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Abstract: Inconsistent information is one of main difficulties in
the explanation and recommendation tasks of decision analysis. We
distinguish two kinds of such information inconsistencies: the first is
related to indiscernibility of objects described by attributes defined
in nominal or ordinal scales, and the other follows from violation of
the dominance principle among attributes defined on preference or-
dered ordinal or cardinal scales, i.e. among criteria. In this paper we
discuss how these two kinds of inconsistencies are handled by a new
approach based on the rough sets theory. Combination of this the-
ory with inductive learning techniques leads to generation of decision
rules from rough approximations of decision classes. Particular at-
tention is paid to numerical attribute scales and preference-ordered
scales of criteria, and their influence on the syntax of induced deci-
sion rules.
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1. Introduction

Various approaches to scientific decision analysis intend to clarify those elements
of a decision situation which are not evident to the agents involved (decision
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makers, stake holders, experts) and which may influence their attitude towards
decision. In other words, the elements revealed by scientific decision analysis
either explain the situation, or recommend - or simply favor, a behavior that
will increase the consistency between the possibilities offered by the situation,
and the objectives and value systems of the agents (see Roy, 1985).

The main difficulty of the explanation and recommendation tasks is con-
nected with the usually inconsistent information about the decision situation.
One cannot expect to get any perfect explanation nor recommendation from
inconsistent data, even if very sophisticated methods are used. However, one
can expect to learn what are the certain conclusions and the possible conclusions
that can be drawn from available information.

In this paper, we consider the case where the available input information
is a record of experience, a list of observations, or a set of decision examples.
Such information is often presented in the form of a data table where each row
corresponds to a single case, observation or decision example, called object, and
columns correspond to attributes characterizing objects. Drawing conclusions
on the basis of this information naturally leads to representation in a form
of decision rules. The decision rules are logical expressions of the form: if
condition-part then decision, where condition-part means a conjunction of ele-
mentary conditions being some tests on values of attributes, and decision means
disjunction of possible decision classes.

The rules are constructed using the inductive learning principle (Mitchell,
1997). Although other representations of knowledge are available, like (dis-
criminant) functions, binary relations, or decision trees (sce e.g. Weiss and
Kulikowski, 1991, Michalski et al., 1998, or Mitchell, 1997), it is claimed that
decision rules are more natural and readable for the users. Moreover, the rules
“speak” the language of examples given in the input information, they generalize
them by reducing all redundant pieces of information and they are acknowledged
by real facts from the input information.

There are two general views on inductive learning: descriptive and prescrip-
tive. The first view, also called explanatory, is connected with discovering useful
dependencies in the data that could help in better understanding of circum-
stances in which decisions were made. The second aims at improving decision
making for future cases. Although induction of rules from examples is a typical
approach of artificial intelligence (in particular machine learning), it is concor-
dant with the principle of posterior rationality of March (1988) and with the
aggregation-disaggregation logic of Jacquet-Lagreze (1982). The rules explain
the preferential attitude of the agents and enable an understanding of the rea-
sons of his/her preferences. As pointed out by Langley and Simon (1998) the
recognition of the rules by the agent justifies their use for decision support. So,
the preference model in the form of rules derived from examples fulfils both the
explanation and recommendation functions with respect to decision analysis.

The inconsistencies inherent to input information cannot be considered as
noise or error. In decision context, they reflect the impression of the model used
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for description, the hesitations of agents, and the unstable character of agent’s
preferences. Thus, the inconsistencies should not be neglected nor amalgamated
with certain information, but rather separated in order to get exact (certain)
and approximate (possible) conclusions (rules).

The rough sets theory (RST) proposed by Z.Pawlak (1982,1991) is particu-
larly useful in dealing with inconsistency of input information. It clearly sepa-
rates certain and possible information by building lower and upper approxima-
tions of each decision class (category). The difference between upper and lower
approximation constitutes a boundary that groups doubtful information. As a
consequence, decision rules are induced either from lower approximations, upper
approximations, or from boundaries of decision classes, and thus are categorized
into exact and approximate ones.

Up to now, the rough set approach to decision analysis was focused on mul-
tiattribute classification, where objects were described by attributes defined on
nominal or ordinal scales. There are several successful case studies of this ap-
proach (see e.g. Pawlak, 1991, 1995, Slowiriski, 1996, or Komorowski et al.,
1999). The difficulties arise, however, when attributes are defined on numerical
scales. In this case, direct analysis of such data may lead to inducing rules of
poor quality, so discretization techniques are often applied in a pre-processing
phase (Chmielewski and Grzymala, 1995). Discretization converts numerical
scales into ordinal scales represented by ordered sub-intervals. On the other
hand new approaches have been proposed recently by Stowinski and Vander-
pooten (1995), Krawiec et al. (1998), Skowron and Stepaniuk (1996), Greco
et al. (1999), Grzymala and Stefanowski (1999), to directly handle numerical
data. )

The rough set approach can handle inconsistency manifested by indiscerni-
bility of at least two objects having the same description by attributes but
assigned to different decision classes.

The original rough set approach is not able, however, to discover inconsis-
tencies coming from consideration of criteria, i.e. attributes with preference-
ordered scales. The scales of criteria may be cardinal or ordinal (Shoemaker,
1982), depending whether the strength of preference is meaningful for the scale
or not. The difference between scales of attributes and scales of criteria exists in
consideration of ordered preferences in the latter case. Product quality, market
share, debt ratio are examples of criteria. Regular attributes, e.g. symptoms,
colors, textural features, traditionally considered in the rough set methodology,
are different from criteria because their domains are not preference-ordered (see,
e.g. Greco et al., 1996, 1999a). Therefore, the classical rough sets theory cannot
be applied to multicriteria sorting problems, i.e. problems of assigning a set of
objects described by a set of criteria to one of pre-defined and ordered classes.

