique solution (in, App) € Vi % A%(T'p) to the system

(31)-(32).
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Proof. The proof is parallel to the proof of Lemma 1. For details see Haslinger
(1993), Peichl, Kunisch (1995). ||

Note that the system (31) - (32) satisfies the LBB condition ensuring the
existence and uniqueness of solutions to (31) - (32) for finite dimensional spaces
(28), (29), (30), Brezzi, Fortin (1991), Ciarlet (1978). Using the finite dimen-
sional space (29) we assume that the solution to the system (8) - (9) is more
regular and the LBB condition is satisfied in Ly(T'p) space, Haslinger, Klabring
(1995). LBB condition is satisfied in H~'/2(I'p) space if the solution to the
system (8) - (9) is assumed to be in H'*%(Q), e > 0.

LEMMA 5 If (tin, Apr) € Vi x AQ(T'p) is a solution to the system (31)-(92),
then there exist subsequences {@y:}, {A\pn}, and elements @ € Vo, Ap € Lo(I'p)
such that,

G — @ in Vo,
Apw — Ap in La(I'p), (33)
and (4, A\p) € Vo x Lo(T'p) is a solution to the problem (8)-(9).

Proof. For details of the proof see Glowinski, Pan (1996), Grisvard (1992),
Haslinger (1993), Peichl, Kunisch (1995). =
The rate of convergence was investigated in Glowinski, Pan, Periaux (1994b).
Assuming that € is more regular, i.e.,  is a bounded C? domain and the

solution u € H?(S), up converges to u linearly in H'(Q) and quadratically in
L3(Q).

3.2. Approximation of the mixed problem

The general mixed problem is approximated by finding v, minimizing the cost
functional

Ton) = [ Lgmin(on) = a2 ds, | (34)

where i}, is a solution to the problem
At =0 in Qn, Gn=gn on I'p, @r=wv, on Iy, (35)

and gn € AL(Tp), vi € AL(Tw). In addition, vy, € Uy, where the admissible set
Up, has the form

Up={w, € A}l(rg\r) |vh=gn on T'yNTp}.
LEMMA 6 There ezists a unique solution iy to the problem (34)-(35).

Proof. The proof is parallel to the proof of Lemma 3. Namely, it is easy to
show that the functional .J is strictly convex on Uy,
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LEMMA 7 If (iin,vn) € Vi x AL(Tx) is a solution to the system (34)-(35), then

there exist subsequences {in'}, {vn'}. and elements i € T;’g, v € HY(T'y) such
that,

i — 4 in Vo,

v — v in H' (Ty), (36)
and (t,v) € V x HY('y) is a solution to the problem (24)-(25).
Proof. Let @, be a unique solution to (34)—(35) and 4 a solution to the con-
tinuous problem (24)-(25). Define vj = (d|ry)az (ry). Then, vy € U, and
therefore

0 < J(Wh) < J(v).

Since J(vj;) — 0, we have J(7,) — 0, and consequently
|- an(wn) — gl — 0 in Lo(Tw)
o th Uk h in Lo(Tw).
Hence () — @ in Vo, what implies the thesis. B

4. Numerical aspects of the fictitious domain method

Let us assume that the reference domain © ¢ IR? constitutes a rectangle, and
that it has already been discretized into squares of size h. Two types of approx-
imations will be tested: bilinear of C° regularity and bicubic of a? regularity.
The original domain € will be contained in €2, so that dist(052, 952) > 5dmm(Q)

4.1. Imposing Dirichlet boundary conditions
Consider first the Dirichlet problem (5)~(7), where I'p = 99 and f = 0,
Ai=0 in Q, t=g on I'p. (37)

As has been stated before, the Lagrange functional L for the Dirichlet problem
(37) has the form (12). Let us introduce the notation:

Sp = {f V$iV@idz}iiet,.. vy h =M widi, (38)
Q

where Sj, denotes M x M stiffness matrix for the Laplace equation (37) , iy,
approximates the solution @ to system (5) - (7), up = [w1....,ups] is a vector
of coefficients. We denote by I'pp = polyline(pr,... .pr+1). To; simplicity we
assume here that I' 5, has only one component, and px1 = py (closed line). We
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assume also that —;—h < dist(p;, piv1) < h, because finer subdivision of the bound-
ary does not improve accuracy. Moreover, let g, = [g1,... , gk denote the val-
ues in vertices for the piecewise linear approximation of g. The multiplier Apy, is
approximated by the piecewise constant function, so that App = [A1,... ,Ak|T.
Using this notation, the discretized version of (12) may be written as:

K
A 1 .
L(tip, Apn) = 5”55}:’&:} - Z)\s] (Gin — gn) ds. (39)
i=1 [pipita]
It is obvious, how to compute
T .
di = ] ghds = §d33f(P1:,Pi+1)(§'=’ + gi41); (40)
[Pipiga]
and we denote dp = [dy,... ,dk]%.

