
Dedicated to

Professar Jakub Gutenbaum

on his 70th birthday

Control and Cybernetics

vol. 29 (2000) No. l

Declarativity in modelling and problem solving

by

Antoni Niederliński

Instytut Automatyki, Politechnika Ślgska
PL-44-100 Gliwice, Akademicka 16, Poland

e-mail aniederlinski @i a .. polsl.gli wice. p l

Abstract: The paper discusses a new trend in the modelling
software for combinatorial and mixed combinatorial-continuous de
cision problems. The trend, aiming at solving those problems by the
simple activity of properły describing them, is best exemplified by
a constantly increasing spectrum of Constraint Logic Programming
(CLP) languages. The first such langua.ge was Prolog. After a. short
historica.l survey concentrating mainly on Prolog, main cha.ra.cter
istics of a. modern, commercia.lly successful CLP la.ngua.ge - CHIP
- a.re presented, discussed and illustra.ted. The CLP approa.ch to
problem solving is compared with tra.ditional Operation Resea.rch
a.pproaches.

Keywords: CHIP, CLP, constra.int solving, combinatorial opti
misation, declarative progra.mming, Prolog.

l. Introduction

Decla.ra.tivity in modelling and problem solving means roughly tha.t the system
ana.lyst models the problem and declares the goal (a feasible solution, a.ll feasible
solutions, or a.n optimum solution), while the computer (hardware cum software)
does the rest, i.e. chooses and parameterises a. suitable algorithm, performs
necessary computa.tions and presents the results. In a nutshell, declarativity is
recognised by the fa.ct that the model is the program is the solution. The trend
towa.rds declarativity is just part and parcel of the genera.l trend to ma.ke more
and more computer power availa.ble to a. wider and wider group of users who
cannot be expected to be theoretica.lly and progra.mma.tica.lly knowledgea.ble to
a.n extent allowing them to write their own procedures and put them into their

326 A. NIEDERLIŃSKI

own code. The group of users meant are people seeking decision support, who
as a rule know well their decision problems but are una.ble to cope with sophis
ticated mathematical techniques and complicated programming environments.

The trend has been fuelled not only by the demand of users, but also by the
supply of fresh ideas from people working in artificial intelligence (AI) , whose
ultimate dream is to make computers more and more powerful and user friendly.
This is exemplified by one of those powerful ideas from AI research - object
oriented programming; it contributed towarcis large progress in declarativity
for dynamie continuous- and discrete-time system modelling, best illustra.ted by
such popular tools as Simulink /Matla.b.

Of course, the questions may well be asked whether the trend to make so
phisticated model building and decision support tools generally available to the
more or less profane on a black box basis is something save and something to
rejoice about in academia and whether academia should this trend support by
popularising it and contributing towarcis it. These questions are, however, them
selves of academic nature: our daily and professionallives get steadily more and
more saturated by various complicated black boxes we have to master, simply
because we cannot afford the alternatives like a personal car driver, a typist, a
typesetter, a secretary, a personal tax consultant, a professional computer pro
grammer, a professional photographer etc. etc. There seem to be no legitimate
reasons why highly professional activities, like modelling and computer aided
decision support, should be exempted from the overwhelming trend of cutting
everything clown ad usum delphini and remain a reserve of academia. What
remains to be clone is thus best expressed by the saying: If you can't beat them,
join them!

The most successful declarative modelling tools so far are restricted to the
domain of dynamie continuous- and discrete-time system. The challenge seems
to be to extend this approach to the more difficult, ana.lysis-proof combinatorial
and mixed (combinatorial-continuous) clecisi on and optimisation problems. Sub
stantial progress in the combinatorial domain has been already made. This has
been clone mainly under the banner of Constraint Logic Programming (CLP).
CLP inay be defined as a body of techniques used for solving problems with
constraints. The idea is: problems to be solved are modelleci using elementary
logic, in a way that turns the model into a main part of the problem-sohing
program. The activity of exploring constraints, which must be satisfied by the
solutions, generates the solutions. More precisely, CLP may be eonsiciered as
a programming paradigm, tightly integrating tra.ditiona.l Logic Programming
as given by Prolog, Constraint Satisfaction/ Solving as developed in Artificia.l
Intelligence, aiĄd Optimisation as developed in Operations R.esearch.