Consider, for example, two firms, A and B, evaluated for bankruptey risk by
a set of criteria including the "debt ratio” (total debt/total assets). If firm A
has a low value while firm B has a large value of the debt ratio, and evaluations
of these firms on other attributes are equal, then, from the bankruptey risk
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point of view, firm A dominates over firm B. Suppose, however, that firm A has
been assigned to a class of higher risk than firm B. This is obviously inconsistent
with the dominance principle. Within the original RST, the two firms will be
considered as just discernible and no inconsistency will be stated.

For this reason, Greco, Matarazzo and Stowiiski (1996) have proposed an
extension of the RST that is able to deal with this kind of inconsistency typical to
exemplary decisions (in input information) in Multi Criteria Decision Analysis
(MCDA) problems. This innovation is mainly based on substitution of the
indiscernibility relation by a dominance relation in the rough approximation
of decision classes. It is also possible to infer from exemplary decisions the
preference model in terms of the generalized decision rules.

The aim of this paper is to survey the induction of decision rules from rough
approximations of decision classes while handling two kinds of inconsistencies in
the input information. The first kind corresponds to the typical case of multi-
attribute classification, involving indiscernibility relation. Particular attention
will be paid to presentation of new approaches for handling numerical attributes.
The second kind corresponds to multicriteria sorting problems involving dom-
inance relation. We will briefly review a new generalization of the rough sets
theory to handle this problem. Regarding the survey character of this paper,
we will introduce an illustrative example for comparing approaches discussed.

2. Decision rules for multiattribute classification problems
2.1. The general idea of the rough sets theory

Information about objects is provided in the form of a data table. Rows of the
table refer to objects (actions), whereas columns refer to different attributes
considered. Each entry of this table contains the value of an attribute of a given
object. Formally, the data table (also called information system or information
table) is defined as a pair § = (U, A) where U is a finite set of objects and A
is a finite set of attributes. With every attribute a € A, a set of its values V,
is associated. Each attribute a determines an information function f,: U — V
such that for any a € A, and z € U, f,(z) € V,.

In practice, we are mostly interested in analyzing a special case of data
table called decision table. It is a data table (U, AU D), where D is a set
of decision attributes. We consider a simple case where D is a singleton {d};
moreover in any case D can be always transformed to {d}. The elements of A
are called condition attributes. Let us assume that the cardinality of the set Vy
of values of the decision attribute d is equal a finite number k. The decision
attribute determines the partition of the set of all objects U into £ disjoint
classes X1, Xo,..., X}, called decision classes.

Solving multiatiribute classification problems usually involves looking for
dependencies between attributes, in particular between the condition attributes
and the decision. This leads to discovering decision rules in the input table
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that could be used for two aims: either to ewxplain past decisions made for
learning examples or to make recommendations for future cases, i.e. supporting
assignment of a new object to one of existing decision classes.

The rough sets theory, Pawlak (1982, 1991), is founded on the assumption
that having some information about considered objects one can establish rela-
tions between these objects. The basic observation is that objects characterized
by the same description are indiscernible (indistinguishable) due to limited in-
formation about them. The indiscernibility relation generated in this way is the
mathematical basis of the original Pawlak’s concept of the RST.

Formally, the indiscernibility relation is associated with every non-empty
subset of attributes P € A and Va,y € U is defined as

:E'Ipy had fa(a“) = fa(y) Va € P

The indiscernibility relation defined in this way is an equivalence relation
(reflexive, symmetric and transitive) and generates the partition of objects from
U. The family of all equivalence classes of relation Ip is denoted by U/Ip. These
classes are called P-elementary sets. An elementary equivalence class (i.e. a
single block of the partition U/Ip) containing element x is denoted Ip(z).

The indiscernibility relation is not the only possible relation between ob-
jects. For instance, quite often due to imprecise description of objects by at-
tributes, small differences between objects’ description are not considered im-
portant for their discrimination. This situation may be formally modeled by
similarity or tolerance relations (see e.g. Polkowski and Skowron, 1995, Skowron,
1995, Stepaniuk, 1996, Krawiec et al., 1998, Greco et al., 1998b, Marcus, 1994,
Stowinski and Vanderpooten, 1998).

As the similarity relations R do not generate partitions on U, similarity
classes R(z) are defined for each object 2z € U, instead of equivalence classes.
Formally, the similarity class of 2 consists of objects y similar to x:

R(z) ={y €U : yRz}

This relation has an interesting property, i.e. it may be only reflexive, relaxing
symmetry and transitivity (see discussion in Stowiniski and Vanderpooten, 1995).
Although at a first glance a non symmetric similarity relation may appear odd
we have several intuitive examples where such situation may occur. We always
say that a child is similar to a parent or that a copy of a painting is similar to
the original, without claiming the inverse. Therefore, symmetry is not imposed
and it makes sense to consider the inverse relation

R Yz)={yeU : zRy}

The R~ (z) is the class of objects y to which = is similar.

Then, considering the concept of ambiguous and non-ambiguous objects with
respect to available information, we come naturally to defining rough approzi-
mation of a subset of objects X C U. Precisely, the rough approximation of X
is characterized by its lower and upper approzimations defined respectively as:
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R(X)={zeU:R'(z) C X}
R(X)= | R

z€X

The set Bng(X) = R(X) — R(X) is called the R-boundary of X. The lower
approximation RX is a maximal set including objects that can be certainly
classified as elements of X while the upper approximation RX is a minimal set
of objects which can be possibly classified in X, taking into account information
available. The set Bng(X) reflects information ambiguity in describing the set
X, i.e. it contains inconsistent (ambiguous) objects.

In the case where the similarity relation boils down to the indiscernibility
relation defined on a set of attributes P, R~1(z) = R(z) = Ip(z) for any z € U.
Thus, lower and upper approzimations are defined as:

P(X) = {ae U:Ip(z) € X}
P(X) = | Ip(z)

z€X

The definition of approximations of a subset X € U can be extended to
a classification, i.e. a partition Y of U. Subsets Y;, 2 = 1,...,n, are disjunc-
tive classes of Y. By P-lower (P-upper) approximation of ) we mean sets
P(Y) = {P(M1), E(Yz), ..., P(Yn)} and P(Y) = {P(Y1), P(Y2),...P(Yn)} respec-
tively. The coefficient

iz |P(Y)|
Lef

is called quality of approximation of classification ) by set of attributes P, or, in
short, quality of classification. It expresses the ratio of all P-correctly classified
objects to all objects in the system.