The integral of 4y, is computed using numerical Gauss quadrature. Let (&, w;), i =
1,...8 be points and weights for the integral over [0, 1]. Then

8
[ iip ds = dist(pi, pit1) ) wktn(Pe,)s P = (1 — )i + Expisa.
[pi;pig1] k=1
(41)

On the other hand, each value 1 (pe,) may be expressed as a sum of nodal
values of wy, with easily computed coefficients. First, we identify the square
in which pg, is located, then its relative position with respect to corners, and
finally the coefficients depending on the type of approximating functions. The
final result is the representation

f '&h ds = u?: “1Cis (42)
[pispiya]

where ¢; represents a constant column vector of the same size M as up.
Let us denote by Cp = [e1,... ,cx] the matrix of dimensions M x K. Then,
the functional (39) takes on the form:

1
L{un, Aph) = §u’£shuh —Aph - (uf - Cp —d5h). (43)

For this purely discrete problem we may write down the necessary optimality
conditions,

Spup — CpApp =0, (44)

4y Cp —d5 =0. (45)

Note that since the employed finite elements satisfy discrete LBB condition,

Brezzi, Fortin (1991), Ciarlet (1978), it follows that there exists a unique solution
to the system (44)—(45).
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This system may be solved simultancously for both w;, and the multiplier
Aph. From (44) we find

up = Sy CpAph.

After substitution into (45) one gets
(CTS;'Cp)Aph = dp.

In practice, the order of operations is as follows:

F=87Cp = V=CFF = Xpu=V'ldp = w=357"Fips.

4.2. Imposing the Neumann boundary conditions

Consider the mixed boundary value problem (21)-(23). Let I'yy = polyline(qi.

.+ q1,), Tpn = polyline(py, ... ,pr), where pg = ¢ and g, = p;. Similarly as
in previous subsection, we approximate g by gn = [g1,... ,gx]", but for ¢ we
use a piecewise constant representation ¢ = [¢y,... ,(}':;J_]]T. Then we shall
solve the problem (34)-(35).

It is evident that we cannot escape from the problem of approximating du/dn
on the boundary. In addition, we must be careful: du/dn denotes here a limit
of the normal derivative, as the current point approaches I'y from the inside of
Q. This means that in order to get du/dn we must use only values of u inside
Q. In practice, one of the solutions, which we use here, is as follows. In the
case of bilinear approximation we estimate du/On using three points located
on the internal normal to the boundary at the distances 0.5h, L, 1.5 from the
boundary point and extrapolation. In case of the C' approximation we take
as an estimate the value of du/dn in the point on the internal normal at the
distance 0.5h from the boundary.

Leaving out the details of the discretization, the optimization problem (34)-(35)
takes the form:

Spun = CpAph + CNANh, (46)
Chun = dp, (47)
Chup = dy, (48)

where Sy, up, are defined by (37), dp and Cp are defined in previous subsection,
Cw is matrix L x L, and dy is vector 1 x L dependent on v. The method of
computing Cy and dp is similar to computing Cp and dp. Since the employed
finite elements satisfy discrete LBB condition, Brezzi, Fortin (1991), Ciarlet
(1978), it follows that there exists a unique solution to the system (46)-(48).
The goal functional (34) may be expressed as

Tn(dn) = | Liun = 11%,
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with [ resulting from integrating ¢ over I'y as in (40). The matrix Ly is
obtained in a similar way as Cp by numerical integration and approximation of
Oy, /0n in the way described above.

The solution algorithm for the system (46)—(48) consists of several steps:

1. We transform (47),(48) into

CES; Cp - Apn + CHS Cx - Ank = dp, (49)
CK;S;:lCD -)\Dh+C£S,;1CN “Ann =dn. (50)
Denoting A = [App, Ank]T, we may write this as
_|dp
H) = [ d } : (51)

2. Observe that the solution A is a sum of two componenets: A = Ay + Ag,
where

1] d
_ 1 D
e ]
and
i 0 _
M =H l[dN]:(H lP)-dN.
Here P is a matrix of the form
0
=[]

and Iy is an identity matrix of the same size as dy.
3. The solution u;, may be split in a similar way: wup = wupy + up2. Let
F =[Cp,Cn]. Then

gy =STEF
upg = S; F - Ag.
Finally, let z; be an error of up; in satisfying the Neumann boundary condition,
21=1 ~L§ S UpT-
Then the functional J,(dy) reduces to
Ju(dn) = | LRSS P F(HP) - dn — z1|%,
from which we may calculate dp:
G=LES;'F(H™'P) = dy=G1z.
Finally we substitute back:
Xo=H"1P-dy = upg=5;"F-X.

Let us comment here that we cannot simply find A» without getting dy first,
because we have too little information.
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Figure 1. On the left: the solution for the first example using the fine C!
mesh. On the right: the difference between true and discrete solutions along
the boundary for C° (dashed line) and C! fine approximations with the same
number of unknowns.

