Dedicated to Professor Jakub Gutenbaum on his 70th birthday

Control and Cybernetics

vol. 29 (2000) No. 1

On $\alpha(\cdot)$ -paraconvex and strongly $\alpha(\cdot)$ -paraconvex functions

by

Stefan Rolewicz

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

Abstract: The paper introduces the notion of strongly $\alpha(\cdot)$ -paraconvex functions. Relations between strong $\alpha(\cdot)$ -paraconvexity and $\alpha(\cdot)$ -paraconvexity are investigated.

Keywords: paraconvex functions, strongly paraconvex functions

Let $\alpha(t)$ be a nondecreasing function mapping the interval $[0, +\infty)$ into the interval $[0, +\infty]$ such that $\alpha(0) = 0$ and

$$\limsup_{t \to 0+0} \frac{\alpha(t)}{t} < +\infty.$$
⁽¹⁾

Let $(X, \|\cdot\|)$ be a normed space. Let Ω be a convex subset of X. Let $f(\cdot)$ be a real valued function defined on Ω . We say that the function $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex with a constant C > 0 if for all $x, y \in \Omega$ and $0 \le t \le 1$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + C\alpha(||x-y||).$$
(2)

We say that the function $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex, if there is a constant C > 0 such that the function $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex with the constant C > 0. For $\alpha(t) = t^2$ this definition was introduced in Rolewicz (1979a) and the t^2 -paraconvex functions were called simply paraconvex functions. In Rolewicz (1979b) the notion was extended of the case $\alpha(t) = t^{\gamma}, 1 \leq \gamma$, and the t^{γ} -paraconvex functions were called γ -paraconvex functions.

We say that the function $f(\cdot)$ is strongly $\alpha(\cdot)$ -paraconvex with a constant $C_1 > 0$ if for all $x, y \in \Omega$ and $0 \le t \le 1$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + C_1 \min[t, (1-t)]\alpha(||x-y||).$$
(3)

If there is a constant $C_1 > 0$ such that the function f is strongly $\alpha(\cdot)$ -paraconvex with the constant $C_1 > 0$, we say that the function f is strongly $\alpha(\cdot)$ -paraconvex.

Of course every function $f(\cdot)$ strongly $\alpha(\cdot)$ -paraconvex with a constant $C_1 > 0$ is also $\alpha(\cdot)$ -paraconvex with the constant $C_1 > 0$. It was shown in Rolewicz (1979a,b) that for $\alpha(t) = t^{\gamma}, 1 < \gamma \leq 2$, any $\alpha(\cdot)$ -paraconvex function is simultaneously strongly $\alpha(\cdot)$ -paraconvex.

In this short paper properties of $\alpha(\cdot)$ -paraconvex and strongly $\alpha(\cdot)$ -paraconvex functions are investigated.

Similarly as in Rolewicz (1979b) we can demonstrate

PROPOSITION 1 Let $f(\cdot)$ be an $\alpha(\cdot)$ -paraconvex function defined on a convex set Ω of a normed space X. Suppose that for each straight line L the function $f(\cdot)$ restricted to the intersection $L \cap \Omega$, $f|_{L \cap \Omega}$ is absolutely continuous. If

$$\liminf_{t \to 0+0} \frac{\alpha(t)}{t^2} = 0,\tag{4}$$

then $f(\cdot)$ is convex.

Proof. Observe that the consideration can be restricted to the set $L \cap \Omega$, since convexity of a function on all such sets implies the convexity of the function on the whole set Ω .

Thus, without loss of generality we may assume that we consider an $\alpha(\cdot)$ -paraconvex absolutely continuous function $f(\cdot)$ defined on the interval $[a, b] \subset \mathbb{R}$.