2. In the beginning there was Prolog

Prolog means not only Programming in Logic, but denotes something prelim
inary, to be developed further. Those that coined this name showed a lot of

Declarativity in modelling and problem so lving 327

foresight. Prolog was indeed an introduction, it was the first popular, powerful
but scope-limited, CLP language.

Prolog (see Bartak, 1999, Sterling and Shapiro, 1996) is what is known as
declarative language. This means that given the necessary fa.cts and rules, Prolog
will use deductive rea.soning to solve the problem described by the program. This
is in contra.st to tra.ditiona.l computer languages, such as C, BASIC and Pa.sca.l,
which a.re procedural la.ngua.ges. In a procedural langua.ge, the programmer
must provide step by step instructions tha.t tell the computer exa.ctly how to
solve a. given problem. In other words, the programmer must know how to solve
the problem before the computer can do it. The Prolog progra.mmer, on the other
ha.nd, only needs to supply a. description of the problem and sta.te the goa.l to
be a.chieved (i.e. solved, accepted , or rejected) . A Prolog program conta.ins
no a.lgorithm, i t just describes the problem (or some part of the world) we
want to rea.son a.bout. The very problem description is the program solving the
problem. Separating problem description from rea.soning, which aims a.t dra.wing
conclusions from this description, is a.t the root of this important property:
the reasoning is done by the Prolog compiler/interpreter. As a result there is
no need to construct a.lgorithms while working with Prolog. The problem is
described using rather elementary logic: fa.cts and rules (Horn cla.uses) of the
form p: -a, b, c, where p is the hea.d of the rule (the conclusion) and a, b, c a.re
the body of the rule (a. conjunction of premises). Horn clauses are a. versa.tile
model: it has been shown by Kowalski (1989), tha.t a.ny problem of logic ma.y
be expressed using Horn clauses. Prolog fa.cts and rules a.re supplemented by
the Closed World Assumption, which ma.y be sta.ted like this: if something does
not follaw from fa cts and rules oj the Prolog program, it is considered by the
reasoning system to be false.

T he use of Horn cla.uses is instrumenta.l for Prolog's decla.rativity: supple
mented by lists as the basie data structure and recursion as the basie way to
define relations, they form a very bandy tool to model an important set of rea.l
world problems, a.menable to description by terms from the Herbra.nd universe.
The terms a.re just strings with no sema.ntic meaning. This is a.t the root of Pro
log's strength as well as its wea.kness: Prolog makes it easy to formulate very
genera.l statements, but difficult if not impossible to describe relations from some
less genera.l universe, like the universe of integers or rea.ls. However, Prolog was
the first langua.ge deserving to be called constraint logic programming language,
because of its capacity to solve constra.ints defined in the Herbra.nd universe.
The algorithm needed to rea.son is universal and provided by the Prolog com
piler. Prolog's compiler ha.s a built-in inference mecha.nism combining standard
(chronological) backtracking with term unification, modus ponens inference and
the closed-world assumption in order to retrieve automa.tica.lly answers to queries
based on rules and facts of the program. Consider e. g. the following sma.ll

328 A. NIEDERLIŃSKI

Prolog program, cleelaring constraints between variabies X and Y:

a(X, Y) : - b(X), c(X, Y).
b(l).
b(&).
c(&,"A") .

together with the goal a(X, Y). The solution X=&, Y="A" forthis goal is found by
Prolog's search using the Standard Backtracking algorithm, incorporated in its
compiler/interpreter, and forming, together with the mechanism for Herbraud
term unification, the heart of the reasoning system. Standard Backtracking
(SB) is a universal search algorithm for determining values of variables so that
some constraints are satisfied. SB attempts incrementally to extend a partial
consistent solution with values of some of the uninstantiated variables, cheeks
the consistency of the extended solution and when not consistent, drops the
last instantiation and tries another one for this variable. This is summarised
by the name "genera te and test" given sometimes to Standard Backtracking:
backtracking is initiated by the violation of some constraint caused as a result
of variable instantiation. The actual constraint solving is clone in Prolog by
the unification algorithm, which has an important limitation: in the Herbrand
universe only terms syntactically equivalent are unificable. Another important
Prolog feature is that lists (basie Prolog data structures) and recursion su p
port synergistically each other while serving to formulate short but powerful
definitions for a very broad range of operations. A list is defined recursively
as having the structure [He ad l Tail] , where He ad is the first element of the
list and Tail is the list with Head removed. A simple example of a recursively
defined property is the property "member" describing list membership:

member(M, [MJ_]),
member(M, [_JT] : -member(M, T).

