Dedicated to<br>Professor Jakub Gutenbaum<br>on his 70th birthday

Control and Cybernetics
vol. 29 (2000) No. 1

## On $\alpha(\cdot)$-paraconvex and strongly $\alpha(\cdot)$-paraconvex functions

by<br>Stefan Rolewicz<br>Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland


#### Abstract

The paper introduces the notion of strongly $\alpha(\cdot)$ paraconvex functions. Relations between strong $\alpha(\cdot)$-paraconvexity and $\alpha(\cdot)$-paraconvexity are investigated.

Keywords: paraconvex functions, strongly paraconvex functions


Let $\alpha(t)$ be a nondecreasing function mapping the interval $[0,+\infty)$ into the interval $[0,+\infty]$ such that $\alpha(0)=0$ and

$$
\begin{equation*}
\limsup _{t \rightarrow 0+0} \frac{\alpha(t)}{t}<+\infty \tag{1}
\end{equation*}
$$

Let $(X,\|\cdot\|)$ be a normed space. Let $\Omega$ be a convex subset of $X$. Let $f(\cdot)$ be a real valued function defined on $\Omega$. We say that the function $f(\cdot)$ is $\alpha(\cdot)$-paraconvex with a constant $C>0$ if for all $x, y \in \Omega$ and $0 \leq t \leq 1$

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+C \alpha(\|x-y\|) \tag{2}
\end{equation*}
$$

We say that the function $f(\cdot)$ is $\alpha(\cdot)$-paraconvex, if there is a constant $C>0$ such that the function $f(\cdot)$ is $\alpha(\cdot)$-paraconvex with the constant $C>0$. For $\alpha(t)=t^{2}$ this definition was introduced in Rolewicz (1979a) and the $t^{2}$-paraconvex functions were called simply paraconvex functions. In Rolewicz (1979b) the notion was extended of the case $\alpha(t)=t^{\gamma}, 1 \leq \gamma$, and the $t^{\gamma}$-paraconvex functions were called $\gamma$-paraconvex functions.

We say that the function $f(\cdot)$ is strongly $\alpha(\cdot)$-paraconvex with a constant $C_{1}>0$ if for all $x, y \in \Omega$ and $0 \leq t \leq 1$

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+C_{1} \min [t,(1-t)] \alpha(\|x-y\|) \tag{3}
\end{equation*}
$$

If there is a constant $C_{1}>0$ such that the function $f$ is strongly $\alpha(\cdot)$ paraconvex with the constant $C_{1}>0$, we say that the function $f$ is strongly $\alpha(\cdot)$-paraconvex .

Of course every function $f(\cdot)$ strongly $\alpha(\cdot)$-paraconvex with a constant $C_{1}>$ 0 is also $\alpha(\cdot)$-paraconvex with the constant $C_{1}>0$. It was shown in Rolewicz (1979a,b) that for $\alpha(t)=t^{\gamma}, 1<\gamma \leq 2$, any $\alpha(\cdot)$-paraconvex function is simultaneously strongly $\alpha(\cdot)$-paraconvex.

In this short paper properties of $\alpha(\cdot)$-paraconvex and strongly $\alpha(\cdot)$-paraconvex functions are investigated.

Similarly as in Rolewicz (1979b) we can demonstrate
Proposition 1 Let $f(\cdot)$ be an $\alpha(\cdot)$-paraconvex function defined on a convex set $\Omega$ of a normed space $X$. Suppose that for each straight line $L$ the function $f(\cdot)$ restricted to the intersection $L \cap \Omega,\left.f\right|_{L \cap \Omega}$ is absolutely continuous. If

$$
\begin{equation*}
\liminf _{t \rightarrow 0+0} \frac{\alpha(t)}{t^{2}}=0 \tag{4}
\end{equation*}
$$

then $f(\cdot)$ is convex.
Proof. Observe that the consideration can be restricted to the set $L \cap \Omega$, since convexity of a function on all such sets implies the convexity of the function on the whole set $\Omega$.

