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Abstract: Inconsistent informa.tion is one of main difficulties in 
the expla.nation and recommendation tasks of decision a.na.lysi s. vVe 
distinguish two kinds of such information inconsistencies: the first is 
rela.ted to indiscernibility of objects described by a.ttributes defined 
in nomina.l or ordina.l scales, and the other follows from viola.tion of 
the dominance principle among a.ttributes defined on preference or­
dered ordina.l or ca.rdina.l sca.les, i.e. a.mong criteria. In this pa.per we 
discuss how these two kinds of inconsistencies a.re handled by a. new 
a.pproa.ch ba.sed on the rough sets theory. Combination of this the­
ory with inductive lea.rning techniques lea.ds to genera.tion of decision 
rules from rough approximations of decision cla.sses. Pa.rticula.r a.t­
tention is pa.id to numerical a.ttribute sca.les and preference-ordered 
sca.les of criteria, and their influence on the syntax of induced deci­
sion rules. 

Keywords: decision a.na.lysis, rule induction, rougb sets , multi­
criteria. decision analysis, cla.ssification. 

l. Introduction 

Va.rious a.pproaches to scientific decision ana.lysis intencl to clarify those elements 
of a clecision situa.tion which a.re not eviclent to tbe a.gents involved (clecision 
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makers, stake holders , experts) and which may influence their attitude towa.rds 
decision. In other words, the elements revea.led by scientific decision ana.lysis 
either explain the situation, or recommend - or simply favor , a behavior that 
will increase the consistency between the possibilities offered by t he si tua.tion, 
and the objectives and va.lue systems of the agents (see Roy, ] 985). 

The main difficulty of the explanation and recommendation tasks is con­
nected with the usually inconsistent information a.bout the decision situation. 
One ca.nnot expect to get any perfect expla.na.tion nor recomrnenda.tion from 
inconsistent data, even if very sophisticated methods are used. However, one 
ca.n expect to lea.rn wha.t a.re the certain conclusions and the possible eondusians 
that ca.n be drawn from available information. 

In this pa.per, we consider the ca.se where the available input information 
is a record of experience, a list of observations, or a set of decision examples. 
Such information is often presented in the form of a data table where eacb row 
corresponds to a single case, observa.tion or decision example, ca.ll ed object, and 
eolumus correspond to attributes characterizing objects. Drawing conclusions 
on the basis of this informa.tion na.turally leads to representat ion in a form 
of decision rules. The decision rul es a.re logical expressions of the form: if 
condition-part then decision, where condition-pa.rt means a conjunction of ele­
mentary conditions being some tests on values of attributes, and decision mea.ns 
disjunction of possible decision cla.sses. 

The rules a.re constructed using tbe inductive leaming pr'inciple (Mitchell, 
1997). Although other representations of knowledge aJ'e a.vaila ble, like (dis­
criminant) functions, binary relations, or decision trees (see e,g, vVeiss and 
Kulikowski, 1991, Michalski et al., 1998, or Mitchell, 1997), i t is claimed that 
decision rules are more natura! and readable for the users. lVToreover , the rules 
"speak" the language of examples given in the input informa.tion, they generalize 
them by reducing all redm1dant piecesof information and they arc a.ckn owledged 
by real facts from the input information, 

There are two genera.J views on inductive learning: descriptive and prescrip­
tive. The first view, also called explanatory, is connected with discavering useful 
dependencies in the data that could help in better understanding of circ:um­
stances in which decisions were made. The sec:ond aims at improving decision 
makingfor future cases. Although induction of rules from examples is a typicaJ 
approach of artificial intelligence (in parti cular ma.chine learning), it is concor­
dant with the principle of posterior rationaJity of Mmch (1 988) and with the 
aggregation-disa.ggregation logic of J acquet-Lagreze (1 982), The rules explain 
the preferentiaJ attitude of the agents and enable an understanding of the rea­
sons of his/ her preferences. As pointed out by Lan gley and Simon ( 1998) the 
recognition of the rules by the agent justifies their use for decision support. So, 
the preference model in the form of rules derived from exampl es fulfi ls bot h the 
explanation and rec:ommendation functions with respect to decision analysis. 

The inconsistencies inherent to input information cannot be considered as 
noise or error. In decision context, they refl ect the impression of the modelused 



Rough set based processing of inconsistent inform ation 381 

for description, the hesitations of agents , and the unstable character of agent's 
preferences. Thus, the inconsistencies should not be neglected nor amalgamated 
with certain informa.tion, but ra.ther sepa.ra.ted in order to get exa.c:t ( certai n) 
and a.pproxima.te (possible) c:onclusions (rules). 

The rough sets theory (RST) proposed by Z.Pawla.k (1 982,1991) is particu­
la.rly useful in dea.!ing with inconsistency of input information. It c:Jea.rly sepa.­
ra.tes c:erta.in and possible information by building lower and upper approxima­
tions o f ea.ch clecisi on cla.ss ( ca.tegory). T he differenc:e between up per and l ower 
a.pproximation c:onstitutes a. bounda.ry that groups doubtful information. As a 
consequence, decision rules a.re induced either from lower a.pproximations, upper 
approxima.tions, or from boundaries of decision cla.sses, and thus are categorized 
into exa.ct and approxima.te ones. 

Up to now, the rough set a.pproach to decision analysis was focused on mul­
tiattribute classification, where objects were described by attributes defined on 
nominał or ordinal scales. There a.re several successful case studies of this ap­
proa.ch (see e.g. Pawlak, 1991 , 1995, Słowi{tski, 1996, or Komorowski et al., 
1999). The difficulties a.rise, however, when attributes are de:fined on nv,merical 
scales. In this ca.se, direct ana.lysis of such data may lead to inducing rules of 
poor quality, so discretization techniques are often a.pplied in a pre-processing 
pha.se (Chmielewski and Grzyma.la., 1995). Discretization converts numerica.l 
sca.les into ordinal sca.les represented by orciered sub-interva.ls . On the other 
hand new approa.ches have been proposed recently by Slowiliski and Vander­
pooten (1995), Krawiec et al. (1998), Skowron and Stepa.niuk (1 996), Greco 
et al. (1999), Grzyma.la. and Stefa.nowski (l 999), to directly handle numerical 
data. 