The first clause states that a list Head is a list member. The second clause states
that M is a list member if it is a member of the lists Tail. The conciseness
of this expression is due both to the recursive nature of lists as such as to the
recursive nature of the clause merober (_, _) . Paraphrasing Shakespeare i t can be
said that Brevity is the soul oj Prolog.

Notwithstanding its advantages, Prolog has some serious weaknesses: the
main is perhaps its domain of computation, which is not allowing to solve con
straints in the integer or real variable domains. Also, Standard Backtracking
leaves much to be desired because of its inefficiency: in Prolog backtracking is
initiated by constraint violation only!

3. Prolog extension and modification

A number of attempts have been made to remove Prolog wea.knesses. For a his
torica.l review the reader is referred to Jatfar and Maher (1996). For a general

Declarativity in modelling and problem solving 329

discussion of CLP ideas the books by Tsang (1995) and Mariott and Stuckey
(1998) are recommended. The most technically advanced and successful at
tempt to create a CLP language is CHIP (for Constraint Handling In Prolog).
CHIP was initiated at ECRC (European Computer Industry Research Centre)
in Munich, in the early 1980s, and was subsequently developed and commer
cialised by COSYTEC, France. In the sequel, reference is made to CHIP V5.2
for Windows NT. CHIP extends Prolog by introducing three new domains of
computation: the integer (finite), rational and Boolean domains. For each of
them a specialised constraint handling technique has been introduced:

• for finite domains - constraint satisfaction performed by advanced back
tracking techniques relying upon various consistency checking algorithms;

• for rational domains - constraint solving done by a symbolic simplex-like
algorithm;

• for Boolean domains - equation solving in Boolean algebra.
Those constraint handling techniques play the role of the Prolog unification
mechanism for non-Herbraud domains. For finite domains and rationa.l domains
CHIP offers powerful optimisation predicates:

• for finite domains it is branch-and-bound supplemented with advanced
backtracking to deal with constraints;

• for rational domains it is linear programming using incremental simplex.
Both algorithms are - in the form of predicates - well integrated with all the
other predicates. As a result the embedding of optimisation into a set of con
straints is done in a rather obvious, intuitive and simple way. What's more
- the performance index to be optimised may be computable not as a direct
function of the decision variables (like e. g. in linear programming) , but as
an undirect function of the decision variables; sometimes, while using standard
CHIP constraints like cumula t i ve () or cycle (), the dependence remains par
tially hidden behind those very constraints. The discussion in the sequel will
concentrate on finite domain (combinatorial extension). For rational domains
see CHIP V.5.2 (1998) and Niederliski (1999).

3.1. Basic finite domain extensions

The most important extension is doubtless tha.t for finite domains. Finite do
main variables in CHIP have to be characterised by domains, given by sets of
discrete items, e. g. natura! numbers. Doma.in variables are defined in CHIP
with the primitive ::.,e. g.:
X:: 0 .. 20, X:: O: 20, X :: [2, 4, 6, 8, 10], [X , Y, Z] :: 0 .. 20.
They appear as initia.l data in all constraint sa.tisfaction problems, formulated
as follows: given the following data:

• a set of finite variables;
• a set of possible values for each variable (their domains);
• a set of constraints restricting va.lues tha.t va.ria.bles ca.n simulta.neously

ta.ke,

330 A. NIEDERLIŃSKI

the problem is to determine sets of va.lues for ea.ch va.riable fulfilling a.ll con
stra.ints. The insta.ntia.tion of va.ria.bles to va.lues in their doma.ins is clone by the
nondeterministic predica.te indomain(Element), which insta.ntia.tes the va.ria.ble
Element to the sma.llest va.lue in i ts doma.in and upon ba.cktra.cking, to the next
sma.llest va.lue, and so on. It is usua.lly used in the structure:

labeling([]) .
labeling([XIY]) : -

indomain(X) ,
labeling(Y).

The predicate labeling(_) is sea.rching for instantia.tions of a. list of domain
variables and is, while ba.cktracking, instantiating all the varia.bles.