Thus, without loss of generality we may assume that we consider an $\alpha(\cdot)$ paraconvex absolutely continuous function $f(\cdot)$ defined on the interval $[a, b] \subset \mathbb{R}$.

By (4) there is a sequence $\left\{t_{n}\right\}$ tending to 0 such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\alpha\left(t_{n}\right)}{t_{n}^{2}}=0 . \tag{5}
\end{equation*}
$$

Since the function $f(\cdot)$ is $\alpha(\cdot)$-paraconvex there is a constant $C>0$ such that for every $k>0$ such that $(k+1) t_{n}<b-a$ we have

$$
f\left(a+k t_{n}\right) \leq \frac{1}{2}\left[f\left(a+(k+1) t_{n}\right)+f\left(a+(k-1) t_{n}\right)\right]+C \alpha\left(2 t_{n}\right)
$$

and for every $k>0$ such that $(k+2) t_{n}<b-a$ we have

$$
f\left(a+(k+1) t_{n}\right) \leq \frac{1}{2}\left[f\left(a+(k+2) t_{n}\right)+f\left(a+k t_{n}\right)\right]+C \alpha\left(2 t_{n}\right) .
$$

Adding this two inequalities and multiplying by 2 we get for every $k>0$ such that $(k+1) t_{n}<b-a$

$$
\begin{aligned}
& 2 f\left(a+k t_{n}\right)+2 f\left(a+(k+1) t_{n}\right) \\
& \leq\left[f\left(a+(k+1) t_{n}\right)+f\left(a+(k-1) t_{n}\right)\right]+
\end{aligned}
$$

$$
\left[f\left(a+(k+2) t_{n}\right)+f\left(a+k t_{n}\right)\right]+2 C \alpha\left(2 t_{n}\right) .
$$

Hence,
$\left[f\left(a+k t_{n}\right)-f\left(a+(k-1) t_{n}\right)\right]-\left[f\left(a+(k+2) t_{n}\right)-f\left(a+(k+1) t_{n}\right)\right] \leq 2 C \alpha\left(2 t_{n}\right) \cdot(6)$
Thus, by adding inequalities $\left(6_{k}\right),\left(6_{k+1}\right), \ldots,\left(6_{k+m-1}\right)$ for $m$ such that $(k+m+$ 1) $t_{n}<b-a$ we obtain

$$
\begin{align*}
& {\left[f\left(a+k t_{n}\right)-f\left(a+(k-1) t_{n}\right)\right]-\left[f\left(a+(k+m+1) t_{n}\right)-f\left(a+(k+m) t_{n}\right)\right]} \\
& \leq 2 C(m-1) \alpha\left(2 t_{n}\right) . \tag{7}
\end{align*}
$$

By our assumptions the function $f(\cdot)$ is absolutely continuous. Thus it is differentiable almost everywhere. Let $\tau_{1}$ and $\tau_{2}$ be two arbitrary points in which the function $f(\cdot)$ is differentiable. Let $a<\tau_{1}<\tau_{2}<b$. Let $k_{n}$ and $m_{n}$ be two sequences chosen in such a way that $k_{n} t_{n}$ tends to $\tau_{1}$ and $\left(k_{n}+m_{n}\right) t_{n}$ tends to $\hat{t}$.

Dividing both sides of (7) by $t_{n}$ and recalling that $m_{n}<\frac{(b-a)}{t_{n}}$ yields

$$
\begin{align*}
& \frac{f\left(a+k t_{n}\right)-f\left(a+(k-1) t_{n}\right)}{t_{n}}-\frac{f\left(a+(k+m+1) t_{n}\right)-f\left(a+(k+m) t_{n}\right)}{t_{n}} \\
& \leq 2 C(b-a) \frac{\alpha\left(2 t_{n}\right)}{t_{n}{ }^{2}} \tag{8}
\end{align*}
$$

Taking (5) into account and passing to the limit as $n \rightarrow \infty$ we get

$$
f^{\prime}\left(\tau_{1}\right) \leq f^{\prime}\left(\tau_{2}\right)
$$

which shows that the function $f(\cdot)$ is convex.
It is not clear whether the assumption that for each straight line $L$ the function $f(\cdot)$ restricted to the intersection $L \cap \Omega,\left.f\right|_{L \cap \Omega}$ is absolutely continuous is essential.