By (4) there is a sequence $\{t_n\}$ tending to 0 such that

$$\lim_{n \to +\infty} \frac{\alpha(t_n)}{t_n^2} = 0.$$
(5)

Since the function $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex there is a constant C > 0 such that for every k > 0 such that $(k + 1)t_n < b - a$ we have

$$f(a+kt_n) \le \frac{1}{2} [f(a+(k+1)t_n) + f(a+(k-1)t_n)] + C\alpha(2t_n)$$

and for every k > 0 such that $(k+2)t_n < b-a$ we have

$$f(a + (k+1)t_n) \le \frac{1}{2}[f(a + (k+2)t_n) + f(a + kt_n)] + C\alpha(2t_n).$$

Adding this two inequalities and multiplying by 2 we get for every k > 0such that $(k+1)t_n < b-a$

$$2f(a + kt_n) + 2f(a + (k+1)t_n)$$

$$\leq [f(a + (k+1)t_n) + f(a + (k-1)t_n)] +$$

$$[f(a + (k+2)t_n) + f(a + kt_n)] + 2C\alpha(2t_n).$$

Hence,

$$[f(a+kt_n) - f(a+(k-1)t_n)] - [f(a+(k+2)t_n) - f(a+(k+1)t_n)] \le 2C\alpha(2t_n).(6)$$

Thus, by adding inequalities $(6_k), (6_{k+1}), ..., (6_{k+m-1})$ for m such that $(k+m+1)t_n < b-a$ we obtain

$$[f(a+kt_n) - f(a+(k-1)t_n)] - [f(a+(k+m+1)t_n) - f(a+(k+m)t_n)]$$

$$\leq 2C(m-1)\alpha(2t_n).$$
(7)

By our assumptions the function $f(\cdot)$ is absolutely continuous. Thus it is differentiable almost everywhere. Let τ_1 and τ_2 be two arbitrary points in which the function $f(\cdot)$ is differentiable. Let $a < \tau_1 < \tau_2 < b$. Let k_n and m_n be two sequences chosen in such a way that $k_n t_n$ tends to τ_1 and $(k_n + m_n)t_n$ tends to \hat{t} .

Dividing both sides of (7) by t_n and recalling that $m_n < \frac{(b-a)}{t_n}$ yields

$$\frac{f(a+kt_n) - f(a+(k-1)t_n)}{t_n} - \frac{f(a+(k+m+1)t_n) - f(a+(k+m)t_n)}{t_n}$$
$$\leq 2C(b-a)\frac{\alpha(2t_n)}{t_n^2}.$$
(8)

Taking (5) into account and passing to the limit as $n \to \infty$ we get

 $f'(\tau_1) \le f'(\tau_2)$

which shows that the function $f(\cdot)$ is convex.

It is not clear whether the assumption that for each straight line L the function $f(\cdot)$ restricted to the intersection $L \cap \Omega$, $f|_{L \cap \Omega}$ is absolutely continuous is essential.

Proposition 1 can be reversed in the following way

PROPOSITION 2 If

$$\liminf_{t \to 0+0} \frac{\alpha(t)}{t^2} > 0,\tag{9}$$

then there is an $\alpha(\cdot)$ -paraconvex function which is not convex.

Proof. Suppose that $X = \mathbb{R}$. By (9) there are C, r > 0 such that

$$\frac{\alpha(t)}{t^2} > C$$

for $0 < t \leq r$. We put

$$f(x) = \begin{cases} -Cx^2 \text{ for } |x| \le r, \\ -Cr^2 \text{ for } |x| > r. \end{cases}$$

It is easy to see that $f(\cdot)$ is an $\alpha(\cdot)$ -paraconvex function with the constant C.

This finishes the proof for the case of $X = \mathbb{R}$. In the general case we simply extend the function $f(\cdot)$ from one-dimensional subspace on the whole space using the fact that any normed space can be decomposed into a direct sum of a one-dimensional subspace and a subspace of codimension 1.

The function constructed in the Proposition 2 is also strongly $\alpha(\cdot)$ -paraconvex. Under an additional assumption we can construct a function, which is $\alpha(\cdot)$ -paraconvex and which is not strongly $\alpha(\cdot)$ -paraconvex.