The rough set approa.ch can handle inconsistency ma.nifested by indiscerni­
bility of at lea.st two objects ha.ving the same description by a.ttributes but 
assigned to different decision cla.sses. 

The origina.l rough set a.pproa.ch is not a.ble, however, to discover inconsis­
tencies coming from considera.tion of cTiteria, i. e. a.ttributes with preference­
ordered sca.les. The sca.les of criteria. ma.y be ca.rdinal or ordina.l (Shoemaker, 
1982), depending whether the strength of preference is mea.niugful for the sca.le 
or not . The difference between sca.Jes of a.ttributes and sca.les of criteria. exists in 
considera.tion of oTdered prejeTences in the latter case. Produet qua.lity, market 
sha.re, debt ratio are exa.mples of criteria.. Regula.r a.ttributes, e.g. symptoms, 
colors, textura.l fea.tures, traditionally eonsiciered in the rough set methodology, 
a.re different from criteria. beca.use their doma.ins a.re not preference-ordered (see, 
e.g. Greco et a.l., 1996, 1999a.). Therefore, the classica.l rough sets theory ca.nnot 
be applied to multicriteria sorting problems, i.e. problemsof a.ssigning a. set of 
objects described by a. set of criteria. to one of pre-defined and orciered cla.sses. 

Consider, for example, two :firms, A and B, eva.lua.ted for ba.nkruptcy risk by 
a. set o f criteria. indueling the "de b t rat i o" (to tal debt/total a.sset.s). Tf firm A 
ha.s a. low va.lue while firm B ha.s a la.rge va.lue of the debt rat i o, and eva.lua.tions 
of these firms on other a.ttributes a.re equal, then, from tbe ba.nkruptcy risk 
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point of view, firm A dominafes over firm B. Suppose, however, tha.t firm A ha.s 
been assigned to a class of higher risk than firm B. This is obviously inconsistent 
with the dominance principle. Within the origina.l R.ST , the two firms will be 
eonsiciered as just discernible and no inconsistency will be stated. 

For this reason, Greco, Matara.zzo and Słowil'lski (:i 996) have proposed an 
extension of the RST that is a.ble to deal with this kin d of inconsistency typical to 
exemplary decisions (in input informa.tion) in Multi Criteria Decision Analysis 
(MCDA) problems. This innova.tion is mainly based on substitution of the 
indiscemibility relation by a dominance relation in the rough approxima.tion 
of decision cla.sses. It is also possible to infer from exemplary decisions the 
preference model in terms of the generalized decision rules. 

The aim of this paper is to survey the induction of decision rules from rough 
approximations of decision classes while handling two kinds of inconsistencies in 
the input information. The first kind corresponds to the typical case of multi­
attribute classification, involving indiscernibility relation. Pa.rticular a.ttention 
will be paid to presentation of new approaches for handling numerical attributes . 
The second kind corresponds to multicriteria sorting problems involving dorn­
inauce relation. We will briefly review a new genera.lization of the rough sets 
theory to handle this problem. R.egarding the survey character of this paper, 
we will introduce an illustrative example for comparing approa.ches discussed. 

2. Decision rules for multiattribute classification problems 

2.1. The general idea of the rough sets theory 

Information about objects is provided in the form of a data table. R.ows of the 
table refer to objects (actions), whereas columns refer to different a.ttributes 
considered. Each entry of this table contains the va.lue of an att.ribut.e of a given 
object. Formally, the data. ta.ble (a.lso called informa.tion system or informa.tion 
ta. b l e) is defined as a pair S = (U, A) where U is a fin i te set o f objecis and A 
is a finite set of attributes. With every a.ttribute a E A, a set of its values Va 
is associated. Each attribute a determines an information fun ction .fa: U --> Va 
such that for any a E A, and x E U, fa(x) E Va. 

In pra.ctice, we are mostly interested in ana.lyzing a special case of data. 
table called decision table. It is a data ta.ble (U, A U D), where D is a set 
o f decision attributes. We consider a sim p l e case where D is a singleton {d} ; 
moreover in any case D can be always transformed to {d}. The elements of A 
are called condition attributes. Let us assume that the cardinality of the set Vd 
of values of the decision attribute d is equal a finite number k: . The decision 
attribute determines the pa.rtition of the set of all objects U into k: disjoint 
classes X 1 , X 2 , ... , X k, called decision classes. 

Solving multiattribute classification problems usuall y involves looking for 
dependencies between attributes, in particula.r between the condition attributes 
and the decision. This leads to discavering decision rules in the input table 
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that could be used for two aims: either to explain past decisions ma.de for 
learning examples or to make recommendations for future cases, i.e. supporting 
assignment of a new object to one of existing decision classes. 

T he rough sets theory, Pawlak ( 1982, 1991 ), is founded on t he assumption 
that having some informa.tion about eonsiciered objects one can establish rela­
tions between these objects. The basie observa.tion is that objects cha.ra.cterized 
by the same description a.re indiscemible (indistinguishable) due to limited in­
formation about them. The indiscernibility rela.tion genera.ted in this way is the 
ma.thematica.l ba.sis of the original Pa.wlak's concept of the RST. 

Formally, the indiscemibility relation is associated with every non-empty 
subset of attributes P ~ A and lifx, y E U is defined as 

x l py {o} f a(x) = fa(Y) '\la E P 

The indiscernibility relation defined in this way is an equivalence relation 
(reflexive, symmetric and transit ive) and generates the partition of objects from 
U. T he family o f all equiva.lence classes o f rela.tion I p is denoted by U l I p . These 
classes are calleci P-elementary sets. An elementary equiva.lence class (i.e. a 
single block of the partition U l l p) containing element x is denoted lp (x). 