Proposition 1 can be reversed in the following way

## Proposition 2 If

$$
\begin{equation*}
\liminf _{t \rightarrow 0+0} \frac{\alpha(t)}{t^{2}}>0 \tag{9}
\end{equation*}
$$

then there is an $\alpha(\cdot)$-paraconvex function which is not convex.
Proof. Suppose that $X=\mathbb{R}$. By (9) there are $C, r>0$ such that

$$
\frac{\alpha(t)}{t^{2}}>C
$$

for $0<t \leq r$. We put

$$
f(x)=\left\{\begin{array}{l}
-C x^{2} \text { for }|x| \leq r \\
-C r^{2} \text { for }|x|>r
\end{array}\right.
$$

It is easy to see that $f(\cdot)$ is an $\alpha(\cdot)$-paraconvex function with the constant $C$.
This finishes the proof for the case of $X=\mathbb{R}$. In the general case we simply extend the function $f(\cdot)$ from one-dimensional subspace on the whole space using the fact that any normed space can be decomposed into a direct sum of a one-dimensional subspace and a subspace of codimension 1.

The function constructed in the Proposition 2 is also strongly $\alpha(\cdot)$-paraconvex. Under an additional assumption we can construct a function, which is $\alpha(\cdot)$ paraconvex and which is not strongly $\alpha(\cdot)$-paraconvex.

Proposition 3 If (9) holds and

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \frac{\alpha(t)}{t}=0 \tag{10}
\end{equation*}
$$

then there is a function $f(\cdot): X \rightarrow \mathbb{R}$ such that $f(\cdot)$ is $\alpha(\cdot)$-paraconvex and it is not strongly $\alpha(\cdot)$-paraconvex.

Proof. At the beginning we shall prove the Proposition 3 for the case of $X=\mathbb{R}$. By (9) there is $C>0$ such that

$$
\begin{equation*}
\frac{\alpha(t)}{t^{2}}>C \tag{11}
\end{equation*}
$$

for $0<t \leq 1$.
We put

$$
\begin{equation*}
f(x)=\max _{-\infty<n<+\infty}\left(1-(x-(2 n+1))^{2}\right) \tag{12}
\end{equation*}
$$

The function $f$ is non-negative and not greater than $1,0 \leq f(x) \leq 1$. Moreover, $f(2 n)=0, n=0, \pm 1, \pm 2, \ldots$. It is $\alpha(\cdot)$-paraconvex with the constant $\frac{1}{C}$. Indeed, if $|x-y| \geq 1$, then by (11) and the fact that $\alpha(\cdot)$ is nondecreasing $\alpha(|x-y|)>C$. Thus
$f(t x+(1-t) y) \leq 1 \leq \frac{1}{C} \alpha(|x-y|) \leq t f(x)+(1-t) f(y)+\frac{1}{C} \alpha(|x-y|)$.
If $|x-y| \leq 1$, then on the interval $[\min (x, y), \max (x, y)]$ the function $f(\cdot)$ is a difference of a convex function and the quadratic function $x^{2}$. Thus it is $t^{2}$-paraconvex with constant 1 . Therefore by (11) it is $\alpha(\cdot)$-paraconvex with the constant $\frac{1}{C}$.

