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Abstract: We derive a thermodynamically consistent model of
the thermomechanical evolution of shape memory materials in three -
dimensions. The model is based on the linearized strain tensor and
the absolute temperature as state variables. It accounts for the
viscous and spatially nonlocal effects, and constitutes a generaliza-
tion of the one-dimensional Falk model. The constitutive equations
comply with the entropy inequality. Examples of free energies char-
acteristic for shape memory alloys and noncrystalline materials are
given.
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1. Introduction

Beginning from the one-dimensional theory due to Falk (1982, 1990) for marten-
sitic phase transformations of the shear type, the model of shape memory alloys
(SMA) based on the Ginzburg-Landau free energy has been the subject of ex-
tensive studies, see, e.g. Niezgédka and Sprekels (1988), Sprekels and Zheng
(1989), Sprekels (1990), Hoffmann and Zochowski (1992), Zochowski (1992).
The martensitic phase transformation, activated by stress or temperature,
is a special type of deformation of a crystal lattice of parent phase (austenite)
in a crystal lattice of product phase (martensite) without diffusion which is
accompanied by a jump in the thermomechanical properties (see, e.g. Levitas,
1998). A reverse phase transformation transforms martensite into austenite.
In three dimensions there exist different approaches to the continuum de-
scription of thermomechanical evolution of SMA. The well-known model due
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to Frémond (1987) is based on the linearized strain tensor, the volumetric pro-
portions of austenite and martensite, and the absolute temperature as state
variables. The interfacial structure is accounted for there by the gradient of
the strain tensor trace. This model has been extensively studied, by e.g. Colli,
Frémond and Visintin (1990), Hoffmann, Niezgédka and Zheng (1990), Colli
and Sprekels (1992, 1993), and Colli (1995).

A different model has been derived by Fried and Gurtin (1994) in an isother-
mal case within a thermodynamical theory of configurational forces. It is based
on the strain tensor, a multicomponent order parameter and its gradient.

To describe the characteristic stress-strain relations of three-dimensional
SMA, Falk and Konopka (1990) have proposed an elastic energy density F(e, @),
dependent on the symmetric strain tensor € and the absolute temperature
@, which is invariant with respect to the cubic symmetry group of the high—
temperature phase. More precisely, it satisfies the isotropy condition

F(e,0) = F(GeGT,6) (1)

for each of the 48 matrices G, which represent the corresponding symmetry
operations in R®. The proposed energy is a polynomial expansion up to sixth
order with respect to the invariants, i.e. certain combinations of the strain
tensor components, with temperature-dependent coefficients.

A different elastic energy, proposed by Ericksen (1986), is expressed in terms
of the right Cauchy-Green strain tensor in the form of a fourth order polynomial
with temperature-dependent coefficients. This energy has been used by Kloucek
and Luskin (1994) for numerical simulation of SMA dynamics in 3-D, with
temperature treated as a parameter.

To account for the structure of moving interface boundaries Barsch and
Krumhansl (1984) have proposed a strain-gradient elastic energy, derived on
the basis of symmetry considerations.

For a recent survey of continuum models for the evolution of microstructure
in SMA, with emphasis on ”mesoscopical” models, we refer to Roubicek (1999).

We mention that in the isothermal case a phase transition model in the form
of a viscoelasticity system has been studied by many authors, e.g. Ball et al.
(1991), Rybka (1992, 1994, 1997).

Our goal here is to derive a thermodynamically consistent model of the
thermomechanical evolution of shape memory materials in three dimensions,
which corresponds to the Falk—-Konopka free energy as a prototype.

The model is based on the linearized strain tensor €(u) = 3(Vu + (Vu)”),
where u denotes the displacement vector, and the absolute temperature 0. It
constitutes a generalization of the one-dimensional Falk model. The field equa-
tions correspond to the balance laws for linear momentum and energy (for con-
stant mass density)

uu—V-0'=b, (2)
ee+V-q—oie =, (3)
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where the stress tensor o, the internal energy e, and the energy flux q are
modeled by constitutive relations accounting for nonlocal and viscous effects.
The viscous effects are represented in the constitutive variables by the strain rate
tensor €; = €(u;), and the nonlocal effects by higher order strain gradients D™e.
It turns out that in order to characterize constitutive relations for materials with
first order strain—gradient free energy density

f = f(E?Del 9): (4)

it is necessary to admit €; as the constitutive variable. The strain-gradient
energy contribution corresponds to spatially nonlocal effects. It enables to de-
scribe finer effects between the regions with nearly constant strain tensor, and
provides so—called diffuse (structured) interface approach to the development of
phase transition.

As the main result of the paper it is proved that for such materials the stress
tensor and the energy flux relations compatible with the entropy principle have
the following forms

of 1 v

U—E+9(h—f,m)'v(§)+0, (5)

QZQO—ﬁt‘h, (6)
and the Gibbs relations hold

e=f+0s, s=—fg. (7)
Here s is the entropy density, and the expression %-E is the first variation of f
with respect to e:

of

g_fsﬁ——v'fﬂje- (8)

A third order tensor h is an arbitrary quantity, which is not restricted by the
entropy principle. The presence of such a quantity is characteristic for phase
transition models with first order gradient free energy (see Alt and Pawlow,
1996).