The indiscernibility relation is not the only possible relation between ob­
jects. For instance, quite often due to imprecise description of objects by at­
tributes, smal! differences between objects' description are not eonsiciered im­
porta.nt for their discrimination. This sit uation may be forma.lly modeled by 
similarity ortolerance relations (see e. g. Polkowski and Skowron, 1995, Skowron, 
1995, Stepaniuk, 1996, Krawiec et al., 1998, Greco et al., l998b, Marcus, 1994, 
Słowiński and Vanderpooten, 1998). 

As the similarity relations R do not generate partitians on U, similarity 
classes R(x) are defined for each object x E U, instead of equiva.lence classes. 
Formally, the similarity class of x consists of objects y simila.r to x : 

R(x)={yEU: yRx} 

This relation has an interesting property, i.e. it may be only reflexive, relaxing 
symmetry and transitivity (see discussion in Słowil'iski and Vanderpooten , 1 995). 
Although at a first glance a non symmetric simila.rity relat ion ma.y appear odd 
we have severa.l intuitive examples where such situation may occur. \!1/e always 
sa.y tha.t a child is similar to a parent or that a copy of a pa.inting is simila.r to 
the origina.l, without claiming the inverse. Therefore, symmetry is not imposed 
and it makes sense to consider the inverse relation 

R - 1(x) = {y E U : xRy} 

The R- 1 (x) is the cla.ss of objects y to w hi ch x is similar. 
Then, eonsiciering the concept of ambiguous and non-a.mbiguous objects with 

respect to ava.ilable information, we come natura.lly to defining rov.gh approxi­
m ation of a subset of objects X C U. Precisely, the rough a.pproxima.tion of X 
is cha.ra.cterized by its lower and upper approximations defined respectively as: 
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.B(X) = {x E U: R-1 (x) <;;;;X} 

R(X) = U R(x) 
xEX 

R. SLOWIŃSKI et al. 

The set BnR(X) = .B(X) - R(X) is calleci the R-boundary of X. The lower 
approximation .BX is a maximai set including objects that ca.n be certainly 
classified as elements of X while the upper approximation RX is a. minimai set 
of objects which can be possibly classified in X, ta.king into a.ccount information 
available. The set BnR(X) refiects information ambiguity in describing the set 
X, i.e. it contains inconsistent (a.mbiguous) objects. 

In the case where the similarity relation boils clown to the indiscernibility 
relation defined on a set of attributes F, R-1 (x) = R(x) = lp(x) for any x E U. 
Thus, lower and upper approximations are defined a.s: 

P(X) = {x E U: lp(x) <;;;;X} 

P(X) = U lp(x) 
xEX 

The definition of a.pproxima.tions of a subset X C U can be extended to 
a classification, i.e. a partition Y of U. Subsets }i, i = l , ... , n , are disjunc­
tive classes of Y. By F-lower (P-upper) a.pproximation of Y we mea.n sets 
P(Y) = {P(Y1), P(Y2), ... , P(Yn)} a.nd F(Y) = {F(Yl), F(Y2), ... P(Yn)} respec­
tively. The coefficient 

(Y) = l:~=liP(Yi)l 
'YP IUI 

is calleci quality of approximation of classifica.tion Y by set of a.ttributes P, or, in 
short, qua.lity of classification. It expresses the ratio of a.ll P-correctly classified 
objects to all objects in the system. 

Another issue o f great practical importance is that of "superfiuous" data in 
an information table. Superfiuous data can be eliminated, in fa.ct, without de­
teriorating the informa.tion contained in the origina.l table. For this elimination 
the concept of the so calleci reduct is of crucia.l importance. 

A reduct of P is defined with respect to a.n approximation of a pa.rtition 
Y of U. It is then calleci Y-reduct of P (nota.tion Redy(P)) and specifies a 
minimai subset P' of P which keeps the quality of classifica.tion uncha.nged, i.e. 
rP'(Y) = 'YP(Y). In other words, the a.ttributes that do not belong to Y-reduct 
of F are superfiuous with respect to the cla.ssifica.tion Y of objects from U. 
More than one Y-reduct (or reduct) of P ma.y exist in a.n informa.tion table. 
The set containing all the indispensable attributes of F is known as the Y-core. 
Obviously, since the Y-core is the intersection of a.ll the Y-reducts of P , it is 
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included in every Y-reduct of P. It is the most important subset of attributes, 
because none of its elements can be removed without deteriorating the gnality 
of classification. 

2.2. Decision rules 

Let us consider a decision table. The decision attribute d induces a partition 
of U deduced from the indiscernibility relation. There is a tendency to exam­
ine functional dependency between the partition induced by d and partitians 
induced by condition attributes from C. A decision table may also be seen 
as a set of learning examples which enable generation of decision rules. If the 
decision table is consistent, rules are induced from decision classes. Otherwise 
decision rules are genera.ted from approximations of decision classes. · 

This special way of treating inconsistenc:ies in the input data is the main 
point where the concept of the rough sets theory is used in the rule induction 
phase. The step of induction follows the induc:tive principle wbich is a com­
mon a.spect with ma.chine lea.rning algorithms. As a conseguence of using the 
approximations, induced decision rules are categorized in to certai n ( exact) and 
approximate (possible) ones, clepeneling on the used lower and upper approxi­
mations ( or boundaries), respectively. 

Decision rules are represented in the following form : 

1\(c#v)---) v(d#w) 

where c E C is condition attribute, v is a value of attribute c, and w is a. 
va.lue of decision d, # means one of the operators =, ::;, ;:::, <,> ,E, SIM. If 
two consecutive elementary conditions (c;::: v l) and (c::; v2 ), where (v1 < v2 ) 

concern the same condition a.ttribute c then we get the following new condition 
(c E [v1, v2]). SIM is a 'similar to' operator resulting from similarity measur es 
used to define the rela.tion of simila.rity. 