By (10) there is a sequence $\left\{t_{n}\right\}$ tending to infinity such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\alpha\left(t_{n}\right)}{t_{n}}=0 \tag{14}
\end{equation*}
$$

Now we consider our function on the interval $\left[0, t_{n}\right]$. Let $t$ be an arbitrary positive number. Let $\lambda_{n}=\frac{t}{t_{n}}$. Suppose that the function $f(\cdot)$ considered above is strongly $\alpha(\cdot)$-paraconvex with a constant $C$. It means that

$$
\begin{aligned}
& f(t)=f\left(\lambda_{n} t_{n}+\left(1-\lambda_{n}\right) 0\right) \leq \lambda_{n} f\left(t_{n}\right)+\left(1-\lambda_{n}\right) f(0)+\lambda_{n} C \alpha\left(t_{n}\right) \\
& \leq \lambda_{n}+\lambda_{n} C \alpha\left(t_{n}\right)=\frac{t}{t_{n}}+C \frac{\alpha\left(t_{n}\right)}{t_{n}} \rightarrow 0
\end{aligned}
$$

by (14). Since $f(t)$ is non-negative, we get that $f(t)=0$, a contradiction.
This finishes the proof for the case of $X=\mathbb{R}$. In the general case we simply extend the function $f(\cdot)$ from the one-dimensional subspace on the whole space using the fact that any normed space can be decomposed into a direct sum of a one-dimensional subspace and a subspace of codimension 1.

Proposition 3 can be reversed under an additional assumption in the following way.

Proposition 4 Suppose that

$$
\begin{equation*}
\int_{1}^{+\infty} \alpha\left(\frac{1}{t}\right) d t<+\infty \tag{15}
\end{equation*}
$$

If

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \frac{\alpha(t)}{t}>0 \tag{16}
\end{equation*}
$$

then each $\alpha(\cdot)$-paraconvex function $f(\cdot): X \rightarrow \mathbb{R}$ is also strongly $\alpha(\cdot)$-paraconvex.
The proof is based on the following lemma:
Lemma 1

$$
\int_{1}^{+\infty} \alpha\left(\frac{1}{t}\right) d t<+\infty
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{+\infty} 2^{n} \alpha\left(\frac{1}{2^{n}}\right)<+\infty \tag{17}
\end{equation*}
$$

Proof. Indeed, since $\alpha(\cdot)$ is non-decreasing we have

$$
\begin{equation*}
\frac{1}{2} \sum_{n=1}^{+\infty} 2^{n} \alpha\left(\frac{1}{2^{n}}\right)=\sum_{n=1}^{+\infty} 2^{n-1} \alpha\left(\frac{1}{2^{n}}\right) \leq \int_{1}^{+\infty} \alpha\left(\frac{1}{t}\right) d t \leq \sum_{n=0}^{+\infty} 2^{n} \alpha\left(\frac{1}{2^{n}}\right) \tag{18}
\end{equation*}
$$

Proof of Proposition 4. By (16) there exists $K>0$ such that

$$
\frac{\alpha(t)}{t}>K
$$

for $t>1$.
Let $0<\lambda<1$. Suppose that $\lambda\|x-y\|>1$. This implies that $\|x-y\|>1$. Since $f(\cdot)$ is $\alpha(\cdot)$-paraconvex there is a $C>0$ such that

$$
\begin{align*}
& f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)+C \alpha(\|x-y\|) \leq \\
& \lambda f(x)+(1-\lambda) f(y)+C \alpha(1) \\
& \leq \lambda f(x)+(1-\lambda) f(y)+C \alpha(1) \frac{1}{K} \frac{\alpha(\|x-y\|)}{\|x-y\|} \leq \\
& \lambda f(x)+(1-\lambda) f(y)+\alpha(1) \frac{C}{K} \lambda \alpha(\|x-y\|) \tag{19}
\end{align*}
$$

Suppose that $\lambda\|x-y\| \leq 1$. Let $x \neq y$ and let $F_{x, y}(t)=f\left(x+t \frac{y-x}{\|x-y\|}\right)$, $0 \leq t \leq 1$. Of course $F_{x, y}(0)=f(x)$ and $F_{x, y}(\|x-y\|)=f(y)$. Observe that the function $f(\cdot)$ is $\alpha(\cdot)$-paraconvex (strongly $\alpha(\cdot)$-paraconvex) if and only if $F_{x, y}(t)$ are $\alpha(\cdot)$-paraconvex (strongly $\alpha(\cdot)$-paraconvex) for all $x, y$.