Another issue of great practical importance is that of ”superfluous” data in
an information table. Superfluous data can be eliminated, in fact, without de-
teriorating the information contained in the original table. For this elimination
the concept of the so called reduct is of crucial importance.

A reduct of P is defined with respect to an approximation of a partition
Y of U. It is then called Y-reduct of P (notation Redy(P)) and specifies a
minimal subset P’ of P which keeps the quality of classification unchanged, i.e.
vp(Y) = vp(Y). In other words, the attributes that do not belong to Y-reduct
of P are superfluous with respect to the classification ) of objects from U.
More than one Y-reduct (or reduct) of P may exist in an information table.
The set containing all the indispensable attributes of P is known as the Y-core.
Obviously, since the Y-core is the intersection of all the Y-reducts of P, it is

vp(Y) =
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included in every Y-reduct of P. It is the most important subset of attributes,
because none of its elements can be removed without deteriorating the quality
of classification.

2.2. Decision rules

Let us consider a decision table. The decision attribute d induces a partition
of U deduced from the indiscernibility relation. There is a tendency to exam-
ine functional dependency between the partition induced by d and partitions
induced by condition attributes from C. A decision table may also be seen
as a set of learning examples which enable generation of decision rules. If the
decision table is consistent, rules are induced from decision classes. Otherwise
decision rules are generated from approximations of decision classes.

This special way of treating inconsistencies in the input data is the main
point where the concept of the rough sets theory is used in the rule induction
phase. The step of induction follows the inductive principle which is a com-
mon aspect with machine learning algorithms. As a consequence of using the
approximations, induced decision rules are categorized into certain (eract) and
approzimate (possible) ones, depending on the used lower and upper approxi-
mations (or boundaries), respectively.

Decision rules are represented in the following form:

Ac#v) — V(d#w)

where ¢ € C is condition attribute, v is a value of attribute ¢, and w is a
value of decision d, # means one of the operators =, <,>,<,>. €. SITM. If
two consecutive elementary conditions (¢ > v1) and (¢ < vp), where (v; < v3)
concern the same condition attribute ¢ then we get the following new condition
(¢ € [v1,v2]). SIM is a ’similar to’ operator resulting from similarity measures
used to define the relation of similarity.

We will call s = A(c#tv) and t = V(d#w) condition and decision part of
a rule, respectively. If the decision part contains one element (d = w) only,
then the rule is exact, otherwise it is approximate. The exact decision rules,
indicating assignment to class X,., are induced under assumption that objects
belonging to the lower approximation of decision class X,. are positive, while
all the others are negative. The approximate rules, with decision part t = (d =
w) V (d = v), are induced under assumption that objects belonging to common
part of subboundaries of classes X, and X, only are positive while all the others
are negative.

It is said that an object z € A supports a rule s — t (or a rule covers
object z) if its description satisfies both expressions s and t. Let [s] denote set
of such objects. A decision rule s — t is exact if [s] is a subset of the lower
approximation of the decision class indicated by t. The decision rule should
have a non-redundant condition part, i.e. no other rule can be constructed from
a proper subset of elementary conditions occurring in the given rule.
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Induction of decision rules from decision tables is a complex task and a
number of various algorithms have been already proposed (for some reviews
see e.g. Grzymala, 1992, Skowron, 1995, Bazan, 1998, Grzymala et al., 1996,
Stefanowski, 1998, Komorowski et al., 1999, Stefanowski and Vanderpooten,
2000). In fact, there is no unique "rough set approach” to rule induction as
elements of rough sets can be used on different stages of the process of induction
and data processing. Nowadays, the most often used approaches and software
systems are:

e System LERS (Learning from Examples based on Rough Sets) - Grzymala
(1992), which itself has four different options of rule induction; the most
popular of them seems to be LEM2 algorithm.

e Systems based on a discernibility matrix and boolean reasoning techniques
(Skowron, 1993, 1995). They were extended by several additional strate-
gies connected with, e.g., approximation of reducts, looking for dynamic
reducts, boundary region thinning, data filtration and tolerance relation,
see Bazan (1998), Skowron (1995), Skowron and Polkowski (1997), Nguyen
(1998a), Komorowski et al. (1999). Their implementations form a com-
putational kernel of the system Rosetta (Komorowski et al., 1997).

e Systems RoughDAS, Profit and ROSE (Slowiriski and Stefanowski, 1998,
Predki and Wilk, 1999) which offer several rule induction options that are
further described in this paper.

e Systems Datalogic and KDD-R that use the probabilistic extension of the
original rough set model called variable precision rough sets model and are
oriented towards data mining applications, Ziarko (1993, 1995).

Other learning algorithms inspired by data mining techniques are also known
(see e.g. Kryszkiewicz, 1998a, Lin, 1996, Stefanowski and Vanderpooten, 1994,
2000). One should also remember about interesting proposals of the probabilistic
rough classifier developed by Lenarcik and Piasta (1997).

If we notice that these algorithms aim at inducing the rule descriptions of
decision classes, we can distinguish three main groups of existing approaches:

(1) algorithms inducing the minimum set of rules,
(2) algorithms inducing the exhaustive set of rules,
(3) algorithms inducing the satisfactory set of rules.

The first category of algorithms is focused on covering input objects using
the minimum number of necessary rules while the second group tries to generate
all possible decision rules in the simplest form. The third category of algorithms
gives as a result the set of decision rules which satisfy user’s requirements given
a priori. The user may prefer to get strong decision rules (i.e. rules supported by
a relatively large number of input objects), having good discriminatory ability,
with emphasis on the syntax of the condition part (e.g. using some specific
attributes or elementary conditions). The differences between these approaches
will be further illustrated on a simple example.