PROPOSITION 3 If (9) holds and

$$\liminf_{t \to +\infty} \frac{\alpha(t)}{t} = 0, \tag{10}$$

then there is a function $f(\cdot) : X \to \mathbb{R}$ such that $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex and it is not strongly $\alpha(\cdot)$ -paraconvex.

Proof. At the beginning we shall prove the Proposition 3 for the case of $X = \mathbb{R}$. By (9) there is C > 0 such that

$$\frac{\alpha(t)}{t^2} > C \tag{11}$$

for $0 < t \le 1$. We put

$$f(x) = \max_{-\infty < n < +\infty} \left(1 - \left(x - (2n+1) \right)^2 \right).$$
(12)

The function f is non-negative and not greater than 1, $0 \leq f(x) \leq 1$. Moreover, f(2n) = 0, $n = 0, \pm 1, \pm 2, \dots$. It is $\alpha(\cdot)$ -paraconvex with the constant $\frac{1}{C}$. Indeed, if $|x - y| \geq 1$, then by (11) and the fact that $\alpha(\cdot)$ is nondecreasing $\alpha(|x - y|) > C$. Thus

$$f(tx + (1-t)y) \le 1 \le \frac{1}{C}\alpha(|x-y|) \le tf(x) + (1-t)f(y) + \frac{1}{C}\alpha(|x-y|).$$
(13)

If $|x - y| \leq 1$, then on the interval $[\min(x, y), \max(x, y)]$ the function $f(\cdot)$ is a difference of a convex function and the quadratic function x^2 . Thus it is t^2 -paraconvex with constant 1. Therefore by (11) it is $\alpha(\cdot)$ -paraconvex with the constant $\frac{1}{C}$.

By (10) there is a sequence $\{t_n\}$ tending to infinity such that

$$\lim_{n \to +\infty} \frac{\alpha(t_n)}{t_n} = 0. \tag{14}$$

Now we consider our function on the interval $[0, t_n]$. Let t be an arbitrary positive number. Let $\lambda_n = \frac{t}{t_n}$. Suppose that the function $f(\cdot)$ considered above is strongly $\alpha(\cdot)$ -paraconvex with a constant C. It means that

$$f(t) = f(\lambda_n t_n + (1 - \lambda_n)0) \le \lambda_n f(t_n) + (1 - \lambda_n)f(0) + \lambda_n C\alpha(t_n)$$
$$\le \lambda_n + \lambda_n C\alpha(t_n) = \frac{t}{t_n} + C\frac{\alpha(t_n)}{t_n} \to 0,$$

by (14). Since f(t) is non-negative, we get that f(t) = 0, a contradiction.

This finishes the proof for the case of $X = \mathbb{R}$. In the general case we simply extend the function $f(\cdot)$ from the one-dimensional subspace on the whole space using the fact that any normed space can be decomposed into a direct sum of a one-dimensional subspace and a subspace of codimension 1.

Proposition 3 can be reversed under an additional assumption in the following way.

PROPOSITION 4 Suppose that

$$\int_{1}^{+\infty} \alpha(\frac{1}{t})dt < +\infty. \tag{15}$$

If

$$\liminf_{t \to +\infty} \frac{\alpha(t)}{t} > 0, \tag{16}$$

then each $\alpha(\cdot)$ -paraconvex function $f(\cdot): X \to \mathbb{R}$ is also strongly $\alpha(\cdot)$ -paraconvex.

The proof is based on the following lemma:

LEMMA 1

$$\int_{1}^{+\infty}\alpha(\frac{1}{t})dt<+\infty,$$

if and only if

$$\sum_{n=1}^{+\infty} 2^n \alpha(\frac{1}{2^n}) < +\infty.$$

(17)

Proof. Indeed, since $\alpha(\cdot)$ is non-decreasing we have

$$\frac{1}{2}\sum_{n=1}^{+\infty} 2^n \alpha(\frac{1}{2^n}) = \sum_{n=1}^{+\infty} 2^{n-1} \alpha(\frac{1}{2^n}) \le \int_1^{+\infty} \alpha(\frac{1}{t}) dt \le \sum_{n=0}^{+\infty} 2^n \alpha(\frac{1}{2^n}).$$
(18)

Proof of Proposition 4. By (16) there exists K > 0 such that

$$\frac{\alpha(t)}{t} > K$$

for t > 1.