Since $F_{x, y}(\cdot)$ is a function of a real variable it is enough to restrict ourselves to the case when $X=\mathbb{R}$.

We shall start our proof with the case of $x=0$ and $y=1$. Let $g(t)$ be an arbitrary $\alpha(\cdot)$-paraconvex function defined on $\mathbb{R}$. Let $\hat{g}(t)=g(t)-g(0)-$ $t[g(1)-g(0)]$. It is easy to see that $\hat{g}(0)=\hat{g}(1)=0$ and that $g(t)$ is $\alpha(\cdot)$ paraconvex (strongly $\alpha(\cdot)$-paraconvex) with a constant $\hat{C}$ if and only if $\hat{g}(t)$ is $\alpha(\cdot)$-paraconvex (resp. strongly $\alpha(\cdot)$-paraconvex) with the constant $\hat{C}$.

Recall that we have assumed that (15) (hence (17)) holds. Now we shall show by induction that

$$
\begin{equation*}
\hat{g}\left(\frac{1}{2^{n}}\right) \leq \hat{C} \sum_{i=1}^{n} 2^{i-n} \alpha\left(\frac{1}{2^{i-1}}\right) \tag{20}
\end{equation*}
$$

For $n=1$ it trivially follows from the fact that $\hat{g}(t)$ is $\alpha(\cdot)$-paraconvex. Suppose that (20) is true for certain $n$. Then by the fact that $\hat{g}(t)$ is $\alpha(\cdot)$ paraconvex we have

$$
\hat{g}\left(\frac{1}{2^{n+1}}\right) \leq \frac{1}{2}\left(\hat{g}(0)+\hat{g}\left(\frac{1}{2^{n}}\right)\right)+\hat{C} \alpha\left(\frac{1}{2^{n}}\right) \leq \hat{C} \alpha\left(\frac{1}{2^{n}}\right)+\hat{C} \sum_{i=1}^{n} 2^{i-n-1} \alpha\left(\frac{1}{2^{i-1}}\right)
$$

$$
\begin{equation*}
=\hat{C} \sum_{i=1}^{n+1} 2^{i-(n+1)} \alpha\left(\frac{1}{2^{i-1}}\right) . \tag{21}
\end{equation*}
$$

Now let $\lambda=\frac{1}{2^{n}}$. By (20)

$$
\begin{equation*}
\frac{\hat{g}(\lambda)}{\lambda} \leq \hat{C} \sum_{i=1}^{n} 2^{i} \alpha\left(\frac{1}{2^{i}}\right) \leq \hat{C} \sum_{i=1}^{\infty} 2^{i} \alpha\left(\frac{1}{2^{i}}\right)<\infty . \tag{22}
\end{equation*}
$$

Let $\lambda \leq \frac{1}{2}$. Let $\frac{1}{2^{n}} \leq \lambda<\frac{1}{2^{n-1}}, n=2,3, \ldots$. Since $\hat{g}(t)$ is $\alpha(\cdot)$-paraconvex we have
$\hat{g}(\lambda) \leq \max \left[\hat{g}\left(\frac{1}{2^{n}}\right), \hat{g}\left(\frac{1}{2^{n-1}}\right)\right]+\hat{C} \alpha\left(\frac{1}{2^{n}}\right) \leq \frac{\hat{C}}{2^{n-1}} \sum_{i=1}^{\infty} 2^{i} \alpha\left(\frac{1}{2^{i}}\right)+\hat{C} \alpha\left(\frac{1}{2^{n}}\right)$.
Hence

$$
\begin{align*}
& \frac{\hat{g}(\lambda)}{\lambda} \leq 2^{n}\left(\frac{\hat{C}}{2^{n-1}} \sum_{i=1}^{\infty} 2^{i} \alpha\left(\frac{1}{2^{i}}\right)+\hat{C} \alpha\left(\frac{1}{2^{n}}\right)\right) \\
& \leq 3 \hat{C} \sum_{i=1}^{\infty} 2^{i} \alpha\left(\frac{1}{2^{i}}\right)<+\infty . \tag{24}
\end{align*}
$$