We will ca.ll s = 1\ ( c#v) and t = V ( d#w) condition and dec·ision part o f 
a rule, respectively. If t he decision part conta.ins one element (d = w) only, 
then the rule is exact, otherwise i t is approximate. The exact decision rules, 
indicating a.ssignment to class X 11. , are induced tmder a.ssumption that objects 
belonging to the lower approximation of decision class X 11. are positive, while 
all the others are negative. The approximate rules, with decision part t= (d= 
w) V (d = v), a.re induced under a.ssumption tha.t objects belonging to common 
part of subboundaries of classes X 11. and Xv only are positive while all the others 
are negative. 

It is said that an object x E A supports a rule s ---) t (or a rule covers 
object x) if its description satisfies both expressions s and t. Let [s] clenote set 
of such objects. A decision rule s ---) t is exact if [s] is a subset of the !ower 
approximation of the clecision class inclicatecl by t. The decision rule should 
have a non-redundant condition part , i.e. no other ruJe can be constructed from 
a proper subset of elementary conditions occurring in the given rule . 
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Induction of decision rules from decision tables is a complex task and a 
number of various algorithms have been already proposed (for some reviews 
see e.g. Grzymala, 1992, Skowron, 1995, Bazan, 1998, Grzymala et al., 1996, 
Stefanowski, 1998, Komorowski et al., 1999, Stefanowski and Vanderpooten, 
2000). In fact, there is no unique "rough set approach" to rule induction as 
elements o f rough sets can be used on different stages o f the process o f induction 
and data processing. Nowadays, the most often used approaches and software 
systems are: 

• System LER.S (Learning from Examples based on R.ough Sets) - Grzymala 
(1992), which itself has four different options of rule induction; the most 
popular of them seems to be LEM2 a.lgorithm. 

• Systems based on a discernibility matrix and boolean rea.soning techniques 
(Skowron, 1993, 1995) . They were extended by several additional strate­
gies connected with, e.g., approximation of reducts, looking for dynamie 
reducts, boundary region thinning, data filtration and tolerance relation, 
see Bazan (1998), Skowron (1995), Skowron and Polkowski (1997), Nguyen 
(1998a), Komorowski et al. (1999). Their implementations form a com­
putational kernel of the system Rosetta (Komorowski et al., 1997). 

• Systems R.oughDAS, Profit and R.OSE (Słowiński and Stefanowski, 1998, 
Predki and Wilk, 1999) which offer several rule induction options that are 
further described in this paper. 

• Systems DataLogic and KDD-R. that use the probabilistic extension of the 
original rough set model called variable precision rough sets model and are 
oriented towarcis data mining applications, Ziarko (1993, 1995). 

Other learning algorithms inspired by data mining techniques are also known 
(see e.g. Kryszkiewicz, 1998a, Lin, 1996, Stefanowski and Vanderpooten, 1994, 
2000). One should also remember about interesting proposais ofthe probabilistic 
rough classifier developed by Lenarcik and Piasta (1997) . 

If we notice that these algorithms aim at inducing the rule descriptions oj 
decision classes, we can distinguish three main groups of existing a.pproaches: 

(l) algorithms inducing the minimum set of rules, 
(2) algorithms inducing the exhaustive set of rules, 
(3) algorithms inducing the satisfactory set of rules. 

The first category of algorithms is focused on covering input objects using 
the minimum number of necessary rules while the second group tries to generate 
all possible decision rules in the simplest form. The third category of algorithms 
gives as a result the set of decision rules which sat isfy user's requirements given 
a priori. The user may prefer to get strong decision rules (i. e. rules supported by 
a relatively large number of input objects), having good discriminatory ability, 
with empha.sis on the syntax of the condition part (e.g. using some specific 
attributes or elementary conditions). The differences between these approaches 
will be further illustrated on a simple example. 

It is worth noticing that the problem of finding a minimum set of rules 
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(i. e. category l) covering all examples can be seen as the problem o f mini­
mai cover which is NP-hard (see Pawlak, 1991, Stefanowski and Vanderpooten, 
1994). Therefore, heuristic approximation algorithms are usually applied. It 
was shown, moreover, that category (2) of algorithms refers to the problem of 
searching for reducts of minimallength, also NP-hard (see Skowron and Rauszer, 
1992). Finally, for category (3) the computation cost although still high, can be 
reduced in practice if one uses strong requirements for the rule support/strength 
and some pruning techniques that reject early the unnecessary candidates for 
rules (see discussions in Kryszkiewicz, 1998b, Stefanowski and Vanderpooten, 
1994, 2000). 

Two generał perspectives of rule induction are considered: either explanation 
of existing decision situation using the rules or creation of classification systems. 
The first aim is also connected with the knowledge discovery perspective, Fayyad 
et al. (1996). 

It must be noticed, however, that the two perspectives of rule induetion 
are pereeived as different. One of the basie distinetions eonsists in different 
evaluation criteria. In classifieation-oriented induetion, rules are parts of a 
classifieation system; henee, evaluation refers to a eomplete set of rules. The 
evaluation eriterion is usually unique and defined as classifieation (predietive) 
aeeuracy (see Weiss and Kulikowski, 1991). In explanation or diseovery-oriented 
induction, each rule is evaluated individually and independently as a possible 
representation of an interesting pattern. The evaluation eriteria are multiple 
and eonsiciering them together is not easy. Moreover, the definition of eriteria 
depends on the applieation problem and the user's requirements. More details 
on this topie are given in Stefanowski (1998a), Stefanowski and Vanderpooten 
(2000). 