The introduction of finite domain paved the way for a.dvanced ba.cktra.cking
techniques. The main wea.kness of Standard Ba.cktra.cking used by Prolog is that
testing (i. e. checking for consistency) is clone after a. new extended solution
is generated. This weakness has been removed from the advanced ba.cktra.ck
ing algorithm as implemented in CHIP by enhancing it with some predictive
power. It uses the basie form of constra.int propa.gation: a. new va.riable being
instantiated, from the domains of a.ll rema.ining variables values are removed
inconsistent with the instantiated va.riable. As a result, backtracking may be
initia.ted not only by the viola.tion of some constraint, but also by two different
predictive mechanisms:

l. Forward checking: ba.cktracking is initiated by the appea.ra.nce of a.n empty
do main.

2. Looking ahead: backtracking is initia.ted by the a.ppeara.nce of a. non-empty
domain with no feasible va.lues.

Both mechanisms turn out to be computa.tionally less costly tha.n checking for
constraint viola.tion only while using Standard Backtracking.

The advanced backtracking a.lgorithm ha.s been supplemented by Iabelling
strategies, which aim at instantiating varia.bles. Labelling stra.tegies consists of
variable- and value-ordering strategies:

• variable-ordering strategies decide which variable to choose for insta.ntia
tion;

• value-ordering strategies decide which value to give the instantiated vari
able; the process of atta.ching a. value to a. domain va.riable is referred to
as labelling.

CHIP relies upon the following va.ria.ble-ordering strategies:
l. First Fail chooses for instantiation the va.riable with the smallest doma.in.
2. Smallest chooses for instantia.tion the varia.ble having the smallest va.lue

in its domain.
3. Largest chooses for instantiation the variable having the la.rgest va.lue in

its doma.in
4. Max Regret chooses for instantia.tion the va.ria.ble ha.ving the la.rgest dif

ference between its smallest and second smallest va.lues in its domain.

Declarativity in modelling and problem solving 331

The value-ordering strategies are as follows:
l. Smallest chooses the smallest value in the domain.
2. Largest chooses the largest value in the domain.
3. Succeed first chooses the value which previously had succeede.

Constraint propagation, which is in CHIP automatic (i.e. no programming needs
to be don e to activate i t) and incremental (i. e. new constraints are simply ap
plied to the domains obtained up to now), works as illustrated by the following
example: given variable X with initial domain [1, 2, · · ·, 10], variable Y with
initial domain [1, 2, · · ·, 10], and variable Z with initial domain [1, 2, · · ·, 10] , the
appearance of constraint 1: Y < Z propagates into tbe domains, resulting in:
variable X getting domain [1 , 2, · · ·, 10], variable Y getting domain [1, 2, · · ·, 9],
and variable Z getting domain [2, 3, · · ·, 10]. Next, the appearance of constraint
2: X = Y+ Z propagates into the domains , resulting in: variable X getting
domain [3, 4, · · ·, 10], variable Y getting domain [1, 2, · · ·, 8], variable Z getting
domain [2, 3, · · ·, 9]. Furtber on, tbe new constraint 3: X= Z +3 results in vari
able X getting domain [5, 6, · · ·, 10], variable Y getting domain [1, 2, · · ·, 6], and
variable Z getting domain [2, 3, · · ·, 7]. Obviously, at any stage of the constraint
propagation, for any domain value of any variable tbere are domain values of
all otber variabies fulfilling all constraints.

A most welcomed addendurn in CHIP is combinatorial optimisation, eonsici
ered as special case of constraint satisfaction. Given a set of domain variables,
a set of their domains, a set of constraints, a performance index depending (di
rectly or indirectly) upon the domain variables, the va.lues of domain variables
optimising the performance index are to be determined. The metbod used is
Branch-and-Bound with advanced backtracking for constraint ha.ndling and do
ma.ins being either explicitly enumerated or given as intervals, constraints being
either explicitly enumerated or given as linear functions , and performance index
being either explicitly enumerated or given as linear· function .

Both constraint satisfaction and combinatorial optimisation as realised by
CHIP offer an additional practically important bonus: there is no need to trans
form problems solved by CHIP into some canonical form. This is a substan
tial a.dva.ntage eonsiciering that any transformation into canonical forms is as a
matter of fact destroying declarativity and introducing a semantic gap between
problem formulation and the problem-solving program. This is so because the
transformation is usually apt to aggregate the problem data, usually having
some important technical or economica.l meaning, into compounds notoriously
difficult to interpret in termsof the original problem formulation. This absence
of ca.nonical forms for problem solution is a.nother much welcomed step on the
way towarcis complete declarativity.