Let $0 < \lambda < 1$. Suppose that $\lambda ||x - y|| > 1$. This implies that ||x - y|| > 1. Since $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex there is a C > 0 such that

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) + C\alpha(||x - y||) \leq \lambda f(x) + (1 - \lambda)f(y) + C\alpha(1)$$
$$\leq \lambda f(x) + (1 - \lambda)f(y) + C\alpha(1)\frac{1}{K}\frac{\alpha(||x - y||)}{||x - y||} \leq \lambda f(x) + (1 - \lambda)f(y) + \alpha(1)\frac{C}{K}\lambda\alpha(||x - y||).$$
(19)

Suppose that $\lambda ||x - y|| \leq 1$. Let $x \neq y$ and let $F_{x,y}(t) = f(x + t \frac{y-x}{||x-y||})$, $0 \leq t \leq 1$. Of course $F_{x,y}(0) = f(x)$ and $F_{x,y}(||x - y||) = f(y)$. Observe that the function $f(\cdot)$ is $\alpha(\cdot)$ -paraconvex (strongly $\alpha(\cdot)$ -paraconvex) if and only if $F_{x,y}(t)$ are $\alpha(\cdot)$ -paraconvex (strongly $\alpha(\cdot)$ -paraconvex) for all x, y.

Since $F_{x,y}(\cdot)$ is a function of a real variable it is enough to restrict ourselves to the case when $X = \mathbb{R}$.

We shall start our proof with the case of x = 0 and y = 1. Let g(t) be an arbitrary $\alpha(\cdot)$ -paraconvex function defined on \mathbb{R} . Let $\hat{g}(t) = g(t) - g(0) - t[g(1) - g(0)]$. It is easy to see that $\hat{g}(0) = \hat{g}(1) = 0$ and that g(t) is $\alpha(\cdot)$ paraconvex (strongly $\alpha(\cdot)$ -paraconvex) with a constant \hat{C} if and only if $\hat{g}(t)$ is $\alpha(\cdot)$ -paraconvex (resp. strongly $\alpha(\cdot)$ -paraconvex) with the constant \hat{C} .

Recall that we have assumed that (15) (hence (17)) holds. Now we shall show by induction that

$$\hat{g}(\frac{1}{2^n}) \le \hat{C} \sum_{i=1}^n 2^{i-n} \alpha(\frac{1}{2^{i-1}}).$$
(20)

For n = 1 it trivially follows from the fact that $\hat{g}(t)$ is $\alpha(\cdot)$ -paraconvex. Suppose that (20) is true for certain n. Then by the fact that $\hat{g}(t)$ is $\alpha(\cdot)$ -paraconvex we have

$$\hat{g}(\frac{1}{2^{n+1}}) \le \frac{1}{2} \left(\hat{g}(0) + \hat{g}(\frac{1}{2^n}) \right) + \hat{C}\alpha(\frac{1}{2^n}) \le \hat{C}\alpha(\frac{1}{2^n}) + \hat{C}\sum_{i=1}^n 2^{i-n-1}\alpha(\frac{1}{2^{i-1}})$$

$$= \hat{C} \sum_{i=1}^{n+1} 2^{i-(n+1)} \alpha(\frac{1}{2^{i-1}}).$$
(21)

Now let $\lambda = \frac{1}{2^n}$. By (20)

$$\frac{\hat{g}(\lambda)}{\lambda} \le \hat{C} \sum_{i=1}^{n} 2^{i} \alpha(\frac{1}{2^{i}}) \le \hat{C} \sum_{i=1}^{\infty} 2^{i} \alpha(\frac{1}{2^{i}}) < \infty.$$

$$(22)$$

Let $\lambda \leq \frac{1}{2}$. Let $\frac{1}{2^n} \leq \lambda < \frac{1}{2^{n-1}}$, $n = 2, 3, \dots$. Since $\hat{g}(t)$ is $\alpha(\cdot)$ -paraconvex we have

$$\hat{g}(\lambda) \le \max[\hat{g}(\frac{1}{2^n}), \hat{g}(\frac{1}{2^{n-1}})] + \hat{C}\alpha(\frac{1}{2^n}) \le \frac{\hat{C}}{2^{n-1}} \sum_{i=1}^{\infty} 2^i \alpha(\frac{1}{2^i}) + \hat{C}\alpha(\frac{1}{2^n}).$$
(23)