In a similar way we can show that for $\frac{1}{2} \leq \lambda \leq 1$

$$
\begin{equation*}
\frac{\hat{g}(\lambda)}{1-\lambda} \leq 3 \hat{C} \sum_{i=1}^{\infty} 2^{i} \alpha\left(\frac{1}{2^{i}}\right)<+\infty . \tag{25}
\end{equation*}
$$

It means that

$$
\begin{equation*}
\hat{g}(\lambda) \leq L \hat{C} \min [\lambda,(1-\lambda)], \tag{26}
\end{equation*}
$$

where

$$
L=3 \sum_{i=1}^{\infty} 2^{i} \alpha\left(\frac{1}{2^{i}}\right) .
$$

Thus we have proved sufficiency in the case of $x=0$ and $y=1$. Now let $x, y$ be arbitrary. Let $h(t)=\hat{g}(x+t(y-x))$. Observe that $\hat{g}(\lambda x+(1-\lambda) y)=h(\lambda)$, in particular $h(0)=\hat{g}(x)$ and $h(1)=\hat{g}(y)$.

Suppose that the function $\hat{g}(x)$ is $\alpha(\cdot)$-paraconvex with a constant $\hat{C}>0$

$$
\hat{g}(\lambda x+(1-\lambda) y) \leq \lambda \hat{g}(x)+(1-\lambda) \hat{g}(y)+\hat{C} \alpha(|x-y|) .
$$

Thus

$$
h(\lambda) \leq \lambda h(0)+(1-\lambda) h(1)+\hat{C} \alpha(|x-y|) .
$$

Applying (26) to $h(\lambda)$ we get

$$
h(\lambda) \leq \min [\lambda,(1-\lambda)] L \hat{C} \alpha(|x-y|) .
$$

Therefore

$$
\begin{equation*}
\hat{g}(\lambda x+(1-\lambda) y) \leq \min [\lambda,(1-\lambda)] L \hat{C} \alpha(|x-y|) . \tag{27}
\end{equation*}
$$

Now we shall apply (27) to $\hat{g}(t)=F_{x, y}(t)$ and recalling the definition of $F_{x, y}(t)$ in the case of $\lambda\|x-y\| \leq 1$ we get

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)+\min [\lambda,(1-\lambda)] L \hat{C} \alpha(\|x-y\|)(28)
$$

and finally combining (28) and (19) we obtain

$$
f(\lambda x+(1-\lambda) y) \leq \min [\lambda,(1-\lambda)] \max \left(\alpha(1) \frac{C}{K}, L \hat{C}\right) \alpha(\|x-y\|) .
$$

Corollary 1 (Jourani (1996)). Let $(X,\|\cdot\|)$ be a normed space. Let $1 \leq$ $\gamma \leq 2$. Then every $\gamma$-paraconvex (i.e. $t^{\gamma}$-paraconvex) function is simultaneously strongly $\gamma$-paraconvex if and only if $1<\gamma$.

Since $\alpha(\cdot)$ is a non-decreasing function, condition (15) implies

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\alpha(t)}{t}=0 . \tag{29}
\end{equation*}
$$

There are also non-decreasing functions $\alpha(\cdot)$ different from $t^{\gamma}, 1<\gamma$, such that (15) holds. Indeed let $1 \leq \gamma \leq 2$ and let

$$
\alpha(t)=\left\{\begin{array}{l}
\frac{t}{\mid \underline{s t \mid \gamma} \text { for } 0<t \leq \frac{1}{e},} \\
\frac{1}{e} \text { for } \frac{1}{e}<t .
\end{array}\right.
$$

It is easy to see that $\alpha(\cdot)$ is a nondecreasing function and that (11) holds for $1<\gamma \leq 2$ and does not hold for $\gamma=1$. Thus, we have

Corollary 2. Let $(X,\|\cdot\|)$ be a normed space. Let $1 \leq \gamma \leq 2$ and let

$$
\alpha(t)=\left\{\begin{array}{l}
\frac{t}{|\underline{k}| \gamma} \text { for } 0<t \leq \frac{1}{e}, \\
\frac{1}{e} \text { for } \frac{1}{e}<t,
\end{array}\right.
$$

Then every $\alpha(\cdot)$-paraconvex function is simultaneously strongly $\alpha(\cdot)$-paraconvex if and only if $1<\gamma$.