Moreover, the heat flux gg and the viscous stress tensor ¢ are subject to
the dissipation inequality

o’ 1
et:(?—) V(E) ~qo =0 for all fields (u,d). (9)

In particular, this inequality is satisfied by the standard Fourier law for heat
conduction

Qo = —kV0, (10)
and Hooke’s-like law for viscosity

o' = vAe, (11)
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where k > 0 is the heat conductivity, v = const. > 0 is the viscosity coefficient,
and A is the fourth order tensor of linearized elasticity given through the relation

Ae(u) = Atracee(u) I + 2ue(u), - (12)

with A, ¢ denoting Lamé constants. With the above constitutive relations, and
with the particular choice of the tensor field

hi=fpe; (13)

the equations (2), (3) transform to the form which in 1-D is identical with
the evolution model due to Falk (1982, 1990). In case the strain-gradient free
energy contribution is independent of temperature (called energetic case), i.e.
fiope = 0, the equations read

U“—VV'(Aft)JFV'(V'f:De)=V'f7€(€19)+b1 (14)
c(€,0)0; — V - (kV0) = 0f e :€1 + (Aer):€ +1, (15)

where

cle, 0) = —0f,00 (€,8)

is the specific heat coefficient.

The well-posedness of the system (14), (15) with appropriate initial and
boundary conditions has been studied in Pawlow and Zochowski (2000). For
the sake of mathematical analysis the free energy has been assumed there in the
form

£, Ve,6) = —c,flogh + F(e(u), 0) + 5 | V- (Ae(w)) (16)

involving the particular strain-gradient contribution. Here x = const. > 0
is a parameter corresponding to spatially nonlocal effects, and the divergence
term can be interpreted as a resultant of forces acting on an elementary volume
element. The first and the second term in (16) are the caloric energy and the
elastic Falk—Konopka energy, respectively.

In such a case the constitutive equation for the stress takes on the form

o =F,.(e(u),d) — EAE(V - (Ae(u))) + vAe, (17)

where the first term on the right-hand side is the elastic stress tensor, the second
is the hyperstress tensor and the third is the viscous stress tensor.

This relation augments the conventional constitutive law for an elastic ma-
terial in such a way that the stress tensor depends not only on the strain tensor
€, but also on the strain rate tensor €; and the second spatial gradients D?e.
The characteristic feature of constitutive law (17) is that the dependence of the
stress tensor on € is nonlinear, but €; and D2e enter linearly via Hooke's law,
This constitutive equation generalizes to three dimensions the well-known one-
dimensional viscosity—capillarity relation proposed by Slemrod (1983, 1984}, and
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analyzed in e.g. Abeyaratne and Knowles (1991), and Truskinovsky (1994). In
such a case the elasticity equation (14) takes on the form

uy — vQu, + EQQu = V. Fe(e,0)+b, (18)
where Q stands for the second order differential operator of linearized elasticity
u— Qu=V_-(Ae(u)).

The mathematical analysis in Pawlow and Zochowski (2000) is based on the
parabolic decomposition of the system (18). Such a procedure is possible due to
the particular structure of (18) involving operators Q and QQ, which correspond
to the viscous and the nonlocal term, respectively.

It should be pointed out that with the selection (13) of the quantity h the
internal energy dynamics is not influenced by the strain—gradient contribution
of the free energy. In the context of van der Waals—Korteweg gradient theory of
phase transitions such a postulate has been suggested by Felderhof (1970), and
applied by Slemrod (1984) to study the coupled effects of viscosity, capillarity
and heat conduction in 1-D case. Then the energy equation (3) in the energetic
case, f,ope = 0, reduces to the form

eo(€,0): + V- qo = frei€s + 0V + 1, (19)

where eg(€,0) = e(€,0,0) is the volumetric internal energy. For Fourier and
Hooke’s laws this yields (15).

We add here a comment related to the frame-indifference question, which
is not considered in this paper. We point out that the constitutive relations of
the model have been derived under the small strain assumption of linearized
elasticity. Therefore, the proposed model is in its origin an approximation to
what must be a more complicated description.

As known (see Fosdick and Serrin, 1979), the linear stress response function
is incompatible with the principle of frame-indifference, therefore an exact linear
constitutive theory for elastic solids is impossible. This implies, in particular,
that the constitutive relation (17), assumed in Pawlow and Zochowski (2000)
for the sake of a mathematical analysis, is not physically meaningful. Tt should
be pointed out, however, that Hooke’s law satisfies the invariance condition of
an isotropic function (see, e.g., Gurtin, 1981, p.235). In particular, for viscosity
the following condition holds

Ro(e;)RT = o’ (ReRT)

for any proper orthogonal tensor R of the second order.
The investigation of invariance conditions imposed by the axiom of frame-
indifference in the framework of strain—gradient theory requires a separate study.
The paper is organized as follows. In Section 2 we recall the balance laws,
the entropy principle, and the basic thermodynamic relations.
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In Section 3 we present a constitutive theory for strain-gradient thermo-
viscoelastic materials. The constitutive relations involve dependencies of the
internal energy, the stress tensor and the heat flux on the strain tensor, its
gradients, the strain rate tensor, and the entropy and its gradients as thermo-
dynamic variables. We deduce restrictions placed on the constitutive relations
by the entropy inequality with undetermined multipliers.