3.2. Powerful finite-domain predicates

To safeguard the Prolog spirit of declarativity and simplicity, CHIP designers
had to design a number o f high-level predicates (or ratber constraints), adapted

332 A. NIEDERLIŃSKI

to the special needs of combinatorial systems. The results obtained are excellent.
S uch constraints as cumula t i ve (), diffn (), cycle () and among () seem to be
more tha.n just constructs of a programming language. They seem to fulfil in
a splendid way the role of basie concepts describing combinatorial processes.
This ha.s been e. g. tacitly acknowledged by Ma.riott and Stuckey (1998) who,
while claiming independence of a.ny a.ctua.l constraint programming langua.ge,
introduced and freely used the cumula t i ve () constraint in a slightly less genera.l
form tha.n it is done in CHIP.

The most useful and p owerful is beyond doubt the constraint cumula t i ve C),
invoked in the most general case as:

cumulative([Sl · · · Sm] [Dl · · · Dm] [Rl · · · Rm] [El · · · Em]
' ' ' ' ' ' ' ' ' ' ' ' [Vl, · · ·, Vm], L, E, [Reference, Overshoot])

Here Si are starting times of a.ctivities, Di are durations of a.ctivities, Ri are
units of a common resource used by a.ctivities, Ei are activity ends, Vi clenotes
the surface-of-usa.ge of resource by activity (equa.l Ri * Di) , i is the number of
activity, Lis the overall amount of the common resource available, Eis the overall
end, Reference clenotes alevel of common resource utilisation and Overshoot
is the overall surface-of-usage of the resource above the value Reference.

Consider the following example: For seven jobs using the same resource with
limited overall ava.ilability of 13, job 4 should follow job 2, job 5 should follow
job 4 and the following durations and resource demands are given:

Job Duration Resource demand
l 16 2
2 6 g

3 13 3
4 7 7
5 5 10
6 18 l
7 4 11

Determine a job sequence that minimises the overall time of job completion.
The corresponding CHIP program looks as follows:
top:

LD [01,02,03,04,05,06,07]' %list o f starting times
LD [16, 6,13, 7, 5,18, 4], %list o f durations
LE [E1,E2,E3,E4,E5,E6,E7], %list o f completion times
LR [2, 9, 3, 7, 10, 1,11], %list o f resource demand s

LO 1 .. 100, % domain of starting times
End :: 1 .. 100, % domain of overall time
LE :: 1 .. 100, % domain of completion tirnes
High : : 1 .. 13, % dornain o f resource demands
04#>=02+6, 05=#>=04+7, % precedence constraints

Declarativity in modelling and problem solving

Resource

13
.h.

High

11
2

4
3

o
7

l

4

5

6

14 19

7

23
Time

Figure l. Gantt diagram for cumulative() exa.mple

cumulative(LO,LD,LR,LE,unused,High,End,unused),
min~ax(labeling(LO),End), % that's the way to ask for mi

% nimisation of END by proper
% choice of LO elements

write('LO = '),
write('LE = '),
write('High = '),
write('End = '),
labeling C[]) .
labeling([XIY]) :-

writeln(LO),
writeln(LE),
writeln(High),
writeln(End).

% Enumerating variables. The predicate
% is searching for instantiations of a

333

indomain(X), % list of domain variables and is, while,
% backtracking, instantiating all variables .

labeling(Y).
The solutions is:

LO [7,1,1,7,14,1,19]
LE [23,7,14,14,19,19,23]

High = 13
End = 23

It corresponds to the Ga.ntt diagram form Fig. l. It should be noticed that the
same program is solving the packing problem of seven rectangles into a recta.ngle
of minimum length given i ts height.

It should be noted that the performance index End need not be explicitly
expressed as function of the decision variables [01, 02,03, 04,05, 06, 07]. End
is bounded to [01, 02,03, 04,05, 06, 07] via the cumula t i ve () constraint.