Repeating the consideration of Jourani (1996) we shall prove

Proposition 5 Let $(X,\|\cdot\|)$ be a normed space. Let a real-valued function $f$ defined on a convex set $\Omega \subset X$ be strongly $\alpha(\cdot)$-paraconvex with constant $C$. Suppose that it is locally bounded. Then it is locally Lipschitzian.

Proof. Let $x_{0} \in \Omega$ be arbitrary. Since $f$ is locally bounded, there are $r, a>0$ such that for any $z \in \Omega$ such that $\left\|z-x_{0}\right\|<r$ we have

$$
|f(z)|<a
$$

Let $x, u$ be two arbitrary elements of $\Omega$ such that $\left\|x-x_{0}\right\|<\frac{r}{2},\left\|u-x_{0}\right\|<\frac{r}{2}$. Let $\varepsilon$ be an arbitrary positive number, let $\beta=\varepsilon+\|x-u\|$ and let

$$
\begin{equation*}
z=u+\frac{r}{2 \beta}(u-x) . \tag{30}
\end{equation*}
$$

Observe that

$$
\left\|z-x_{0}\right\|<\left\|u-x_{0}\right\|+\frac{r}{2 \beta}\|u-x\|<\frac{r}{2}+\frac{r}{2} \frac{\|x-u\|}{\varepsilon+\|x-u\|}<r
$$

and so

$$
|f(z)|<a
$$

Let $\lambda=\frac{2 \beta}{r+2 \beta}$. Observe that $u=\lambda z+(1-\lambda) x$.
Since the function $f(\cdot)$ is strongly $\alpha(\cdot)$-paraconvex with constant $C$,

$$
\begin{equation*}
f(u)=f(\lambda z+(1-\lambda) x) \leq \lambda f(z)+(1-\lambda) f(x)+C \lambda \alpha(\|x-z\|) \tag{31}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f(u)-f(x) \leq \lambda(f(z)-f(x))+C \lambda \alpha(\|x-z\|) \tag{32}
\end{equation*}
$$

Since $\lambda\|z-x\|=\|u-x\|$ we get

$$
\begin{equation*}
f(u)-f(x) \leq \lambda(f(z)-f(x))+C \lambda \alpha\left(\frac{\|u-z\|}{\lambda}\right) . \tag{33}
\end{equation*}
$$

Recall that $0<\lambda<1$ and thus

$$
\begin{aligned}
& f(u)-f(x) \leq \lambda(f(z)-f(x))+C \lambda \alpha(\|x-z\|) \leq \lambda(2 a+C \alpha(2 r)) \\
& \leq \frac{2 \beta}{r}(2 a+C \alpha(2 r)) \leq L(\varepsilon+\|u-x\|)
\end{aligned}
$$

where $L=\frac{2}{r}(2 a+C \alpha(2 r))$.
Exchanging the role of $x$ and $u$ we get

$$
|f(u)-f(x)| \leq L(\varepsilon+\|u-x\|)
$$

The arbitrariness of $\varepsilon$ implies

$$
\begin{equation*}
|f(u)-f(x)| \leq L\|u-x\| . \tag{34}
\end{equation*}
$$

As every continuous function is locally bounded we get the following consequence:

Corollary 3 Let $(X,\|\cdot\|)$ be a normed space. Let a continuous real-valued function $f(\cdot)$ defined on a convex set $\Omega \subset X$ be strongly $\alpha(\cdot)$-paraconvex with constant $C$. Then it is locally Lipschitzian.