The linear momentum and energy balances in conjunction with the con-
stitutive relations lead to the field equations, which are presented in Section
4. The independent variables in these equations are the displacement vector,
the entropy and the muliplier conjugated with the energy equation. In case
of thermal stability, i.e. positive specific heat coefficient, by duality relations,
this multiplier can be identified with the inverse of the absolute temperature.
In such a case the relation between the temperature and the entropy defines
a transformation. Consequently, the problem can be alternatively expressed in
terms of the displacement vector and the entropy, or the displacement vector
and the temperature as independent variables. With the latter choice we arrive
at the system (14), (15).

Section 5 contains the examples of free energy densities for shape memory
alloys and noncrystalline materials in the 2-D and 3-D cases.

The proofs are presented in Section 6.

Throughout this paper tensor notation is used. Vectors and tensors are
denoted by bold letters. For a = (a;), b = (b;), A = (4;), B = (Byj),
C = (Ci;x) we denote

a-b= G;‘b«;, a-A= (ﬂ:,‘,A@j)} A-a= (A,;jaj),
B-C= (B@jc;rjk), C-B= (CijkBjk:)v AB = Angﬁj.

The summation convention over repeated indices is used.
The expression V - A(z) denotes the divergence,

V-Az) = (%Aﬁ(m)),

where the convention of the contraction over the last index is used. The su-
perscript 7" denotes the transposition, and subscript s symmetrization of the
tensor, V is the gradient operator.

We write f,4 = 84 f for the partial derivative of the function f with respect
to the variable A. In particular, for f scalar-valued and A™ a tensor of order
m, f,am= is a tensor of order m with components f”*i'i
Moreover, we denote

caviyn

A
fai_ 83'31;, ft— at
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2. Balance laws and basic relations

Let 2 € R™, n > 1, be an open bounded domain with a smooth boundary 852,
occupied by a body in the current configuration at time . The behaviour of
the body is described by the following fields: mass density p, velocity v = (v;),
stress tensor o = (0y;), body force b = (b;), internal energy e, energy flux
q = (g;), heat supply r, which depend on time ¢ and position z in €0, and are
assumed to comply with the balance laws and the entropy principle.

The balance of mass, linear momentum, moment of momentum and the total
(internal plus kinetic) energy are at regular points of €2 locally expressed by the
following equations (see, e.g., Miiller, 1985):

pt+pV-v=0, (20)

pvi—=V-o=pb, o=0", 2l
2

P(6+|v2{ )+ V-(-v-o+q)=pb-v+pr (22)

where subscript ¢ denotes the material time derivative
¢y =00+ V-v.

Multiplying scalarly the first equation in (21) by v and using the identity
v (V.0)=v(0;0;;) =V (v .o)—0:(Vv),,

where
(Vv)s = 5(Vv +(V¥)7),

leads to the balance equation for the kinetic energy
|v[?
2

Subtraction of (23) from (22) gives the balance equation for the internal energy

p(

o=V (v-o)+0o:(Vv), =pb-v. (23)

per +V . q—a:(Vv), =pr. (24)

The balance laws (20) - (22) are considered together with constitutive relations
reflecting material properties. The entropy principle is used to find out restric-
tions on these relations, in other words - to select a class of thermodynamically
consistent models.

Let Y denote the set of constitutive variables for the quantities in balance
laws. The entropy principle (see Miiller,1985, Alt and Pawlow, 1996) asserts
the existence of the entropy s = §(Y) and the entropy flux 4 = 1(Y), which
are smooth functions of Y, with the following property:
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For all smooth local solutions of balance equations the entropy source 7, defined
by

se+V-p=m, (25)
satisfies the condition
T > 79, where 79 = 7o(Y,7), and 7(Y,0) =0 for all Y. (26)

Let u = (u;) denote the displacement vector and € = (e;;) the strain tensor.
Further on we confine ourselves to linear thermoelasticity. We assume the small
strain approximation, that is — the relations

€= (Vu);, and v=u,.

This implies that the strain rate tensor satisfies the equality €; = (Vv)s,.

We assume also that the mass density p is constant, normalized to unity.
Consequently, we restrict the description of the process to the linear momentum
balance

uy —V-o—b=0, (27)
and the internal energy balance

ee+V-q—oe=r, (28)
which together yield the total energy balance

(e-]-]—u-;—lz)t—l—v-(—ut-a—i—q)—b-u;:r. (29)

For further use we recall here the duality relations (Legendre transforma-
tions) for non-homogeneous continua characterized by an order parameter and
its gradient (see Alt and Pawlow, 1996).

Let @ > 0 denote the absolute temperature and w := '5 the inverse tem-
perature. Within the first order theory with the strain tensor € as an order
parameter the Helmholtz free energy density is given by a constitutive equation
f = f(e,De, ), where De = (€5, ) denotes the third order tensor correspond-
ing to space derivatives Ve = (Jkei;). Let ¢ = ¢(e,De, 1) = §f(e,De,0)
denote the reduced free energy density.