Hence

$$\frac{\hat{g}(\lambda)}{\lambda} \le 2^n \left(\frac{\hat{C}}{2^{n-1}} \sum_{i=1}^{\infty} 2^i \alpha(\frac{1}{2^i}) + \hat{C}\alpha(\frac{1}{2^n}) \right)$$

$$\le 3\hat{C} \sum_{i=1}^{\infty} 2^i \alpha(\frac{1}{2^i}) < +\infty.$$
(24)

In a similar way we can show that for $\frac{1}{2} \le \lambda \le 1$

$$\frac{\hat{g}(\lambda)}{1-\lambda} \le 3\hat{C}\sum_{i=1}^{\infty} 2^i \alpha(\frac{1}{2^i}) < +\infty.$$
(25)

It means that

$$\hat{g}(\lambda) \le L\hat{C}\min[\lambda, (1-\lambda)],\tag{26}$$

where

$$L = 3\sum_{i=1}^{\infty} 2^i \alpha(\frac{1}{2^i}).$$

Thus we have proved sufficiency in the case of x = 0 and y = 1. Now let x, y be arbitrary. Let $h(t) = \hat{g}(x + t(y - x))$. Observe that $\hat{g}(\lambda x + (1 - \lambda)y) = h(\lambda)$, in particular $h(0) = \hat{g}(x)$ and $h(1) = \hat{g}(y)$.

Suppose that the function $\hat{g}(x)$ is $\alpha(\cdot)$ -paraconvex with a constant $\hat{C} > 0$

$$\hat{g}(\lambda x + (1-\lambda)y) \le \lambda \hat{g}(x) + (1-\lambda)\hat{g}(y) + C\alpha(|x-y|).$$

Thus

$$h(\lambda) \le \lambda h(0) + (1-\lambda)h(1) + \hat{C}\alpha(|x-y|).$$

Applying (26) to $h(\lambda)$ we get

 $h(\lambda) \leq \min[\lambda, (1-\lambda)]L\hat{C}\alpha(|x-y|).$

Therefore

$$\hat{g}(\lambda x + (1-\lambda)y) \le \min[\lambda, (1-\lambda)]L\hat{C}\alpha(|x-y|).$$
(27)

Now we shall apply (27) to $\hat{g}(t) = F_{x,y}(t)$ and recalling the definition of $F_{x,y}(t)$ in the case of $\lambda ||x - y|| \le 1$ we get

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) + \min[\lambda, (1-\lambda)]L\hat{C}\alpha(||x-y||)(28)$$

and finally combining (28) and (19) we obtain

$$f(\lambda x + (1 - \lambda)y) \le \min[\lambda, (1 - \lambda)] \max(\alpha(1)\frac{C}{K}, L\hat{C})\alpha(||x - y||).$$

COROLLARY 1 (Jourani (1996)). Let $(X, \|\cdot\|)$ be a normed space. Let $1 \leq \gamma \leq 2$. Then every γ -paraconvex (i.e. t^{γ} -paraconvex) function is simultaneously strongly γ -paraconvex if and only if $1 < \gamma$.