Besides cumula t i ve C) , a.nother combinatorial predicate (constra.int) o f CHIP
contributes much to its power. This is the diffn() constraint, which cheeks for

334 A. NIEDERLIŃSKI

Figure 2. Diagram for the diffnO example

overlapping of m hyper-rectangles, each defined in a space of dimension n. Its
basie arguments are lists defining those rectangles and including origins (O) and
lengths (L), as well as lists of maximum and minimum volumes of rectangles:

diffn([[Di1., ,, .Din, L11, · · ·, Lin], ·· · , [Orni. ,,, .Dmn, Lmi , · · ·, Lmn]],
[Vmaxi, · · · , Vmaxm], [Vmini , · · · , Vminm], unused, unused, unused)

It is useful for the scheduling and placing applications. Consider the follow
ing example with the thrid 2-dimensional rectangle defined by its volume and
contraints on origin and length:
top :-

LX : : i . . 4, LY : : i 4, X : : i . . 9, Y : : i . . 9,

diffn([[i,2,i,i], [3,i,2,1], [X,Y,LX,LY]], [1 ,2, 9], [i,2,9],
unused,unused,unused),

labeling([X,Y,LX,LY] ,O,first_fail,indomain),

write('X = '), write(X),nl , write('Y = '), write(Y), nl,
write('LX = '), write(LX) ,nl , write('LY = ') , write(LY).

T he solution is: X=i, Y=3, LX=3, LY=3, and corresponds to the diagram in Fig.
2.

Both predicates will be used to solve the following combinatorial optimisa
tion problem: There are four students, Algy, Bertie, Charlie and Dingby, who
share a fiat. Four newspapers are delivered to the fiat: the Financial Times
(FT), the Guardian, the Daily Express and the Sun. Each of the students reads
all of the newspapers, in a. pa.rticular order and for a specified a.mount of time
(see below). The rea.dings are not interrupted. Given tha.t Algy gets up at 8.30,

D ecla rativity in modelling and problem solving 335

Bertie and Charlie at 8.45 , Dingby at 9.30, what is t he earliest time t hat they
can all set off for college?

Order Algy, 8:30 Bertie, 8:45 Charlie, 8:45 Dingby, 9:30
l FT 60 minutes Guardian 75 minutes Express 5 minutes Sun 90 minutes
2 Guardian 30 minutes Express 3 minutes Guardian 15 minutes FT l minute
3 Express 2 rninutes FT 25 minutes FT 10 minutes Guardian l minute
4 Sun 5 minutes Sun 10 minutes Sun 30 minutes Express l minute

This is modelleci and solved by the following CHIP program:

top:-

A=[AFT , AGu , AEx , ASu], % start list o f reading t im es for Algy
B=[BGu , BEx,BFT,BSu], % start list o f reading t im es for Bert i e
C=[CEx,CGu,CFT,CSu], % start list o f reading t im es for Charlie
D=[DSy,DFT , DGu,DEx] , % start list o f reading t im es for Dingby
END=[AEnd , BEnd,CEnd,DEnd], % end list of reading times for students

A 30 . . 300' % domain declarations for list elements
B 45 . . 300 ,
c 45 .. 300 '
D 105 .. 300 ,
END : : 90 .. 300 ,
FinaLTime : : 90 . . 300 ,

AGu#>=AFT+60 ,
AEx#>=AGu+30,
ASu#>=AEx+2 ,
AEnd#>=ASu+5,

BEx#>=BGu+75 ,
BFT#>=BEx+3 ,
BSu#>=BFT+25,
BEnd#>=BSu+lO,

CGu#>=CEx+5,
CFT#>=CGu+15,
CSu#>=CFT+lO,
CEnd#>=CSu+30 ,

DFT#>=DSu+90,
DGu#>=DFT+l,
DEx#>=DGu+l ,
DEnd#>=DEx+l,

% reading order constraints for Algy

% reading order constraints for Bertie

% reading order constraints for Charlie

% reading order constraints for Dingby

336

diffn([[AFT,60], [BFT,25], [CFT,10], [DFT,1]],
unused,unused,unused,unused,unused),

diffn([[AGu,30], [BGu,75], [CGu,15], [DGu,1]],
unused,unused,unused,unused,unused),

diffn([[AEx,2], [BEx,3], [CEx,5] ,[DEx,1]],
unused,unused,unused,unused,unused),

diffn([[ASu,5], [BSu,10], [CSu,30], [DSu,90]],
unused,unused,unused,unused,unused)

A. NIEDERLIŃSKI

% only one student may read at any time a given newspaper

cumulative(A, [60,30,2,5], [1,1,1,1] ,unused,unused,1,AEnd,unused),
cumulative(B, [75,3,25,10], [1,1,1,1] ,unused,unused,1,BEnd,unused),
cumulative(C, [5,15,10,30], [1,1,1,1] ,unused,unused,1,CEnd,unused),
cumulative(D, [90,1,1,1], [1,1,1,1] ,unused,unused,1,DEnd,unused),