2.3. Handling numerical attributes 

The original rough set approaeh and rule induetion teehniques seem to be insuf­
ficient when applied direetly to data sets eontaining numerical a.ttributes, i.e. 
attributes with real number or integer doma.ins. Rules induced directly from 
numerical attributes are of poor quality (very short, wea.k, and numerous). 

The typical approach to solve this problem is to use discretization tech­
niques which convert numerical attributes into discrete, ordinal ones. During 
discretization a number of cut-points are determined, dividing the attribute do­
main into consecutive subintervals. Many discretization methods (see reviews 
in Chmielewski and Grzymala, 1995, Dougherty et al., 1995, Nguyen, 1998a,b, 
Susmaga, 1997) can be applied as a preprocessing step before rule induction. In 
generał, no one discretization method is optimal for all situations. 

Additional aspect of employing these methods is that they determine dis­
cretization independently from the RST analysis. It is possible that obtained 
discretized subintervals may be more or less arbitrary and not lead to accept­
able results. Therefore, some newly proposed extensions to the RST ena.ble to 
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analyse directly numerical attributes without a.ny pre-discretization. 
The genera.liza.tion of the rough sets theory based on similarity rela.tion, 

Slowiriski and Va.nderpooten (1995, 1999) is one o f the solution. I t is particularly 
useful if numerical attributes are affected by imprecise mea.surement, random 
ftuctuation of some parameters, etc. In Krawiec et al. (1 998) authors presented 
a quite efficient automatic procedure for inferring similarity relation from data, 
and then an algorithm for generating certa.in and robust decision rules. 

Another group of extended approa.ches offers a new version of rongh set based 
rule induction algorithms which do not require preliminary discretization of nu­
merical attributes. One of these a.pproa.ches, called MODLEM (Stefanowski, 
1998c, Grzymala and Stefa.nowski, 1999) , is a modified version of the LEM2 
a.lgorithm. The LEM2 (Grzyma.la, 1992) is a popular RST based rule induction 
algorithm for getting the minimum set of decision rules. Let us briefly c:omment 
the idea of modifications. Numerica.l attributes are handled by the learning 
algorithm MODLEM at the moment when elementary conditions of a rule are 
created. In the original version of LEM2 elementary conditions are represented 
as pairs (c= v) where cis an attribute and v is its value. Jn J\!JODLEM con­
dit ions are represented in the form o f either (c < v), (c 2: v) or (c = [v1 , v2)) 
(resulting from a.n intersection of two conditions (c < v2 ), (c 2: vl), v1 < v2 , 

for the same attribute). The ca.ndidates for the cutpoint v a.re loca.lly sca.nned 
for the range of each numerica.l attribute c ta.king into a.ccount unique va.lues 
with their decision class a.ssignment. The best Clltpoint among a.Jl tested ones is 
chosen to be furtber compa.red aga.inst other a.ttributes. The best c:ondition for 
a.ll compared a.ttributes is c:hosen for adding to the condition part of tbe ruJe. As 
the evaluation measure indica.ting the best condition, typica.l entropy measures 
orLaplace accuracy (Clark and Boswell, 1991) a.re used. An experimental study 
performed in Grzymala. and Stefanowski (1 999) showed tha.t the MO D LEM a.Jgo­
rithm used as a. classifier perforrus better tba.n the origiual version of LEM2 and 
produces classifica.tion a.ccuracy comparabl e with suc:h machine lea.rning tech­
niques as C4.5 . Similar motiva.tions were the ba.sis of modifica.tions introduced 
in the Explore algoritbru which induces satisfactory set of rules (Stefanowski , 
1998b). Some of the above techniques for ha.ndling numerical a.ttributes are 
availa.ble within the newly offered R.OSE (R.ough Set data Explorer) system 
(Predki et al., 1999). 

2.4. Illustrative example 

Let us illustrate these concepts with a smali exa.mple. V./e assume that 1 5 
objects, eonsiciered as examples of classific:ation, are desCJ·ibed by 3 attributes 
a1, a2, a3. Objects a.re classified in to three dec:ision classes a.cc:ording to the 
value of a decision a.ttribute d. The data table analyzed is presented in Table J. 

First, l et us analyze the origina.l data table ( objects descr·ibed by origina.J 
numerica.l values of attributes) using the 'cla.ssica.l ' rough set approa.cb based 
on the indiscernibility relation. All objec:ts a.re discernibl e and there a.re no 
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No. al a z a3 d 
l 8.0 14 9.5 3 
2 4.0 7 3.0 2 
3 2.5 3 5.0 2 
4 1.5 5 2.0 1 
5 7.5 15 8.5 3 
6 0.5 1 2.5 1 
7 6.5 6.5 4.5 l 
8 5.0 8 7.0 2 
9 7.5 9 10.5 3 
lO 3.0 6 6.5 2 
11 5.5 10 8.5 2 
12 2.5 4 6.0 1 
13 6.5 13 8.0 2 
14 3.5 10 5.5 1 
15 6.0 11 7.5 3 

Table 1. Data table 

inconsistencies. This means that lower approximations are equal upper a.pprox­
imations. As a result of applying LEM2 algorithm to this data table we can 
induce 14 exact rules - presented below: 

rule l. (a1=1.5) ___, (d=l) {4} 
rule 2. (a1=0.50) ___, (d=J) {6} 
rule 3. (a1=3.5) ___, (d=l) {14} 
rule 4. (a2=6.S) ____, (d=l) {7} 
rule 5. (a2 =4.0) ___, (d=l) {12} 
rule 6. (a1 =4.0) ___, (d=2) {2} 
rule 7. (a1 =5.0) ___, (d=2) {8} 
rule 8. (a1 =3. 0) ___, (d=2) {10} 
rule 9. (al=5.0) ___, (d=2) {11} 
rule 10. (a2 =3.0) ___, (d=2) {3} 
rule 11. (a2 =13) ___, (d=2) {13} 
rule 12. (a1 =7.5) ___, (d=3) {5,9} 
rule 13. (a1 =8.0) ___, (d=3) {1} 
rule 14. (a1 =6.0) ___, (d=3) {15} 

The rules are presented in the following form: fint the syntax of the rul es, then 
the identifiers of objects covered by the rule. 