Since $\alpha(\cdot)$ is a non-decreasing function, condition (15) implies

$$\lim_{t \to 0} \frac{\alpha(t)}{t} = 0. \tag{29}$$

There are also non-decreasing functions $\alpha(\cdot)$ different from t^{γ} , $1 < \gamma$, such that (15) holds. Indeed let $1 \leq \gamma \leq 2$ and let

$$\alpha(t) = \begin{cases} \frac{t}{|\lg t|^{\gamma}} \text{ for } 0 < t \leq \frac{1}{e}, \\ \frac{1}{e} \text{ for } \frac{1}{e} < t. \end{cases}$$

It is easy to see that $\alpha(\cdot)$ is a nondecreasing function and that (11) holds for $1 < \gamma \leq 2$ and does not hold for $\gamma = 1$. Thus, we have

COROLLARY 2. Let $(X, \|\cdot\|)$ be a normed space. Let $1 \le \gamma \le 2$ and let

$$\alpha(t) = \begin{cases} \frac{t}{|\lg t|^{\gamma}} \text{ for } 0 < t \le \frac{1}{e}, \\ \frac{1}{e} \text{ for } \frac{1}{e} < t, \end{cases}$$

Then every $\alpha(\cdot)$ -paraconvex function is simultaneously strongly $\alpha(\cdot)$ -paraconvex if and only if $1 < \gamma$.

Repeating the consideration of Jourani (1996) we shall prove

PROPOSITION 5 Let $(X, \|\cdot\|)$ be a normed space. Let a real-valued function f defined on a convex set $\Omega \subset X$ be strongly $\alpha(\cdot)$ -paraconvex with constant C. Suppose that it is locally bounded. Then it is locally Lipschitzian.

Proof. Let $x_0 \in \Omega$ be arbitrary. Since f is locally bounded, there are r, a > 0 such that for any $z \in \Omega$ such that $||z - x_0|| < r$ we have

|f(z)| < a.

Let x, u be two arbitrary elements of Ω such that $||x-x_0|| < \frac{r}{2}$, $||u-x_0|| < \frac{r}{2}$. Let ε be an arbitrary positive number, let $\beta = \varepsilon + ||x-u||$ and let

$$z = u + \frac{r}{2\beta}(u - x). \tag{30}$$

Observe that

$$\|z - x_0\| < \|u - x_0\| + \frac{r}{2\beta} \|u - x\| < \frac{r}{2} + \frac{r}{2} \frac{\|x - u\|}{\varepsilon + \|x - u\|} < r$$

and so

$$|f(z)| < a.$$

Let $\lambda = \frac{2\beta}{r+2\beta}$. Observe that $u = \lambda z + (1 - \lambda)x$. Since the function $f(\cdot)$ is strongly $\alpha(\cdot)$ -paraconvex with constant C,

$$f(u) = f(\lambda z + (1 - \lambda)x) \le \lambda f(z) + (1 - \lambda)f(x) + C\lambda\alpha(||x - z||).$$
(31)

Thus,

$$f(u) - f(x) \le \lambda(f(z) - f(x)) + C\lambda\alpha(||x - z||).$$
(32)

Since $\lambda ||z - x|| = ||u - x||$ we get

$$f(u) - f(x) \le \lambda (f(z) - f(x)) + C\lambda \alpha (\frac{\|u - z\|}{\lambda}).$$
(33)

Recall that $0 < \lambda < 1$ and thus

$$f(u) - f(x) \le \lambda(f(z) - f(x)) + C\lambda\alpha(||x - z||) \le \lambda(2a + C\alpha(2r))$$
$$\le \frac{2\beta}{r}(2a + C\alpha(2r)) \le L(\varepsilon + ||u - x||),$$

where $L = \frac{2}{r} (2a + C\alpha(2r)).$

Exchanging the role of x and u we get

$$|f(u) - f(x)| \le L(\varepsilon + ||u - x||).$$

The arbitrariness of ε implies

$$|f(u) - f(x)| \le L ||u - x||. \tag{34}$$

As every continuous function is locally bounded we get the following consequence:

COROLLARY 3 Let $(X, \|\cdot\|)$ be a normed space. Let a continuous real-valued function $f(\cdot)$ defined on a convex set $\Omega \subset X$ be strongly $\alpha(\cdot)$ -paraconvex with constant C. Then it is locally Lipschitzian.

PROPOSITION 6 Let $(X, \|\cdot\|)$ be a Banach space. Let a real-valued function $f(\cdot)$ defined on an open convex set $\Omega \subset X$ be strongly $\alpha(\cdot)$ -paraconvex with a constant C. Then it is locally Lipschitzian.