% each student may read at any time only a single newspaper

maximum(Max_Time,END), % determine the maximuru reading time Max_Time
minJnax (labeling([AFT,AGu,AEX,ASu,BGu,BEX,BFT,BSu,CEX,CGu,

CFT, CSu, OS u, DFT, DGu, DEX] , O, f irst._f ail,
indomain),Max_Time),

% minimize Max_Time
write('A '),write(A),nl,
write('B
wri te ('C

'),write(B),nl,
'),write(C),nl,

write('D '),write(D),nl,
write('Final_Time = '),write(Final_Time),nl,

show_schedule
([AFT,AGu,AT,ASU,BGu,BT,BFT,BSU,CT,CGu,CFT,CSU,DSU,DFT,DGu,DT],
[Algy, Financial_Times,60,Algy,Guardian,30,Algy,Express,2,
Algy,Sun,5,Bertie,Guardian,75,Bertie,Express,3,Bertie,
Financial_Times,25,Bertie,Sun,10,Charlie,Express,5,Charlie,
Guardian,15,Charlie,Financial_Times,10,Charlie,Sun,10,
Dingby,Sun,90,Dingby,Financial_Times,1,Dingby,Guardian,1,
Dingby,Express,1]).
show_schedule ([], []).
show_schedule ([H1IT1], [H21 , H22 ,H23IT2])

determine_time (H1, FG, FM),
determine_time (H1+H23, TG, TM),
printf(" %s----> %s from %u:%u to %u:%u{}n",
show_schedule [H21,H22,FG,FM,TG,TM]),(T1,T2).

%% Time is given by minutes after 08:00

determine_time (Time,Hours,Mins) :-
Hours is (Time/60)+8, Mins is mod(Time,60).

Declarativity in modelling and problem solving

The program produces the following result :
Found schedule which ends at 11:45
Found schedule which ends at 11:30

min.Jilax -> proven optimality
'Dingby' ----> 'Express' from 11 : 17
'Dingby' ----> 'Guardian' from 11:16

to
to

'Dingby' ----> 'FT' from 11:15 to 11:16
'Dingby' ----> 'Sun' from 9:45 to 11:15
'Charlie' ----> 'Sun' from 9:15 to 9:25
'Charlie' ----> 'FT' from 9:5 to 9:15
'Charlie' ----> 'Guardian' from 8:50 to

11:18
11:17

9:5
'Charlie' ----> 'Express' from 8:45 to 8:50
'Bertie' ----> 'Sun' from 11:15 to 11:25
'Bertie' ----> 'FT' from 10:23 to 10:48
'Bertie' ----> 'Express' from 10:20 to 10 :23
'Bertie' ----> 'Guardian' from 9:5 to 10:20
'Algy' ----> 'Sun' from 11:25 to 11:30
'Algy' ----> 'Express' from 10:50 to 10:52
'Algy' ----> 'Guardian' from 10:20 to 10:50
'Algy' ----> 'FT' from 9:15 to 10:15

337

The beauty of this program lies in i ts declarativity which is directly reflecting
the mechanism of newspaper sharing and constraint satisfaction. It is not ob
scured by the need to put the problem into the straightjacket of some canonical
formulation.

4. CLP versus the OR tradition

CLP languages are tools competing with twa traditional and general operations
research approaches towarcis constraint solving and optimisation:

l. Specialized solvers
2. Specialised custom-tailored algorithm implemented by same custom-tailored

procedural program (C, Pascal).
Solvers make powerful algorithms available at law cost. However, problemsto be
solved by solvers need to be transformed into the straightjacket of same ca.noni
cal form. This is destroying declarativity at the outset and is a constant source
of frustration for the user interested in analysing the influence of va.rious tech
nical or economic parameters upon the final solution. Problem transformation
breeds thus a semantic gap between the origina.l problem (OP) and tra.nsformed
problem (TP): the TP has more variables and is difficult to understand and
modify. Solvers may be resistant to same problem-specific knowledge: they may
be even unfriendly when it comes to accommoda.ting same unusual constra.ints.
Most surprising of a.ll - same solvers - although enjoying the reputation of being

338 A. NIEDERLIŃSKI

optimised with respect to solving a. pa.rticula.r cla.ss of problems, turn out to be
ra.ther ineffective when compared with CLP languages like CHIP. The design
of custom-tailored algorithms and its implementation by some custom-tailored
procedural program may take into a.ccount all problem-specific knowledge. How
ever, the semantic gap still exists; it is inexorably connected with procedural
programming. The customised solution takes usua.lly a long developing time;
the result of all this effort is as a rule a ra.ther long program beca.use of the
need to program things like, e.g., various backtracking and b ranch and bound
algorithms. The program is difficult to modify by anybody but its designer;
modifications clone be him/her are usua.lly time-intensive and costly.