4.3. Numerical examples

In the numerical examples we will have always Q = [-1,—1] x [~1,1]. As it was
mentioned before, we shall use the C? finite element approximation (bilinear) on
elementary squares, with one degree of freedom per vertex (function value), and
the C! bicubic approximation, using well known Hermitian elements, with four
degrees of freedom (value, z;—derivative, zy—derivative, xla:g—derivativel. For
the C! case two discretizations are used: coarse, with 20x20 division of €2, and
fine 40x40, with twice smaller elements. The corresponding C° discretizations
having the same number of unknowns have the sizes 40x40 and 80x80. The
approximate solutions are compared with the analytical ones, i.e. the error
e = up — u is computed.
First example. The equation is defined in the circle,

Au=0 in Q= {z||z] <0.5},

w=mx on 99,

where || - || denotes a Euclidean norm. The known smooth solution is obviously
u = x1 . Both types of approximations work very well. In Fig.l we see the
results for the C! fine mesh. The grid has more points than discretization, since
the C! basis functions allow computing functions values also inside elements.
The C' approximation gives much more accurate results for both resolutions.
Second example. This is the mixed problem defined in the ring,

Au=0 in Q= {z|0.3<|z| <0.7},
zy on I'p=A{z||z| =0.7},

Il

u

du
5= 0 on 'y ={z||=z| =0.3}.
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Figure 2. On the left: the solution for the second example using the fine C'
mesh. On the right: the distribution of error along the Neumann boundary
for C° (dashed line) and C*' fine approximations with the same number of
unknowns.

We see that 1" pNTy = 0, and as a result the solution is smooth and has a form,
Sokotowski, Zochowski (1999)

R2 ,02
v=pgmralt En

where R =0.7, p = 0.3, 2 = 22 4+ 2. Some of the results of computations are
shown in Fig.2. In addition, we may compute here the rate of convergence ¢ for
both approximations. The result is ¢ = 1.6 for C° elements, and ¢ = 2.1 for C*.
In theory, we should expect ¢ = 2. Here C' approximation is also much more
accurate for both resolutions.

Third example. This is also a mixed problem defined in the circle with one
quarter cut out,

Ais = 0 mQ:{(r,eHosrgo.s,Oggg%ﬁ},

3
w=+v0.125cosf on I'p ={(r,f)|r=050<0< 571-},

%:D on 'y ={(r,0)|0<r<056=0 or QZ%?T}‘
where r and @ denote polar coordinates. The exact solution, Grisvard (1985), is
2
7 S
u = 1" cos 36’,

and does not have full regularity, namely « € H>/3~¢, for any € > 0, Grisvard
(1992). This fact should change the convergence of the approximation in com-
parison with the second example, lowering it fo ¢ = 1.66. From the experiment
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Figure 3. On the left: the solution for the third example using the fine C' mesh.
On the right: the distribution of error along the line at half the distance from the
origin to Dirichlet boundary, for C? (dashed line) and C? fine approximations
with the same number of unknowns.

we obtain ¢ = 1.56 and g = 1.20, corespondingly. In addition, C' is now about
two times more accurate in terms of the Ls—norm. However, for such prob-
lems with lower regularity of solutions, the pointwise error of smooth elements
may be sometimes bigger than for simple linear basis functions. The results of
computation in this case are presented in Fig.3.

In Fig.4 we see the accuracy, with which the value of the solution along the
Neumann boundary for the second and third examples are reproduced.

5. Concluding remarks

The formulae derived here work well in practice, but it is evident that the
theoretical analysis of their stability would be extremely difficult. We do not
attempt it here.

It should be added that the seemingly lower convergence rates of C' elements
for singular problems are probably the result of the less sophisticated estimation
of the normal derivative along the boundary. Construction of good formulae
is here an open problem. Nethertheless, for the same number of unknowns,
they are in each case much more accurate and give good results even in a very
straightforward implementation.

Another very visible feature of the fictitious domain approach is its similarity
to the boundary element method. In both cases we must solve nonsymmetric,
dense systems of equations for certain values given on the boundary. Here the
role of fundamental solutions is played by the inverse of the stiffness matrix
S. There is also an additional element: a subtle interdependence between the
discretization of € and the discretization of the boundary of 2, which is absent
in the boundary element method. However, both methods share the inability
to cope with domains containing narrow “necks” and lose some of their at-
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Figure 4. The comparison of absolute errors for the C' approximation using
coarse (dashed line) and fine mesh. On the left: mixed problem and Neumann
boundary, on the right: singular problem and Neumann boundary.

tractivness for the nonhomogeneous case. In one respect the fictitious domain
method has an advantage: the computation of matrices needed for solving the
intermediate problems is easier.

There are also cases where the fictitious domain method seems indispensable,
i.e. for domains with holes (see Chambolle, Doveri, 1996), and indeed works
there very well.
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