The Gibbs relations read

f=e—0s, s=—fg; (30)
or equivalently,

stp=we e=p,,. (31)
The specific heat coefficient is defined by

c = &(e,De, 8) := e (€, De, %) (32)
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Hence, by Gibbs relations,
c=—0fp0=0s,. (33)

Under assumption of thermal stability, i.e. positive specific heat coefficient,
¢ > 0, it follows from (30) that 8 — —f(e, De,0) is a strictly convex function
and w — @(€, De, w) a strictly concave function. Therefore the duality relations
take place. In particular, there is the well defined conjugate convex function

é(e,De,s) := sup (s + f(e, De, 0)) < +o0, (34)
0<f<oo

which is a lower semicontinuous strictly convex function of s € R. Similarly,

there, is the well defined conjugate concave function of ¢ with e as dual variable.

By (33) the map 6 — §(¢, De, §) is then strictly increasing, therefore the

inverse map s +— 0(¢, De, s) exists. The property 0 < 8 < oo is equivalent to

Sy < 8 < s* with s, = §,(e,De) > —00 and s* = §*(¢,De) < 0. If 5, < 5 < s*
the supremum in (34) is uniquely attained at 8 = § = (¢, De, s) with

é(e, De, s) — f(e, De, §) = s, é,s (€,De, s) = 0. (35)
Then, by (30),

é(e, De, -(15) = E?(e, De, §(¢, De, %)),

that is — € is the internal energy expressed as a function of the entropy s.

The duality relations allow to use alternatively the absolute temperature
f (or the inverse temperature w), the entropy s, or the internal energy e as
independent variables.

We note that the heat capacity in terms of s is

bi=Bte, e, o) =, Dl D, ) == o =i e (36)

i8 €55

For further use we recall also the following relation (see Alt and Pawlow, 1996,
Proposition 1, Sec.11)

which follows from (35). Actually, since
f(e, De,0) = é(e, De, i(e, De, ;7)) — 05(€, De, é),
the second identity in (35) implies that
fie=8c, [iDe=¢EDe (38)

with appropriate arguments.
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3. Constitutive equations

We represent the material non-homogeneity (nonlocality) by the strain gradi-
ents and the viscosity by the strain rate tensor as constitutive variables. To
embed the modelling into thermodynamic theory we supplement the list of con-
stitutive variables by the entropy and its gradients. The choice of entropy as an
independent variable is convenient for exploiting the entropy inequality. Then,
the internal energy € in the canonical representation as a constitutive function
of the strain tensor and entropy plays the role of a thermodynamical potential.
The constitutive set is assumed in the following form

Yo=Y

where
Y? := (¢, De,...,DMo¢, 5, Ds, ..., DX0s), My>2, Ko>1

is the stationary part associated with material non-homogeneity, and
Y := (&)

is the nonstationary part related to material viscosity. Here
D™e€ = (€551, 0 Jijiianfin=1,.us 0EmMmE My

is (24m)-th order tensor of variables corresponding to space derivatives
V™€ = (0iy4:0i, €554 4,1, sim=1,...m°

We use the convention D% = e. We shall show that the set Y describes models
with the first order strain-gradient internal energy &, characteristic for materials
of grade 2 (see, e.g., Toupin, 1964). Higher strain rate gradients in the set Y*
would allow for higher order energies.

We consider the balance equations (27), (28) with constitutive equations

E=&Y), q=4(Y), o=6() (39)

In order to select a class of thermodynamically consistent models we ap-
ply the method based on evaluating the entropy inequality with undetermned
multipliers (see Miiller, 1985, Alt and Pawlow, 1996, and Pawlow, 2000, for
application to phase transition models).

In particular, for the system (27), (29), (39) the entropy inequality asserts
that:
| uy |2

2

is satisfied for all fields u, s, where ¥ = 9(Y) is the entropy flux, A = 5\(}")
and A, := —A(Y)u; are undetermined multipliers conjugated with the total

Sg‘Jr'V'l;)"‘Au'(Uu'—vU—b)—A((é—“ )g‘i‘V‘(—u;'O"i“q)—b'ut) 2 0,(40)
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energy balance and the linear momentum balance, respectively. We note that
inequality (40) is equivalent to

st+V-p—ANé&+V-q—o:¢) > 0. (41)

Clearly, (41) implies that for system (27), (28), (39) the entropy principle is
satisfied with the entropy source 7 = A(Y)r.

We impose the following structural assumptions:

(A1) Nondegeneracy condition

€s(Y)>0 for all Y.

(A2) Relation between stationary energy and entropy fluxes

5@ = A©g©)
where
q® :=§(¥Y°,Y?) |yemo

denotes the stationary energy flux, and other quantities are defined similarly.
In addition, without loss of generality, we assume that
(A3) the energy flux

q=qo— €& h

splits into a heat flux qo = qo(Y?) and a nonstationary flux € - h, where
h = h(Y) is a certain third order tensor.
We shall prove the following

ProrosITION 3.1 (Consequences of the entropy inequality) Assume that for
balance equations (27), (28) with constitutive relations (39) the entropy inequal-
ity (41) is satisfied, and (A1)-(A3) hold. Then é, )\, o,q and 1) obey the follow-
ing relations:
(i) Internal energy relation
é = ¢é(g, De, s);
(i1) Multiplier relation
A= i(e,De,s) = éi > 0;

15

(i) Entropy fluz relation
P = Aqgo + A& - (é,pe —h);
() There ezists a second order tensor 0¥ = 6" (Y) such that following are
satisfied:
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(iv-1) Stress tensor relation

de 1 = 3
U—EE-F'A-(h—E,DE)'V/\-{—O‘,
whereé_
6_e=ésf_v'ésD£;

€
(iv-2) Residual inequality
€:(Ae’)+VA-qp >0
for all fields u, s.