One can easily notice that the quality of results obta.ined from non-discretized 
datais very poor. Induced decision rules are numerous, very specific and nearly 
all of them are supported by one learning example. Therefore, this input data 
should either be discretized before the rough set analysis or one of the approaches 
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No. a1 a2 a3 d 
l 5 4 5 3 
2 3 2 2 2 
3 2 l 2 2 
4 l l l l 
5 5 4 4 3 
6 l l l l 
7 4 2 2 l 
8 3 2 4 2 
g 5 3 5 3 
lO 2 2 4 2 
11 3 3 4 2 
12 2 l 3 l 
13 4 3 4 2 
14 2 3 3 l 
15 4 3 4 3 

Table 2. Coded data table 

specialized in direct handling of numerical data in rule induction applied. 

For instance, let us consider the following proposal of discretization: for 
the attribute a 1, code l corresponds to :::; 2.25, code 2 corresponds to interval 
(2.25, 3.5], code 3 to (3.5 , 5.5], code 4 to (5.5, 6.5] and code 5 corresponds to 
> 6.5. The attribute a2 is discretized as: code l corresponds to :::; 5, code 2 
corresponds to interval (5, 8], code 3 to (8, 13], code 4 to > 13. Finally, for the 
attribute a3 code l corresponds to :::; 2.5, code 2 corresponds to interval (2.5, 5], 
code 3 to (5 , 6], code 4 to (6, 8.5] and code 5 corresponds to > 8.5 . 

If we use this discretization we can transform Table l into Table 2. Then, 
rough sets theory indicates two inconsistent examples, no. 13 and no. 15, having 
the same description in values of attributes (a1 = 4, a2 = 3, a3 = 4) and assigned 
to different decision classes. 

The elementary sets (for all attributes) are the following: 
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lp(1) = {1}, 
lp(2) = {2}, 
lp(3) = {3}, 
lp(4) = lp(6) = {4, 6}, 
lp(5) = {5}, 
lp(7) = {7}, 
lp(8) = {8}, 
lp(9) = {9}, 
lp(lO) = {10}, 
lp(ll) = {11}, 
lp(12) = {12}, 
lp(13) = lp(15) = {13, 15}, 
lp(14) = {14}. 
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Using them we can obtain rough approximations of each decision class. The 
class (d = l) is exactly described (lower and upper approximations are the 
same and contain 5 objects). The class (d = 2) is roughly described, lower 
appro:ximation consists of 5 objects, while upper approximation of 7 objects. 
Sirnilary for class (d = 3); lower appro:ximation is built of 3 objects while the 
upper one of 5 objects. The rough a.pproximations are presented below: 

• clecisi on class l: 

- !ower approximation {4,6,7,12,14} 

- upper approximation {4,6,7,12,14} 

• decision class 2: 

- !ower approximation {2,3,8,10,11} 

- upper appro:ximation {2,3,8,10,11,13,15} 

• decision class 3: 

- lower approximation {1,5,9} 

- upper approximation {1,5,9,13,15}. 

The boundary of decision classes 2 and 3 is composed of inconsistent objects 
{13,15}. The quality of classification of objects according to attribute d is 

L:~=l IC(class i)I/IUI= (3+5+5)/15=0.867. 

So, lower approximations of each decision class and boundary region of class 2 
and 3 will be the basis of rule induction phase. The LEM2 algorithm produced 
8 decision rules, including one approximate rule (no. 8) : 
Exact rules: 
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rulel. (a1=l) ---; (d=J) {4 ,6} 
rule 2. (a3=3) ---; (d=l) {1 2,14} 
rule 3. (a1=4) 1\ (a3=2)---; (d=l) {7} 
rule4. (a1=3) ---; (d=2) {2,8,11} 
rule 5. (a1 =2) 1\ (a3=2) ---; (d=2) {3} 
rule 6. (a1=2) 1\ (a2=2)---; (d=2) {10} 
rule 7. (a1 =5) ---; (d=3) {1 ,5,9} 

Approximate rule: 
rule 8. (a1=4) 1\ (a2=3)---; (d=2) V (cl= 3) {1 3,15} 
This result seems to be more readable than the previous result obta.ined for 

non-discretized data and also better supportecl by learning examples. 
The result presents a minima! set of rules covering all examples. vVe can 

compare it to the set of all rules consisting of 16 rules (incluced by means of 
Explore algorithm, Stefanowski and Vanderpooten, ] 994, 2000). Below we give 
only these rules which do not appear in the minima.] set: 
Aclditional exact rules: 

rule 9. (a3 = 1) ---; (d=l) {4,6} 
rule 10. (a1 =2) 1\ (a2=3) ---; (d=]) {14} 
rule 11. (a1 =4) 1\ (a2=2) ---; (d=l) {7} 
rule 12. (a1 = 2) 1\ (a3=4) ---; (d=2) {JO} 
rule 13. (a2=2) 1\ (a3=4) ---; (d=2) {8,10} 
rule 14. (a2=1) 1\ (a3 =2) ---; (d=2) {3} 
rule 15. (a2=4) ---; (d=3) {1 ,5} 
rule 16. (a3=5) ---; (d=3) {1 ,9} 
One can notice that some of these rul es give additional information about 

input data. For insta.nce, rule no. 9 shows that examples 4 and 6 can be 
described in another way than with the rule no. 1. The same refers to using 
rule no. 11 instead of rule no. 3. 