It is worth noticing that the problem of finding a minimum set of rules
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(i.e. category 1) covering all examples can be seen as the problem of mini-
mal cover which is NP-hard (see Pawlak, 1991, Stefanowski and Vanderpooten,
1994). Therefore, heuristic approximation algorithms are usually applied. It
was shown, moreover, that category (2) of algorithms refers to the problem of
searching for reducts of minimal length, also NP-hard (see Skowron and Rauszer,
1992). Finally, for category (3) the computation cost although still high, can be
reduced in practice if one uses strong requirements for the rule support/strength
and some pruning techniques that reject early the unnecessary candidates for
rules (see discussions in Kryszkiewicz, 1998b, Stefanowski and Vanderpooten,
1994, 2000).

Two general perspectives of rule induction are considered: either explanation
of existing decision situation using the rules or creation of classification systems.
The first aim is also connected with the knowledge discovery perspective, Fayyad
et al. (1996).

It must be noticed, however, that the two perspectives of rule induction
are perceived as different. One of the basic distinctions consists in different
evaluation criteria. In classification-oriented induction, rules are parts of a
classification system; hence, evaluation refers to a complete set of rules. The
evaluation criterion is usually unique and defined as classification (predictive)
accuracy (see Weiss and Kulikowski, 1991). In explanation or discovery-oriented
induction, each rule is evaluated individually and independently as a possible
representation of an interesting pattern. The evaluation criteria are multiple
and considering them together is not easy. Moreover, the definition of criteria
depends on the application problem and the user’s requirements. More details
on this topic are given in Stefanowski (1998a), Stefanowski and Vanderpooten
(2000).

2.3. Handling numerical attributes

The original rough set approach and rule induction techniques seem to be insuf-
ficient when applied directly to data sets containing numerical attributes, i.e.
attributes with real number or integer domains. Rules induced directly from
numerical attributes are of poor quality (very short, weak, and numerous).

The typical approach to solve this problem is to use discretization tech-
nigues which convert numerical attributes into discrete, ordinal ones. During
discretization a number of cut-points are determined, dividing the attribute do-
main into consecutive subintervals, Many discretization methods (see reviews
in Chmielewski and Grzymala, 1995, Dougherty et al., 1995, Nguyen, 1998a.b,
Susmaga, 1997) can be applied as a preprocessing step before rule induction. In
general, no one discretization method is optimal for all situations.

Additional aspect of employing these methods is that they determine dis-
cretization independently from the RST analysis. It is possible that obtained
discretized subintervals may be more or less arbitrary and not lead to accept-
able results. Therefore, some newly proposed extensions to the RST enable to
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analyse directly numerical attributes without any pre-discretization.

The generalization of the rough sets theory based on similarity relation,
Slowiriski and Vanderpooten (1995, 1999) is one of the solution. It is particularly
useful if numerical attributes are affected by imprecise measurement, random
fluctuation of some parameters, etc. In Krawiec et al.(1998) authors presented
a quite efficient automatic procedure for inferring similarity relation from data,
and then an algorithm for generating certain and robust decision rules.

Another group of extended approaches offers a new version of rough set based
rule induction algorithms which do not require preliminary discretization of nu-
merical attributes. One of these approaches, called MODLEM (Stefanowski,
1998¢, Grzymala and Stefanowski, 1999), is a modified version of the LEM2
algorithm. The LEM2 (Grzymala, 1992) is a popular RST based rule induction
algorithm for getting the minimum set of decision rules. Let us briefly comment
the idea of modifications. Numerical attributes are handled by the learning
algorithm MODLEM at the moment when elementary conditions of a rule are
created. In the original version of LEM2 elementary conditions are represented
as pairs (¢ = v) where ¢ is an attribute and v is its value. In MODLEM con-
ditions are represented in the form of either (¢ < v), (¢ = v) or (¢ = [v1,v2))
(resulting from an intersection of two conditions (¢ < vg), (¢ = 1), v < vg,
for the same attribute). The candidates for the cutpoint v are locally scanned
for the range of each numerical attribute ¢ taking into account unique values
with their decision class assignment. The best cutpoint among all tested ones is
chosen to be further compared against other attributes. The best condition for
all compared attributes is chosen for adding to the condition part of the rule. As
the evaluation measure indicating the best condition, typical entropy measures
or Laplace accuracy (Clark and Boswell, 1991) are used. An experimental study
performed in Grzymala and Stefanowski (1999) showed that the MODLEM algo-
rithm used as a classifier performs better than the original version of LEM2 and
produces classification accuracy comparable with such machine learning tech-
niques as C4.5. Similar motivations were the basis of modifications introduced
in the Explore algorithm which induces satisfactory set of rules (Stefanowski,
1998b). Some of the above techniques for handling numerical attributes are
available within the newly offered ROSE (Rough Set data Explorer) system
(Predki et al., 1999).

2.4. Illustrative example

Let us illustrate these concepts with a small example. We assume that 15
objects, considered as examples of classification, are deseribed by 3 attributes
ai, as, az. Objects are classified into three decision classes according to the
value of a decision attribute d. The data table analyzed is presented in Table 1.

First, let us analyze the original data table (objects described by original
numerical values of attributes) using the 'classical’ rough set approach based
on the indiscernibility relation. All objects are discernible and there are no
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No. 5] a2 asz d
1 8.0 14 9.5 3
2 4.0 7 3.0 2
3 2.5 3 5.0 2
4 1.5 5 2.0 1
5 7.5 15 8.5 3
6 0.5 1 2.5 1
7 6.5 6.5 4.5 1
8 5.0 8 7.0 2
49 7.5 9 10.5 3
10 3.0 6 6.5 2
11 5.5 10 8.5 2
12 2.5 4 6.0 1
13 6.5 13 8.0 2
14 3.5 10 5.5 1
15 6.0 11 7.5 3

Table 1. Data table

inconsistencies. This means that lower approximations are equal upper approx-
imations. As a result of applying LEM2 algorithm to this data table we can
induce 14 exact rules - presented below:

rule 1.
rule 2.
rule 3.
rule 4.
rule 5.
rule 6.
rule 7.
rule 8.
rule 9.

rule 10.
rule 11.
rule 12.
rule 13.
rule 14.