The proof is given in Section 6.

Further, for simplicity, we denote

o= €= (é'lEij )1 Gh = é,De= (én’:;j‘k )

Here o is the elastic stress tensor, o corresponds to the strain-gradient energy,

V.oh = (3;;02},{) is called the hyperstress tensor (see, e.g., Toupin, 1964), and
o¥ = (0};) is the viscous (dissipative) stress tensor.

We note that in case ¢ > 0, due to (38), the following equalities (with
appropriate arguments) take place

a'e=f561 o'h=f:De-

We complement Proposition 3.1 by the following

REMARK 3.1 e Assertions (i) - (iv) provide thermodynamical state laws for
thermoviscoelastic materials of grade 2.

e The constitulive set Y is associated with internal energy €, which can
depend only on the strain tensor, its gradient, and the entropy.

e Under thermal stability assumption, ¢ > 0, by virtue of the duality rela-
tions (85), the multiplier A can be identified with the inverse temperature.
Hence, assumption (A1) is equivalent to the positivity of temperature. This
property is satisfied for typical phase transitions models (see Section 5).

e The energy and entropy fluzes are unconventional. They contain nonequi-
librium fluzes involving the tensor h, and are related by the condition

P — g = Xe ol
Therefore, at least one of the flures must contain nonequilibrium part.
Entropy fluz relation (iii) generalizes the standard relation valid in equi-
librium

% = Aqo.
The entropy inequality imposes no restrictions on the tensor h.

o The difference (h — o) contributes to the stress part due to temperature
gradient.

e (-2) is the residual inequality, which determines the constitutive equa-
tions for the heat fluz q¢ and the viscous stress tensor o.
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4. The model equations

Motivated by the previous result we consider here an augmented model with
the multiplier as an additional independent variable. Let us set

1
f=—
/\>'U',

and treat the equation
0 —&5=0 (42)

as an additional constraint. This equation defines a nonequilibrium tempera-
ture. Then, the residual inequality takes on the form of a standard dissipation
inequality

EXjw) =X -J(X;w) >0 forall (X;w) (43)
where
1 ax . 1
X oz (et,D(E)), J(X,w) = (?,qc.), w:= (¢, De, s, 5)
are thermodynamical forces, thermodynamical fluxes and state variables, re-
spectively.

¥ is a dissipation scalar.

For a given potential & = (¢, De, s), satisfying assumption (A1), the model
consists of the linear momentum balance (27) and the energy balance (28), with
equation (A3) for the energy flux g, the stress tensor equation

5& .
0—5—6‘+9(h—0)-V(§)+U, (44)

temperature equation (42), and dissipation inequality (43).

The solution of (43) can be characterized by means of the decomposition
theorem due to Edelen (1973, 1974). It asserts that any mapping J(X;w) from
E, x E, into E,, with E,, E, vector spaces of dimension n and p, respectively,
which is continuous in w and C! in X can be uniquely decomposed in the
following way:

JXw) = VxD(X;w) + U(X;w), (45)
X-UX;w) =0, (46)

where D(X;w) is a dissipation potential and U(X;w) is an anomaly vector,
given by

DX;w) = /01 X - JrX;w)dr + d(w), (47)
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Vx denotes the gradient with respect to X; U(X; a.}) is unique and D(X;w)
is unique within an additive function of w (physically irrelevant). With such a
decomposition the dissipation inequality (43) reduces to

2(X;w) = X - VxD(X;w) > 0. ' (49)

The equality U = 0 is equivalent to Onsager’s reciprocity relations. D(X;w) is
convex in X and D(0;w) yields the absolute minimum of D(X;w) for fixed w.
If X = 0 then (provided J € C*%) £(0;w) =0 and J(0;w) =0
In our case the decomposition theorem, excluding anomalies:(i,e. for U = 0),
provides the existence of a dissipation potential D which is convex, nonnegative
and homogeneous of a certain degree in the variables D(%)-and €;, and the
following thermodynamic relationships ;
aD o’ 9D
do = SD{é)’ 0 aﬁt} (50)

The standard example of a dissipation potential for the heat conduction is
D—zk[Vlog9|—2k9 |V(9)|

where k > 0 is the heat conductivity coefficient. It governs the Fourier law for
an isotropic continuum

qo = —k V0. (51)

The standard dissipation potential for the viscosity is analogous to the elastic
free energy of an isotropic continuum (see Landau and Lifshytz, 1987, Chap.V)

D = S{alleix — 3leul + S(e)h)

where 7 > 0 and £ > 0 are two viscosity coefficients. By virtue of (50), o¥ is
given by

1
- §5ik(ft]££ls (52)
where A corresponds to the fourth order tensor of linearized elasticity. Equation
(52) expressed in the inverted form
1., 1, 1.
(et)ik = Q&kau + %(% — 30ikon) (53)

represents linear Hooke’s-like law.,
We shall show now that the augmented model is thermodynamically consis-
tent:

03 = (A€t)ir = E(er)udix + 2n{(€r)ir
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PROPOSITION 4.1 Consider the system of balance laws (27), (29) with tempera-
ture given by equation (42), and stress tensor by (44). We assume that internal
energy € = e(e, De, s) satisfies assumption (A1), and that the heat flur qo and
the viscous stress oV satisfy inequality (43). Then the entropy inequality

s+V% — A-(uw—V-o-b)

= gt B i)

2
- A2(8 o é:s )
o’ 1
— 6;:(—9—) + V(a) cqp =520 (54)

is satisfied for all fields u, s, é, where the entropy fluz 1 is given in Proposition
8.1 (iii) with X = §, and the multipliers are

1
A‘l.l, - _}‘luh Al = _g)

The proof is given in Section 6.