Let us consider now the new approacbes that handle directly Immerical at­
tributes. F irst, we will use the generalization of the rougb sets tbeory based on 
similarity relation. In general, various definitions of similarity mea.sures can be 
applied (see reviews in Sławiiiski and Vanderpooten, 1995). Here we use one 
of the definitions that models similarity by means of E-tolerance interva.ls , see 
Krawiec et al. (1998). More formally, if fą(x) is a va.lue of attribute c for object 
x and P <;;; A is a subset of eonsiciered attributes then the relation of simi larity 
is defined as: 

xRy ~ fc(x) E [fc(Y)- E;(y) , fc(Y) + E~(y)] 'VcEP 

The values E-; (y) and Et (y) are assessed by an automatic proceclure based 
on the a.nalysis of exa.mples from the input data table. For more cletails on this 
procedure see Krawiec et al. (1998). 

Applying this procedure to our Table 1, we obtainecl a similarity relation 
presented in Table 3. Jt should be reacl as follows: in columns eorresponcling to 
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No. al a2 a3 d 
l 8.0 [6.5,8.0] 14 [10,15] 9.5 [7 .25,10.5] 3 
2 4.0 [2.7~,6.25] 7 [4.5,9.5] 3.0 [2.25,5.75] 2 
3 2.5 [0 .5,2 .75] 3 [1,4.5] 5.0 [2 .25,5 .75] 2 
4 1.5 [0.5,2 .75] 5 [1,7.5] 2.0 [2,5.75] l 
5 7.5 [6.5,8] 15 [10,15] 8.5 [6.75,10] 3 
6 0.5 [0.5 ,2.75] l [1,4.5] 2.5 [2,5.75] 1 
7 6.5 [5. 75,7] 6.5 [4.5,9 .5] 4.5 [2.25,5.75] l 
8 5.0 [2.75,6.25] 8 [4.5,9 .5] 7.0 [5.75,9] 2 
9 7.5 [6.5 ,8] 9 [7 .5,10] 10.5 [7.25,10 .5] 3 
lO 3.0 [2,4.5] 6 [4.5,7.5] 6.5 [5.75,9] 2 
11 5.5 [2.75,6.25] 10 [8.5,10.5] 8.5 [6.75,10] 2 
12 2.5 [2,2 .75] 4 [1,7.5] 6.0 [2.25,6 .75] l 
13 6.5 [6.25,7.5] 13 [10,14.5] 8.0 [6.75,10] 2 
14 3.5 [2.75,4.5] 10 [9 .5 ,14.5] 5.5 [2 .25,6.75] l 
15 6.0 [5.25,6.5] 11 [10,14.5] 7.5 [6.75,10] 3 

Table 3. Similarity relation 

an attribute there are values of the a.ttribute for each object together with the 
E intervals of similarity with respect to these values. 

Having these intervals we can check that, for instance, object 13 is similar 
to object l, since: fal(l3) = 6.5 E [6 .5,8.0J,fa2(13) = 13 E [10,J5J,fa3(13) = 
8.0 E [7.25, 10.5]. However, the inverse relation 'l similar to 13 ' does not hold as, 
for instance, fa1 (1) = 8.0 ~ [6.25, 7.5]. This illustrates that sirnilarity relation 
is non-symmetric. Using the E-tolera.nce intervals calculated for all objects from 
table l we can calculate the following classes of the sirnilarity relation: 
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R- 1 (l) = {l, 5} 
R- 1 (2) = {2} 
R- 1 (3) = {3, 4, 12} 
R- 1 (4) = {4} 
R- 1 (5) = {1, 5} 
R- 1 (6) = {3,4,6} 
R- 1 (7) = {7} 
R- 1(8) = {8} 
R- 1 (9) = {9} 
R- 1 (10) = {8, 10} 
R- 1(11) = {11, 15} 
R-1(12) = {12} 
R- 1 (13) = {1, 5, 13, 15} 
R- 1 (14) = {14} 
R- 1 (15) = {13, 15} 

R(l) = {1, 5, 13}, 
R(2) = {2}, 
R(3) = {3, 6}, 
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R(4) = {3,4,6}, 
R(5) = {1, 5, 13, 15}, 
R(6) = {3, 6}, 
R(7) = {7}, 
R(8) = {8, 10}, 
R(a9) = {9}, 
R(10) = {10}, 
R(11) = {11}, 
R(12) = {3, 12} , 
R(l3) = {13, 15}, 
R(14) = {14} , 
R(15) = {11, 13, 15} 

Using these similarity classes we can define rough approximations of decision 
classes: 

• decision class l: 

- lower approximation {4,7,12,14} 

- upper approximation {3 ,4,6,7,12 ,14} 

• decision class 2: 

- lower approximation {2,8,10} 

- upper approximation {2,3,6,8,10,11,13,15} 

• decision class 3: 

- lower approximation {1,5,9} 

- upper approximation {1,5,9,11,13,15}. 

Then, a modification of the LEM2 a.pproach can be used to induce exact 
rules from the lower approximations. Some objects from boundary regions re­
main uncovered. The set of rules is the following: 

rule l. (a1 E [6.5, 8]) ----> (d=3) {1,5,9} 
rule 2. (a1 E [2.75, 6.25]) 1\ (a2 E [4.5, 9.5]) ----> (d=2) {2,8,10} 
rule 3. (a1 E [0. 5, 2.75]) 1\ (a2 E [1, 7.5]) ----> (d=1) {4,6,12} 
rule 4. (a2 E [8.5, 10.5]) 1\ (a3 E [2 .25 , 5.75]) ----> (d=1) {14} 
rule 5. (a1 E [5 .75,7]) 1\ (a2 E [4.5, 7.5]) ----> (d=1) {7} 

One can notice that these rules are more generał than the previous ones. 
Let us apply now the next extended approach, i.e. the new algorithm MOD­