(a1=1.5)
(a1=0.50)
(a1:3.5)
(a2;6.5)
(ay=4.0)
(al :4.0)
(a1 :50)

v+ b e bdedd

|
-

—

(d=1)
(d=1)
(d=1)
(d=1)
(d=1)
(d=2)
(d=2)
(d=2)
(d=2)
(d=2)
(d=2)
(d=3)
(d=3)
(d=3)

{4}
{6}
{14}
{7}
{12}
{2}
{8}
{10}
{11}
{3}
{13}
{5,9}
{1}
{15}

The rules are presented in the following form: first the syntax of the rules, then
the identifiers of objects covered by the rule.

One can easily notice that the quality of results obtained from non-discretized
data is very poor. Induced decision rules are numerous, very specific and nearly
all of them are supported by one learning example. Therefore, this input data
should either be discretized before the rough set analysis or one of the approaches
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No. ap ao as d
1 5 4 5 3
2 3 2 2 2
3 2 il 2 2
4 1 1 1 1
5 5 4 4 3
6 1 1 1 1
7 4 2 2 1
8 3 2 4 2
9 5 3 5 3
10 2 2 4 2
11 3 3 4 2
12 ) 1 3 1
13 4 3 4 2
14 2 3 3 1
15 4 3 4 3

Table 2. Coded data table

specialized in direct handling of numerical data in rule induction applied.

For instance, let us consider the following proposal of discretization: for
the attribute a;, code 1 corresponds to < 2.25, code 2 corresponds to interval
(2.25,3.5], code 3 to (3.5,5.5], code 4 to (5.5,6.5] and code 5 corresponds to
> 6.5. The attribute as is discretized as: code 1 corresponds to < 5, code 2
corresponds to interval (5, 8], code 3 to (8, 13], code 4 to > 13. Finally, for the
attribute as code 1 corresponds to < 2.5, code 2 corresponds to interval (2.5, 5],
code 3 to (5, 6], code 4 to (6,8.5] and code 5 corresponds to > 8.5.

If we use this discretization we can transform Table 1 into Table 2. Then,
rough sets theory indicates two inconsistent examples, no. 13 and no. 15, having
the same description in values of attributes (@) = 4, a9 = 3, a3 = 4) and assigned
to different decision classes.

The elementary sets (for all attributes) are the following:
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IP(l) = {1}1
IP(Q) o {2}:
IP(3} = {3})
Ip(4) = Ip(6) = {4,6},
IP(5) . {5}s
IP(T) = {7}s
jl—}3{8) = {S}s
Ip(9) = {9},

IP(IO} = {10}1
Ip(11) = {11},
Ip(12) = {12},
Ip(13) = Ip(15) = {13,15},
Ip(14) = {14}.

Using them we can obtain rough approximations of each decision class. The
class (d = 1) is exactly described (lower and upper approximations are the
same and contain 5 objects). The class (d = 2) is roughly described, lower
approximation consists of 5 objects, while upper approximation of 7 objects.
Similary for class (d = 3); lower approximation is built of 3 objects while the
upper one of 5 objects. The rough approximations are presented below:

e decision class 1:
— lower approximation {4,6,7,12,14}
— upper approximation {4,6,7,12,14}
e decision class 2:
— lower approximation {2,3,8,10,11}
— upper approximation {2,3,8,10,11,13,15}
e decision class 3:
— lower approximation {1,5,9}
— upper approximation {1,5,9,13,15}.
The boundary of decision classes 2 and 3 is composed of inconsistent objects

{13,15}. The quality of classification of objects according to attribute d is

2 |C(class i)|/|U|= (3+5+5)/15=0.867.

So, lower approximations of each decision class and boundary region of class 2
and 3 will be the basis of rule induction phase. The LEM2 algorithm produced
8 decision rules, including one approximate rule (no. 8):

Exact rules:




392 R. SLOWINSKI et al.

rule 1. (a;=1) — (d=1) {4,6}
rule 2. (az=3) (d—i) {12,14}
rule 3. (a;=4) A (a3=2) 1) {7}
rule 4. (a;=3) (d 2) {2,8,11}
rule 5. (@1=2) A (a3=2) — (d=2) {3}
rule 6. (a;=2) A (az=2) — (d=2) {10}
rule 7. (a;=5) — (d=3) {1,5,9}

Approximate rule:

rule 8, (a;=4) A (az=3) — (d=2) Vv (d=3) {13,15}

This result seems to be more readable than the previous result obtained for
non-discretized data and also better supported by learning examples,

The result presents a minimal set of rules covering all examples. We can
compare it to the set of all rules consisting of 16 rules (induced by means of
Ezplore algorithm, Stefanowski and Vanderpooten, 1994, 2000). Below we give
only these rules which do not appear in the minimal set:

Additional exact rules:

rule 9. (az=1) — (d=1) {4,6}

rule 10. (a1=2) A (az=3) — (d=1) {14}

rule 11. (a1=4) A (a3=2) — (d=1) {7}

rule 12. (a1=2) A (az=4) — (d=2) {10}

rule 13. (ay=2) A (az=4) — (d=2) {8,10}

rule 14. (a2=1) A (az=2) — (d=2) {3}

rule 15. (ap=4) — (d=3) {1,5}

rule 16. (az=5) — (d=3) {1,9}

One can notice that some of these rules give additional information about
input data. For instance, rule no. 9 shows that examples 4 and 6 can be
described in another way than with the rule no. 1. The same refers to using
rule no. 11 instead of rule no. 3.

Let us consider now the new approaches that handle directly numerical at-
tributes. First, we will use the generalization of the rough sets theory based on
similarity relation. In general, various definitions of similarity measures can be
applied (see reviews in Stowinski and Vanderpooten, 1995). Here we use one
of the definitions that models similarity by means of e-tolerance intervals, see
Krawiec et al. (1998). More formally, if f,(x) is a value of attribute ¢ for object
o and P C A is a subset of considered attributes then the relation of similarity
is defined as:

TRy < f.(z) € {f-:(y) — €. (y), fe(y) + E:_(U)] Veer

The values ¢, (y) and €} (y) are assessed by an automatic procedure based
on the analysis of examples from the input data table. For more details on this
procedure see Krawiec et al. (1998).