Proof. Let Ω_0 be a closed convex set with non-empty interior. Let $\Omega_m = \{x \in \Omega_0 : |f(x)| \leq m\}$. Using the category method we can show that one among those sets contains an open ball, $B(x_0, r) \subset \Omega_{m_0}$. Take an arbitrary point $x \in \Omega$. Since Ω is open there is $y \in \Omega$ and t > 0 such that $x = (1-t)y + tx_0$. Let $z \in \Omega$ be such that ||x-z|| < rt. Then we can represent z in the form z = tu + (1-t)y, where $u \in B(x_0, r) \subset \Omega_{m_0}$. Thus

$$f(z) \le t f(y) + (1 - t) m_0 \le \max(f(y), m_0),$$

i.e. the function f(z) is majorized on B(x, rt). Thus by Proposition 5 it is locally Lipschitzian.

As a consequence of Propositions 1 and 6 we obtain

PROPOSITION 7 Let $f(\cdot)$ be a strongly $\alpha(\cdot)$ -paraconvex function defined on a convex set Ω of a normed space X. If

$$\liminf_{t \to 0+0} \frac{\alpha(t)}{t^2} = 0, \tag{35}$$

then $f(\cdot)$ is convex.

Proof. Take an arbitrary straight line L and let $\Omega_L = \Omega \cap L$. Now let $f_L(\cdot)$ denote the restriction of the function $f(\cdot)$ to the set Ω_L , $f_L(\cdot) = f|_{\Omega_L}(\cdot)$. By $Int_a\Omega_L$ we shall denote the relative interior (with respect to the line L) of the set Ω_L . By Proposition 10 the function the function $f(\cdot)$ is locally Lipschitz on $Int_a\Omega_L$. Then, it is absolutely continuous on every closed interval [a, b] contained in Ω_L . By Proposition 1 it is convex on [a,b]. The arbitrariness of [a,b] implies that f_L is convex on $Int_a\Omega_L$. It finishes the proof in the case

377

of $\Omega_L = Int_a\Omega_L$. Suppose that $c \in \Omega_L$ and $c \notin Int_a\Omega_L$. Since f_L is $\alpha(\cdot)$ -paraconvex, we trivially obtain that

$$\lim_{\substack{x \to c, \\ x \in \Omega_L}} f(x) \le f(c).$$

Therefore the function f_L is convex on Ω_L . The arbitrariness of L implies that $f(\cdot)$ is convex.

References

- JOURANI, A. (1996) Subdifferentiability and subdifferential monotonicity of γ -paraconvex functions. Control and Cybernetics, 25, 721 737.
- PALLASCHKE, D., ROLEWICZ, S. (1997) Foundation of mathematical optimization. Mathematics and its Applications 388, Kluwer Academic Publishers, Dordrecht / Boston / London.
- ROLEWICZ, S. (1979A) On paraconvex multifunctions. Oper.Res. Verf. (Methods of Oper. Res.) 31, 540-546.
- ROLEWICZ, S. (1979B) On γ -paraconvex multifunctions. Math. Japonica 24, 293-300.

Bargets of a suble of all real sub-

האדעקה הארקולקה הלמעקרמים שרברי ביולך איז גרייצ' ישקליקה לאפיני (בריי של אי קצועיריות היישקומלה לגינים ביות

1 Second and Statistics of the state of the state of the state of the second state of the sta

sector a print for

(A) a set (i.e., of Eq. (investigation system) is a provided by the system set of the system set (i.e., i.e., i

[15] S. Sang, S. W. S. M. M. Saylovi, K. S. M. S. S. M. Saki, Satistical of DataBlanced Line systemetry of space. *Mediatry Security and A.C. J. A the converse of All Induced Completions of The Hollows J. Heart. Poly.*, 2010, 111–111, 111–114.

(Betterery: S. 1) produces and explored the transmission of all distances and and the spectrum of the cold field of the spectrum.