Both of the traditiona.l approaches share the truly irrational property that
the more constraints the more difficult the search and the longer the time nec
essary to get the solution.

The technology offered by CLP languages like CHIP is truly refreshing.
CHIP contains IP and LP solvers, well integrated with the rest of the pack
age. There is no need for the problems to be transformed into some canonical
forms. There areno difficulties with expressing unconventiona.l constraints. Be
ca.use of i ts decla.rative nature, the sema.ntic gap crea.ted by CHIP is very na.rrow:
the sta.tement of the problem is almost the program solving the problem. For
professionaJ prograros it is necessary to master the art of defining va.rious lists
(of listsof lists . ..) with variabies subject to constraints, which is a. slight ex
tension of techniques popular in Prolog. In CHIP a custom-tailored program
may be designed without designing the a.lgorithm and without going into a.ll
those details that make life difficult when programming procedurally. The logic
of the program is more rationa.l: the more constra.ints the ea.sier the search.
The development time is short because problem constra.ints ma.y be used di
rectly and there is no need to program things like ba.cktracking and branch and
bound. The resulting program is short and transparent. The developing cost is
reasonable. The programis easy to modify and as (or even more) effective as
custom-tailored procedural solutions.

5. Conclusion

The importance of constra.int logic programming (CLP) is well refl.ected by a
saying (see Bartak, 1999a) attributed to Eugene C. Freuder: Constraint Pro
gramming represents one oj the closest approaches computer science has yet
made to the Holy Grail oj programming: the user states the problem, the com
puter solves it. Alas, the Holy Gra.il has still to be searched for , a.lthough
enormous progress ha.s been ma.de on the wa.y towa.rd it.

References

AGGOUN, A. AND BELDICEANU, N. (1993) Extending CHIP in order to solve
complex scheduling and placement problems. Mathl. Comput. Modelling,

Declarativity in modelling and problem solving

17, 7, 57-73.
BARTAK, R. (1999A) On-Line Guide to Constraint Programming.

http://kti.msmff.euni . cz/~ bartak/constraints/
BARTAK, R. (1999B) Guide to Prolog Programming.

http://kti .msmff.euni.cz/~ bartak/prologi

339

BELDICEANU, N. AND E. CONTEJEAN, (1994) Introducing Global Constra.ints
in CHIP. Mathl. Comput. Modelling, 20, 12, 97-123.

CHIP (1998) V5.2 compact disc, Cosytec, France.
DEVILLE, Y. AND VAN HENTENRYCK, P. (1992) Construction of CLP Pro

grams. In: D.R. Brough, ed., Logic Programming. Kluwer Academic
Publ., Dordrecht, 112-135.

DINCBAS, M., SIMONIS, H. AND VAN HENTENRYCK, P. (1990) Solving Large
Combinatorial Problems in Logic Programming. Journal oj Logic Pro
gramming, 8, 75-73 .

JAFFAR, J. AND MAHER,M. J. (1996) Constraint Logic Programming - A Sur
vey. Journal oj Logic Programming, 19/20, 503-581.

KOWALSKI, R. (1989) Logika w rozwigzywaniu zadań. WNT, Warszawa.
MARRIOTT, K. AND STUCKEY, P. J . (1998) Programming with Constraints:

an Introduction. The MIT Press, Cambridge, Mass.
NIEDERLIŃSKI, A. (1999) Constraint Logic Programming - from Prolog to

CHIP. Proceedings oj the Warkshop on Constraint Programming for De
cision and Control CPDC'99, Gliwice.

STERLING, L. AND SHAPIRO, E. (1996) The Art oj Prolog. The MIT Press,
Cambridge, Mass.

TSANG, E. (1995) Foundations oj Constraint Satisfaction. Academic Press,
London.

VAN HENTENRYCK, P. (1989) Constraint Satisfaction in Logic Programming.
The MIT Press, Cambridge, Mass.

VAN HENTENRYCK, P., MICHEL, L . AND DEVILLE, Y. (1998) Numerica. A
madeling language for gZobal optimization. The MIT Press, Cambridge,
Mass.