Applying this procedure to our Table 1, we obtained a similarity relation
presented in Table 3. Tt should be read as follows: in columns corresponding to
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No. ap a9 as d
1 8.0 [6.5,8.0] 14 [10,15] 9.5 [7.25,10.5] 3
2 4.0 [2.75,6.25) 7 [4.5,9.5] 3.0 [2.25,5.75] 2
3 2.5 [0.5,2.75] 3 [1,4.5] 5.0 [2.25,5.75] 2
4 1.5 [0.5,2.75] 5 [1,7.5] 2.0 [2,5.75] 1
5 7.5 [6.5,8] 15 [10,15] 8.5 [6.75,10] 2
6 0.5 [0.5,2.75] 1 [1,4.5] 2.5 [2,5.75] 1
7 6.5 [5.75,7] 6.5 [4.5,9.5] 4.5 [2.25,5.75] 1
8 5.0 [2.75,6.25] 8 [4.5,9.5] 7.0 [5.75,9] 2
9 7.5 [6.5,8] 9 [7.5,10] 10.5 [7.25,10.5) 3
10 3.0 [2,4.5] 6 [4.5,7.5] 6.5 [5.75,9] 2
11 5.5 [2.75,6.25] 10 [8.5,10.5] 8.5 [6.75,10] 2
12 2.5 [2,2.75] 4 [1,7.5] 6.0 [2.25,6.75] 1
13 6.5 [6.25,7.5] 13 [10,14.5] 8.0 [6.75,10] 2
14 3.5 [2.75,4.5] 10 [9.5,14.5] 5.5 [2.25,6.75] 1
15 6.0 [5.25,6.5] 11 [10,14.5] 7.5 [6.75,10] 3

Table 3. Similarity relation

an attribute there are values of the attribute for each object together with the
€ intervals of similarity with respect to these values.

Having these intervals we can check that, for instance, object 13 is similar
to object 1, since: fo1(13) = 6.5 € [6.5,8.0], fa2(13) = 13 € [10,15], fa3(13) =
8.0 € [7.25,10.5]. However, the inverse relation '1 similar to 13’ does not hold as,
for instance, fq1(1) = 8.0 ¢ [6.25,7.5]. This illustrates that similarity relation
is non-symmetric. Using the e-tolerance intervals calculated for all objects from
table 1 we can calculate the following classes of the similarity relation:
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RH1) = {1,5} R(1) ={1,5,13},
R71(2) = {2} R(2) = {2},
R™1(3) = {3,4,12} R(3) = {3,6},
R1(4) = {4} R(4) = {3,4,6},
BY4(6) = {1,5} R(5)={1.5,13, 15},
R~(6) = {3,4,6} R(6) = {3,6},
R7Y(7) = {7} R(7) = {7},
R71(8) = {8} R(8) = {8,10},
R™1(9) = {9} R(a9) = {9},
R71(10) = {8,10} R(10) = {10},
R™1(11) = {11,15} R(11) = {11},

R-1(12) = {12}
R-1(13) = {1,5,13,15}

R(12) = {3,12},
R(13) = {13,15},

R-1(14) = {14)
R1(15) = {13, 15}

R(14) = {14},
R(15) = {11,13,15}

Using these similarity classes we can define rough approximations of decision
classes:
e decision class 1:

— lower approximation {4,7,12,14}
— upper approximation {3,4,6,7,12,14}
e decision class 2:
— lower approximation {2,8,10}
— upper approximation {2,3,6,8,10,11,13,15}
e decision class 3:
— lower approximation {1,5,9}
— upper approximation {1,5,9,11,13,15}.
Then, a modification of the LEM2 approach can be used to induce exact

rules from the lower approximations. Some objects from boundary regions re-
main uncovered. The set of rules is the following:

rule 1. (a; € [6.5, 8]) — (d=3) {1,5,9}

rule 2. (ay € [2.75, 6.25]) A (az € [4.5, 9.5]) — (d=2) {2,8,10}

rule 3. (a; € [0.5, 2.75]) A (a2 € [1, 7.5]) — (d=1) {4,6,12}

rule 4. (az € [8.5, 10.5]) A (a3 € [2.25, 5.75]) — (d=1) {14}

rule 5. (a1 € [5.75,7]) A (a2 € [4.5, 7.5]) — (d=1) {7}

One can notice that these rules are more general than the previous ones.

Let us apply now the next extended approach, i.e. the new algorithm MOD-
LEM (Stefanowski, 1998c), to original data table without any preliminary dis-
cretization. The set of seven decision rules was obtained. There is no inconsis-
tency and all rules are exact.
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rule 1. (a3 <6.25) A (ay >3.50) A (a1 <3.75) — (d=1) {4,12,14}
rule 2. (a3 <4.75) A (ay <6.75) — (d=1) {4,6,7}
rule 3. (a1 € [2.0,5.75)) A (a3 < 5.25) — (d=2) {2,3}
rule 4. (ag 25.75) A (a; € [2.75, 5.75)) (d 2) {8,10,11}
rule 5. (az >10.5) A (a; € [6.25, 7.0)) ) {13}
rule 6. (a; > 5.75) A (ay €[7.75, 12.0)) 3) {9, 15}

rule 7. (a1 > 7.0) — (d:3) {1, 5, 9}

Let us stress that this result has been obtained without any prior discretiza-
tion, the algorithm itself created necessary elementary conditions on numerical
attributes. The representation of these conditions is more general, expressive
and readable than in the classical approach. Moreover, we induced smaller
number of stronger decision rules. The rules are supported by a greatex num-
ber of learning examples. Therefore, they are more justified both to explain the
decision situation and to give better recommendations.

3. Decision rules for multicriteria sorting problems

Sorting of objects (actions), which consists in their assignment to some pre-
defined and ordered classes, is one of the most frequent multicriteria decision
problems (Roy, 1985). Objects are described by a set of criteria and decision
classes are preference ordered.