Proposition 6 Let $(X,\|\cdot\|)$ be a Banach space. Let a real-valued function $f(\cdot)$ defined on an open convex set $\Omega \subset X$ be strongly $\alpha(\cdot)$-paraconvex with a constant $C$. Then it is locally Lipschitzian.

Proof. Let $\Omega_{0}$ be a closed convex set with non-empty interior. Let $\Omega_{m}=$ $\left\{x \in \Omega_{0}:|f(x)| \leq m\right\}$. Using the category method we can show that one among those sets contains an open ball, $B\left(x_{0}, r\right) \subset \Omega_{m_{0}}$. Take an arbitrary point $x \in \Omega$. Since $\Omega$ is open there is $y \in \Omega$ and $t>0$ such that $x=(1-t) y+t x_{0}$. Let $z \in \Omega$ be such that $\|x-z\|<r t$. Then we can represent $z$ in the form $z=t u+(1-t) y$, where $u \in B\left(x_{0}, r\right) \subset \Omega_{m_{0}}$. Thus

$$
f(z) \leq t f(y)+(1-t) m_{0} \leq \max \left(f(y), m_{0}\right)
$$

i.e. the function $f(z)$ is majorized on $B(x, r t)$. Thus by Proposition 5 it is locally Lipschitzian.

As a consequence of Propositions 1 and 6 we obtain
Proposition 7 Let $f(\cdot)$ be a strongly $\alpha(\cdot)$-paraconvex function defined on a convex set $\Omega$ of a normed space $X$. If

$$
\begin{equation*}
\liminf _{t \rightarrow 0+0} \frac{\alpha(t)}{t^{2}}=0 \tag{35}
\end{equation*}
$$

then $f(\cdot)$ is convex.
Proof. Take an arbitrary straight line $L$ and let $\Omega_{L}=\Omega \cap L$. Now let $f_{L}(\cdot)$ denote the restriction of the function $f(\cdot)$ to the set $\Omega_{L}, f_{L}(\cdot)=\left.f\right|_{\Omega_{L}}(\cdot)$. By $\operatorname{Int}{ }_{a} \Omega_{L}$ we shall denote the relative interior (with respect to the line $L$ ) of the set $\Omega_{L}$. By Proposition 10 the function the function $f(\cdot)$ is locally Lipschitz on $\operatorname{Int} t_{a} \Omega_{L}$. Then, it is absolutely continuous on every closed interval $[a, b]$ contained in $\Omega_{L}$. By Proposition 1 it is convex on [a,b]. The arbitrariness of [a,b] implies that $f_{L}$ is convex on $\operatorname{Int}_{a} \Omega_{L}$. It finishes the proof in the case
of $\Omega_{L}=\operatorname{Int}_{a} \Omega_{L}$. Suppose that $c \in \Omega_{L}$ and $c \notin \operatorname{Int}_{a} \Omega_{L}$. Since $f_{L}$ is $\alpha(\cdot)-$ paraconvex, we trivially obtain that

$$
\lim _{\substack{x \rightarrow \sigma_{c} \\ x \in \Omega_{L}}} f(x) \leq f(c) .
$$

Therefore the function $f_{L}$ is convex on $\Omega_{L}$. The arbitrariness of $L$ implies that $f(\cdot)$ is convex.

## References

Jourani, A. (1996) Subdifferentiability and subdifferential monotonicity of $\gamma$-paraconvex functions. Control and Cybernetics, 25, 721-737.
Pallaschke, D., Rolewicz, S. (1997) Foundation of mathematical optimization. Mathematics and its Applications 388, Kluwer Academic Publishers, Dordrecht / Boston / London.
Rolewicz, S. (1979A) On paraconvex multifunctions. Oper.Res. Verf. (Methods of Oper. Res.) 31, 540-546.
Rolewicz, S. (1979B) On $\gamma$-paraconvex multifunctions. Math. Japonica 24, 293-300.