Ag = —. (55)

We shall show that the above assertion implies the Lyapunov property for
the Gibbs function, defined by

| 2

V =ap(é+ —— 5 —) -5,

where ag = const. > 0. By Proposition 4.1 it follows that for solutions of system
(27), (29), (42), (44) the following identity is satisfied

1 1 1
.V;"FV'((CIQ-a’)(CI(].—E;_'h)—gﬁg'O'h—O:out'O')-}'(g‘—ao)f‘—aob'ut‘{*): = 0.(56)

Assuming vanishing heat source and body forces, r = 0, b = 0, we obtain from
(56) the growth relation

. —(& -o™)-ndS

d 1
v e —&-h)-nd
= dz + /(;ﬂ Qg 8)(q0 € +h) -ndS — -~

—/ ag(ut-a)-nd5=—/2d$50.
Ely) Q

Hence, if boundary conditions
(qo — € -h)-n=0, (6:'0"’1)'1'1:0: (u-0) - n=0

are satisfied on 912, the Lyapunov relation follows

d

7 Vda:— /5J$<0




356 1. PAWLOW

Under assumption of thermal stability, ¢ > 0, the formulation of the model
can be simplified. Due to (36), the internal energy é is then strictly convex in
the entropy s. Consequently, relation (42) between entropy s and temperature
@ defines a transformation. Therefore, in such a case one can use alternatively
(u,s) or (u,6) as independent variables.

We summarize here the governing equations: In terms of (u, s) variables the
governing potential is the internal energy é = ¢(e, De, s) with the properties in
(A1). The field equations are balance laws of linear momentum (27) and energy
(28), with the stress tensor o, the energy flux q and the temperature 6 given
by (44), (A3), and (42), respectively. The heat flux qo and the viscous stress
tensor o are given correspondingly by Fourier and Hooke’s law.

The advantage of (u, s)—formulation is that there is no sign constraint on the
solution. However, the disadvantage is the lack of boundedness of the leading
coefficients of the energy equation, i

In terms of (u,@) variables the potential is the free energy f = f(e, De,0)
related to & = é(e, De, 5) by the first equality in duality relations (35). We note
that the second equality in (35) is equivalent to the second equality in Gibbs
relations (30).

Due to relationship (37), the stress equation (44) turns into the form

5f i .
U=E+9(h“ﬁoe)'v(§)+0» (57)

Two extreme cases for the strain—gradient term of f are of interest: the
energetic case, f,gpe= 0, and the entropic case (‘é),e[)e: 0, i.e. f with the
strain-gradient term independent of # and linearly dependent on 8, respectively.
The energetic case is typical for shape memory alloys (see, e.g. Falk, 1982, 1990).
The entropic case is characteristic for polymer materials (see examples in Alt
and Pawlow, 1996).

In the energetic case the choice h = o” gives o independent of V8. Then
the energy flux is

q=qo— €& o,
and the entropy flux is stationary,
P = Aqo.

In the entropic case the choice h = 0 gives o independent of V. Then the
equation for the stress tensor becomes
o o, f o
= _(“) HE TF 4
8 de' 0 ]
and the nonstationary flux appears in the entropy equation.
By Gibbs relations (30) it follows that

(58)

€ = f)e € + f':DE :Veﬂ + 95!.1
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and
5t = —f,0¢:€¢ — f,ope : V€ — fr00 0y

Hence, using expression (33) for the specific heat, the energy equation can be
recast into the form

c(€,0)0; + V- (a0 — € -h) = 016, — (f — 0f.9 )se e — (f — 0f .0 ),pe Ve + 1

One can see that with the choice h = " the above equation simplifies to the
form

c(€,0)0: +V - qo = 0f pe:€ +0fope Ve + oV + 7. (59)

In consequence, in such a case the system takes on the form of the elasticity
equation

uy — V- (f.e—=V - fipe+o”)=b (60)

coupled to the energy equation (59), with gqg and ov given by Fourier’s and
Hook’s laws, respectively.

We note also that in the energetic case equations (60), (59) provide system
(14), (15), which has been studied in Pawlow and Zochowski (2000).

The system should be completed by the initial conditions

u(0,z) =up(z), w(0,z) =wu(z), €(0,z)=6p(z) in 2,
and appropriate boundary conditions, for example

u=0onTy, o-n=bhb; only,
o™ .n=0 on 890,
VO -n = poko(fexr —8) on 89,

where I'g and I'; are disjoint parts of the boundary 8Q = T'cUT'y, ToNTI =
@, and n is the unit outward normal to 9. The above boundary conditions
express, respectively, that the body is fixed on the part I'g, subject to a boundary
force by on I'y, the normal of the strain-gradient tensor o” vanishes on 92, and
there is heat exchange through 92 with external temperature 0..; and heat
exchange coefficient py.