As pointed out by Greco, Matarazzo and Slowiiiski (1996, 1998c¢) the original
rough set approach does not take into account the preference-ordered scales of
both condition and decision attributes and thus cannot handle inconsistencies
manifested by violation of the dominance principle. Therefore, it cannot use
properly all the essential information contained in the decision table of a multi-
criteria sorting problem. Greco, Matarazzo and Stowiniski (1996) have proposed
a new generalization of rough sets theory that is able to deal with ordinal prefer-
ence information. It is mainly based on the idea of replacing the indiscernibility
or similarity relation by the dominance relation, which is a very natural concept
within multicriteria decision making. Let us shortly present basic concepts of
this generalization. More information can be found in Greco et al. (1996, 1998a,
¢, 1999a).

Let S, be an outranking relation (Roy, 1985) on a set U with reference to a
criterion g € C, such that xS,y means "z is at least as good as y with respect
to criterion ¢”. Suppose that S, is a complete preorder, that is - a strongly
complete and transitive binary relation.

Moreover, let Cl = {Cl;,t € T}, T' = 1,...,n, denote classification on U,
such that each = € U belongs to one and only one class Cl; € Cl. As decision
categories in multicriteria sorting are ordered, we assume that for all r,s € T,
such that s > r, each element of Cli; is preferred to each element of Cl.. More
formally, if S is a comprehensive outranking relation on U, i.e. &Sy means: for
all z,y € U: "z is at least as good as y”, then it is supposed that [z € Cl,,y €
Cls,r > s] = [zSy and not ySz].
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The ordinal classification of objects leads us to considering the following
upward and downward cumulated classes (unions), respectively,

ciz=|Jci,
szt

ClF = J ¢l
s<t

The meaning of cumulated classes is the following: z € CIZ means that
element  belongs to "at least decision class Cl,” while z € CI means that =
belongs to ”at most decision class Cl,”. Notice that CIZ = CIS = U, CIZ = Cl,,
and CI§ = Cly.

For example, let us come back to the bankruptey risk evaluation mentioned
in the Introduction. The firms could be classified into three categories of risk: 1-
unacceptable, 2-uncertain, 3-acceptable. Of course, category 3 is more preferred
than category 2, and category 2 is more preferred than category 1. The defi-
nition of cumulated classes is the following: Cif means "unacceptable” firms,
C£§ means "at most uncertain”, i.e. "uncertain or unacceptable” firms, 0122
means "at least uncertain” firms, i.e. "uncertain or acceptable”, CE:,.Z means
"acceptable” firms.

We say that = dominates over y with respect to a set of criteria P C C
(notation xDpy) if xS,y for each q € P.

Let us consider the example from Table 1. We can treat this classification
problem as the multicriteria sorting problem, if we assume that a,as,a3 are
criteria and the decision classes are preference-ordered. For simplicity, we will
assume that for all the criteria the direction of preference is increasing, i.e. a
high value is more preferred than a small one. Additionally, decision classes
1,2,3 are also preference-ordered according to increasing class number. The
cumulated classes are the following:

ClZ ={1,5,9,15}

ciz ={1,2,3,5,8,9,10,11,13,15}
Cls = {2,3,4,6,7,8,10,11,12,13, 14}
CIf = {4,6,7,12,14}.

One can notice that for instance object no. 1 dominates over object no.
15 as (fa,(15) = 11) and (fa,(1) = 9.5) > (fa,(15) = 7.5). In a similar way
we can check that object no. 1 does not dominate over object no. 5 and vice
versa. There is no dominance between them because object no. 1 is better
than object no. 5 on criteria a; and ag, but worse on criterion ay. All these
objects, no. 1, 5 and 15, belong to the same decision class Cl3. By checking if
the dominance between objects on the considered criteria is consistent with the
class assignment, we can discover the following ”troublesome” cases:

e object no. 15 (from the best class Clg) is dominated by object no. 13

(from the medium class Cl5),
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e objects no. 12 and 14 (from the worst class Cl;) dominate over object no.
3 (from the medium class Cls).

In both cases, the dominance principle is violated since objects having better
evaluation on all criteria are assigned to a decision class that is worse than for
dominated objects. It is reasonable, of course, to expect the inverse assign-
ment. These cases show inconsistencies of the second type, connected with the
dominance principle.

Given a subset of criteria P C C and an object z € U, let us define two
sets characterizing the dominance relation, called: P - dominating set and P -
dominated set, respectively:

Dj(@)={y €U : yDpa}
Dp(z) ={y €U : zDpy}.

The P-dominating set groups all objects that dominate over the considered
object x, i.e. which are at least as good as this object, according to preference
on criteria from P. On the other hand, P-dominated set consists of all objects
which are dominated by . We can define the P-lower and the P-upper approxi-
mation of Citz with respect to P C C (notation PCIZ and PCIZ | respectively),
as:

P(CIZ) = {x € U : D}(z) C CI7}
Peir)= |J Di)
z€CIZ
Analogously, we define the P-lower and P-upper approximations of Cl;—(:
P(CI?) = {z € U: Dp(z) € CIF}
PCi)= | Dp().
zeCIf
The P-boundaries of CI5 and CIZ are defined as:
Bnp(CIZ) = P(CIZ) — P(CI?)
Bnp(CIE) = P(CIE) — P(CIE).
Let us illustrate these concepts using our didactic example. We focus our

interest on CI?. It consists of objects 1, 5, 9, 15.
P-dominating sets for these objects are the following:

DE1) = {1}
D}(5) = {5}
Dj(9) = {9}

D} (15) {1,5,13,15}.
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One can notice that inside the P-dominating set D},(15) there is also object
no. 13 from another union Cl5. Its P-dominating and P-dominated sets are
D;S(l?;) = {1,5,13} and Dp(13) = {2,3,4,6,7,8,10,12,13,14,15}. Therefore,
we discovered that objects no. 13 and 15 axe inconsistent in the sense of the
dominance principle.