Finally, we note that the field equations corresponding to the entropic case,
with the specific choice h = 0 and & given by (58) read as follows

f 1De

Uy — V- (Ae) + V- (V- (=) =V - fie +D,

c(€,0)0, — V - (kV6) = 0f e :6: — O(V - (%)):et + (Ae):e +7.  (61)

In this case energy equation includes contribution due to the hyperstress tensor.
As far as we know, such class of thermoelastic systems has not been considered
in the literature.
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5. Examples of free energy density

Example 1. The Falk model for 1-D shape memory alloys (SMA) (see Falk,
1982, 1990). The free energy density has the Ginzburg-Landau-Devonshire
form

f(€,De,8) = fole,6) + fC(De) (62)
where fo and f€ denote the volumetric and strain-gradient contributions, given
by

1
fol€,0) = fo(6) + f1(0) fale) + fole).  fO(De) = 5r | De |,

1.(0)= e flogh,  Fi(6) =0, fale) = 5o’

fa(e) = =01 fa(e) — %0464 + %ﬂsfﬁ- (63)

Here ¢y, a9, a4, a6, 01, k are nonnegative constants; € = wu, is the strain, ¢, > 0
is the caloric specific heat coefficient, £ > 0 is the surface energy coefficient.

According to Gibbs relations, the corresponding expressions for the internal
energy e and the entropy s are

e = éeDez) =l +(fi(0) 0RO+ fr() +3r | De P, (64
~s = #(6Deg) = ~cu(logh+1) + f1(6)ale). (65)
The corresponding specific heat coefficient is

¢ = &(e, De, 0) = ¢, — 0f; (6) fa(e). (66)

Assume that f; is concave, so that ¢ > 0 for all arguments. Consequently,
by duality relations, the temperature expressed as a function of entropy, # =
0(e, De, s), is given by

1 1
6 = exp(—s + —f,(0)f2(¢e) — 1). (67)
Cy Cy
In the standard case, f1(6) = 6, so that
Cy

Note that since s does not depend on De the transformation between s and
@ does not involve De. Moreover, the constraint 0 < # < oo is equivalent to
5¢ < 8 < s* with s.(e, De) = —oo and s*(e, De) = +o0, that is — for this example
there are no constraints on the entropy s. The expression for € = é’(e, De, s)
follows by setting in (64) 6 = (e, De, s).
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Example 2. A model for noncrystalline shape memory material in the 2-D
case (see Zochowski, 1992, 1993).

The corresponding expression for the free energy in 2-D has been derived by
averaging the 1-D Falk free energy. The model is justified for a polymer con-
sisting of long molecular chains which exhibit one-dimensional shape memory
effect and point in random directions with negligible interactions at a micro-
scopic level.

The idea is of averaging based on considering a single cell of unit size on a
plane with a string connecting opposite sides, and having the elastic energy

1 1 1
Fy(e11,0) = 5a2f (O)et — 5&16?1 + gasﬁ?i- (68)
An application of the following 2-D transformation rule for the strain e
a1(a) = 77 (a)er(a),

where 7(a) = (cosa, —sina)T, and « denotes the inclination angle of the string
with respect to xj-axis, gives

e11(a) = (cos’a)er; + (sin®a)egs — 2(sinacosa)e;g.

The averaged elastic energy density is

1 2w
F(e,0) = — Fi(e11(e), 8)dor.
27 0
Thus, the volumetric free energy density, which is the sum of the caloric and
the elastic energy, is given by

fo = fo(€e,0) = fu(8) + F(e,0). (69)

Example 3. The 3-D Falk-Konopka model for SMA (see Falk and Konopka,
1990).

An elastic free energy density, dependent on the full strain tensor and the
temperature, which is invariant with respect to the cubic symmetry of the high
temperature phase, has been proposed in the form of a sixth order expansion

3 5 2
F(e,0)=> FX}+> FlJt+> FJS (70)
i=1 i=1 i=1
expressed in terms of invariants Jf, i=1,...,i%, of k-th order corresponding
to material parameters F. JF are given by
J o= &, J=33+¢, Ji=6&+e+el,
Jo= (B S=dtete Ji=(5)? Ji=J3%3,

Jg‘ = 6%(62 - 6'3)2 + 5%(69 + 63)2 + 46%6%,
B o= (BP, J&=6¢(d-4>
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where
€1 = (e1+€ex+e€3)/3, € = (23— € —€)/6,
e3 = (€1 —€)/2, e1=€4/2, €5 =¢€5/2, €5=c¢5/2,

and the following strain notation is used

€1 = €11, €2 = €22, €3 = €33,
€4 = 2623, €5 =2€13, €6 = 2€12.
Here, in contrast to 1-D SMA, not only a second order but also higher order
material parameters F¥ can depend on temperature. For a CuAlNi alloy a

linear dependence on temperature of a fourth order coefficient is determined by
comparison with experiment (see Falk and Konopka, 1990, Sec. 5).

Example 4. Model for ferroelastic material in 2-D (see Barsch and Krum-
hansl, 1984).