The upper and lower approximations of the union 0532 are given below:

P(CF) = {1,59}
P(Ciz) = {1,5,9,13,15}
The boundary region Bnp(Cl:;}') = {13,15}.
In the similar way we can calculate upper and lower approximations of union
Cls; e
PCly = {2,3,4,6,7,8,10,11,12,14}
150125 {2,3,4,6,7,8,10,11,12,13,14, 15}

The boundary region Bnp{Clr;) = {13,15}.

The obtained approximations clearly separate certain part of information
about decision assignments to both unions Cl7 and Cl5 from doubtful part
that comprises inconsistent examples 13 and 15. Thus, the generalized rough set
approach enables to discover the inconsistency referring to dominance principle.

Proceeding in an analogous way, one can discover another group of incon-
sistencies, i.e. objects no. 3,12 and 14. They belong to the boundary region of
unions CI5 and Cl5.

On the basis of the approximations obtained by means of the dominance
relations, it is possible to induce a generalized description of the preferential
information contained in the decision table, in terms of decision rules.

The following three types of decision rules are considered:

1. decision rules of the type D5, which have the following form:

(@1 27g) A (g2 21g) Ao (gp 2 1gp) — (d= CI?)‘

where P = {q1,¢2,...,4p} € C, and r4,,74,,...,7q, are values from the
domains of respective criteria and t is the index of a cumulated decision
class Cltz; these rules are supported only by objects from the P-lower
approximations of C‘If;

2. decision rules of the type D<, which have the following form:

(@ Srg) A (g2 ST) A (gp <pp) = (A= CIF),

where P = {q1,¢2,...,¢p} C C, and r;l,r’ .‘r’ are values from the

q2'" " gy
domains of respective criteria and t is the index of a cumulated class Cls:
these rules are supported only by objects from the P-lower approximations
of CIF;

3. decision rules of the type D<>, which have the following form:
(QI 2 r!h) A (Q‘Z > Tq:e) A A (qk P Tf}:.—) A
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('Jk+1 < Tq;¢+1) A (Qk+2 = Tq;;.;.:) N N (‘;"p i rq,,) = (d=Cl;UCly, U

...UCItg,
where O = {q1,92,...,qx} € C and O = {qk41,qk+2,...,qp} C C are
not necessarily disjoint, rg4,,74,,...,74, are values from the domains of

respective criteria, and s,t € T  such that ¢ > s are the indices of cumulated
classes; these rules are supported only by objects from the P-boundaries
of CIZ and CIS.

Two first types of rules correspond to certain part of knowledge extracted
from input data table, while the third type is the approximate one as it is built
of the doubtful part.

The rule induction technique, called DOMLEM, generalizes the MODLEM
algorithm in order to observe the dominance principle (for details of this mod-
ification see Greco et al.,1999b). DOMLEM and its archetype MODLEM are
characterized by a polynomial computational complexity.

We give below the list of rules induced from Table 1 by the DOMLEM
algorithm.

Exact rules:

rule 1. (a; >7.5) — (d=CIZ) {1,5,9}
rule 2. (ag >6.5) — (d=Clg) {1,58,9,10,11,13,15}
rule 3. (a; >4) A (ag 27.0) — (d=Cl5) {1,2,5,8,9,11,13,15 }
rule 4. (a; <5.5) — (d= 0525) {2,3,4,6,8,10,11,12,14}

rule 5. (ay <6.5) — (d=CI5) {3,4,6,7,10,12}

rule 6. (a3 <4.5) A (a2 <6.5) — (d = CIT) {4,6,7}

Approximate rules

rule 7. (ag >11) A (a3 <8.0) — (d = Cl3 or Cly) {15,13,}

rule 8. (ag >25.0) A (az <4.0) — (d = Cly or Clp) {3,12}

rule 9. (a1 <3.5) A (az <10.0) — (d = Cl; or Cly) {14}

If the above eight rules were applied to the objects from the data table then
objects no. 1,2, 4 -11 would be reclassified exactly to their classes, while objects
no. 3,12 and 14 would be classified approximately to classes Cl; or Cly and
objects no. 13 and 15 to classes Cl, or Clj.

Let us observe that apart from the semantic difference, the set of decision
rules induced from the rough approximations defined using dominance relations
gives, in general, a more synthetic representation of knowledge contained in
the decision table than the set of rules induced from classical approximations
defined using simple indiscernibility relations. The minimal sets of rules thus
obtained have a smaller number of rules and use a smaller number of elementary
conditions.

4. Conclusions

Handling inconsistency of information is of major importance for decision anal-
ysis. We claim that inconsistency should not be considered as a noise or error
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in data - a proper understanding of its semantics can help in drawing certain
(exact) and possible (approximate) conclusions from available information. As
to the semantics of inconsistency, we distinguish two kinds: one inconsistency
is related to indiscernibility of objects described by regular attributes, and the
other inconsistency follows from violation of the dominance principle among
objects described by criteria, i.e. attributes with preference-ordered scales. The
various versions of the rough sets theory can deal with both kinds of inconsis-
tency. Rough sets theory has been combined with rule induction techniques in
order to get exact and approximate decision rules.

We surveyed these combinations, starting from the simplest case where el-
ementary conditions of the rules are of the form attribute=single value. It is
typical for indiscernibility-based rough sets theory and nominal scales. Then,
we considered an extended syntax in the form of attribute#value, where # means
one of the operators: =, <, >, <,>. It is typical for indiscernibility or similarity-
based rough sets theory and ordinal or numerical attribute scales. The above
considerations were limited to handling only the first kind of inconsistency.

Finally, we considered criteria and preference-ordered decision classes where
the second kind of inconsistency has to be taken into account. The rules in-
duced from dominance-based rough approximations of decision classes have the
extended syntax of elementary conditions mentioned above; moreover, their de-
cision parts indicate assignment to ” at least” or " at most”, given decision class.

Current research directions concentrate on consideration of regular attributes
and criteria in a joint model which handles both kinds of inconsistencies within
the rough sets theory and rule induction techniques, Greco et al. (1998a). Yet,
another challenging perspectives is connected with taking into account missing
values in the data table, Greco et al. (1999d). Other studies try to introduce
grades into the rough sets approach using fuzzy extensions, see Greco et al.
(1998b, 1999¢).
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