Heterogeneous structures in ferroelastic materials where a cubic prototype
phase may deform into three tetragonal variants are described by the Ginzburg—
Landau free energy density of the form

f(EﬁDE)G) . fﬂ(e: 9)+fG(D€)1 (71)
fo = A(e2 +¢e2) + Bes(e2 — 3e2) + C(2 + €2)?,
€ = gl(8ie2)? + (B2e2)” + ((9r€3)” + (92e3)?) /3
+  2(Brexdres — Bpeadaes)/ V3]
+  h[(01e3)® + (D2¢3)* — V/3(Dre201e5 — Dre20se3))
where

e; = (€11 + €2 + 633)/\/§s ez = (€11 — 622)/\/5,
e3 = (611 + €22 — 2€33)/ V6, €1 =€, es=e€13, € =cn

are symmetry strains appropriate for cubic symmetry, ¢;; are components of
the strain tensor, 4, B and C > 0 are elastic constants, g, h are strain gradient
coefficients describing nonlocal elastic behaviour. The coefficient A depends
linearly on temperature 8.

The assumption underlying (71) is that the phase transformation is described
by the two—component order parameter (eq, e3) and is independent of 3.

6. Proofs of Propositions 3.1 and 4.1

Proof of Proposition 3.1. We use the method of exploiting the entropy
inequality with undetermined multipliers, presented in detail in Pawlow (2000).
A constitutive function on the set Y is defined as the following extension

é(eijs *"aAE? it (A:‘I’; skeur’ ey 8, .”1B'm. 4 (B'm)skew, “.)

= qﬁ(Ez‘j,..., (A;?),...,S,Bm,...)
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for all tensors A;? and B™ denoting D™¢;; for 2 < m < My and D™s for
2 < m < Ky, respectively. We are doing so, because e.g. in the case of Dzeij
the variables €;;,,1 and €5, are treated as independent despite the equality
6};6;6,‘& = agakﬁgj.

For f = f (Y) a smooth scalar—valued function of its arguments, we denote

the algebraic version of spatial derivative restricted to stationary variables Y°
by

Mo Ko
o .
83’ fi= E fipme:D™e,; + E fipms :D™s,; 1= Loy 15
m=0

m=0

and by A f the corresponding gradient. Similarly, for a smooth vector-valued
function 1 = ¥(Y) with values in R™ the algebraic version of the divergence
restricted to stationary variables Y is denoted by VY* - .

By inserting the constitutive equations into the entropy inequality (41) and
applying chain rule we get

St T ,!:b'sig :Det + VYO * ’!;") == )\é,en CE4t

Mo Ko
—)\Z&,Dke D €t “—)\ZE,DJ\-S D St
k= k=0
—Ag,e, De — AV g+ Aoe, > 0 (72)

for all variables (Z,Y’). Here
Z = (ext, (D*et)1<ketys (D*st)oci< ko, DM e, D0 HLs),

denotes the set of variables in which the left-hand side of (72) is linear. By the
linearity in €;;, D¥e; for 2 < k < My and in D¥s; for 1 < k < K, it follows
that the corresponding coefficients have to vanish. This implies assertion (i).
The linearity in s; together with assumption (A1) implies assertion (ii). The
terms linear in De; yield the equality

P,e, —AQye, —A€,De = 0. (73)
Let us set

P =1 —Aq. (74)
Owing to assumption (A2), 1}(0) = 0. Since X is independent of €;, (73) gives

Pre. = AE;De -
Hence,

P = A€t - €pe, (75)
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which together with (74) shows assertion (iii).
With the above conclusions inequality (72) is reduced to

€:(Ag — A& ) + VY 9 — AV g >0. (76)
We have the following easily verified identities
VY .p—AVY' .q = V' P +VA-q

VYO ‘P = €iépeVA+AV - Epe )1

where we have used the fact that, due to (ii), VA = v
With these identities the equality (76) becomes

€:(Ao — Ae,e +AV - Epe+éne VA + VA -q = 0. (77)

We note that, by assumption on My, Ky, the left-hand side of (77) depends on
the variables in Y. Using assumption (A3), the identity

VA-(&-h)=¢:(h-VA),

and defining the second order tensor oV, dependent on the variables in Y, by

Ao’ = o — Ag—i + (,pe —h) - VA, (78)
we obtain inequality (77) in the form

e:(Ao?) + V- qo > 0. (79)
Together with (78) this shows assertion (iv). &z

Proof of Proposition 4.1. Let u,s,w = % be any fields. We multiply the
left—hand sides of equations (27), (29), and (42) by Ay, Ay, and Ay, which are
defined in (55), respectively. Then we get from (27) and (29),

2
)\u—(utt~V-a—b)+)\1((é+ [%L);+V‘(—ut»cr+q)—h-ut)
=wé +wV-q— wet:g—: — &:((h — oP) « V) — wozes, (80)

and from (42),

A2(0 —6,5) = s — wé,; sy (81)
Note that for the first term on the right-hand side of (80) we have

wé;, = wo:e; +wo: Ve, + wé,, 5. (82)
The second term on the right—hand side of {80) we write in the form

wV-q=V:(wq) —Vw-(qo— € -h). (83)
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The third term on the right-hand side of (80) equals to
dé

—weriz- = —weg:(o® — V- o)
= —woe —wo": Ve, + V- (we o) — Vw- (e - oM). (84)

Hence, by adding (80) and (81) it follows that the sum of the last three terms on
the left-hand side of (54) is equal to —(s;+ ¥V -19p —X). Together with inequality
(43) this shows inequality (54). |
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