LEM (Stefanowski, 1998c), to original data ta.ble without any preliminary dis­
cretization. The set of seven decision rules was obta.ined. There is no inconsis­
tency and aU rules a.re exa.ct . 
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rule l. (a3 ::::;6.25) A (a2 ;::::3.50) A (a1 ::::;3.75) ----+ (d=l) {4,12,14} 
rule 2. (a3 ::::;4.75) A (a2 ::::;6.75) ----+ (d=l) {4,6,7} 
rule 3. (a1 E [2.0 ,5 .75)) A (a3 :S 5.25) ----+ (d=2) {2,3} 
rule 4. (a3 ;::::5.75) A (a1 E [2 .75, 5.75)) ----+ (d=2) {8,10,11} 
rule 5. (a2 ;::::10.5) A (a1 E [6.25, 7.0)) ----+ (d=2) {13} 
rule 6. (a1 ;:::: 5.75) A (a2 E[7.75, 12.0)) ----+ (d=3) {9, 15} 
rule 7. (al 2: 7.0) ----+ (d=3) {1, 5, 9} 
Let us stress that this result ha.s been obta.ined without any prior discretiza.­

tion, the algorithm itself created necessary elementary conditions on numerical 
attributes. The representa.tion of these conditions is more generał , expressive 
and readable than in the classical a.pproa.ch. Moreover, we induced sma.ller 
number of stronger decision rules. The rules a.re supported by a. grea.tex num­
ber of learning examples. Therefore, they a.re more justified both to expla.in the 
decision situation and to give better recommenda.tions. 

3. Decision rules for multicriteria sorting problems 

Sorting of objects (actions), which consists in their a.ssignment to some pre­
defined and ordered classes, is one of the most frequent multicriteria. decision 
problems (Roy, 1985). Objects a.re described by a. set of criteria. and decision 
cla.sses a.re preference ordered. 

As pointed out by Greco, Matara.zzo and Słowiński (1996, 1998c) the origina.l 
rough set approach does not ta.ke into a.ccount the preference-ordered scales of 
both condition and decision attributes and thus cannot handle inconsistencies 
manifested by violation of the domina.nce principle. Therefore, it ca.nnot use 
properły all the essentia.l information conta.ined in the decision table of a. multi­
criteria. sorting problem. Greco, Ma.ta.ra.zzo and Slowiliski (1996) ha.ve proposed 
a new generalization of rough sets theory tha.t is a.ble to dea.l with ordinal prefer­
ence information. I t is ma.inly ba.sed on the idea. of repla.cing the indiscernibility 
or similarity relation by the dominance relation, which is a. very natura] concept 
within multicriteria decision making. Let us shortly present basie concepts of 
this genera.lization. More informa.tion ca.n be found in Greco et al. (l 996, 1998a., 
c, 1999a.). 

Let Są be an outranking rela.tion (Roy, 1985) on a. set U with reference to a. 
criterion q E C, such that xSąy mea.ns "x is a.t lea.st a.s good a.s y with respect 
to criterion ą". Suppose tha.t Są is a. complete preorder, tha.t is - a. strongly 
complete and tra.nsitive bina.ry rela.tion. 

Moreover, !et CI = { Clt, t E T} , T = l, ... , n, den o te cla.ssifica.tion on U, 
such that ea.ch x E U belongs to one and only one cla.ss Clt E CI. As decision 
ca.tegories in multicriteria. sorting a.re ordered, we assume that for a.ll r, s E T, 
such that s> r, ea.ch element of Cl 5 is preferred to ea.ch element of Clr. More 
formally, if S is a comprehensive outranking rela.tion on U, i. e. xSy mea.ns: for 
a.ll x,y E U: "x is at lea.st as good asy", then it is supposed tha.t [x E Clr,Y E 
Cl 5 , r >s] =} [xSy and not ySx]. 
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The ordinal classification of objects leads us to eonsiciering the following 
upward and downwarci cumulated classes (unions), respectively, 

Clt =U Cls 
s?_t 

Clf =U Cls. 
s~t 

The meaning of cumulated classes is the following: X E Clt means that 
element X belongs to "at lea.st decision class Clt" while X E Clf means tha.t X 

belongs to "at most decision class Clt". Notice that Clf- = Cl~ =U, Cl~ = Cln 
< and Cl1 =Ch. 

For exa.mple, let us come back to the bankruptcy risk eva.luation mentioned 
in the Introduction. The firms could be cla.ssified into three categories of risk: 1-
unacceptable, 2-uncertain, 3-accepta.ble. Of course, category 3 is more preferred 
than category 2, and category 2 is more preferred than category l. The defi­
nition of cumulated classes is the following: Clf' means "una.ccepta.ble" firms, 
Cli- means "at most uncertain" , i.e. "uncerta.in or una.ccepta.ble" firms, C l? 
means "at least uncertain" firms, i.e. " uncertain or accepta.ble", C l~ means 
"acceptable" firms. 

We say that x domina.tes over y with respect to a set of criteria. P r;;; C 
(nota.tion xDpy) if xSąy for each q E P. 

Let us consider the exa.mple from Ta.ble l. We ca.n trea.t this cla.ssifica.tion 
problem as the multicriteria. sorting problem, if we a.ssume t h at a1 , a2 , a3 a.re 
criteria and the decision classes a.re preference-ordered. For simplicity, we will 
assume that for all the criteria the direction of preference is increa.sing, i. e. a 
high value is more preferred tha.n a sma.ll one. Additiona.lly, decision cla.sses 
1,2,3 a.re also preference-ordered according to increa.sing class number. Tbe 
cumulated classes are the following: 

• Cl~ = {l, 5, 9, 15} 
• cl? = {1, 2, 3, 5, 8, 9, 10, 11, 13, 15} 
• Cli-= {2,3,4,6,7,8,10,11, 12,13,14} 
• Clt = {4,6,7,12, 14}. 

One ca.n notice that for instance object no. l dominates over object no. 
15 as Ua2 (15) = 11) and Ua3 (1) = 9.5) > (fa3 (15) = 7.5). In a simila.r way 
we ca.n check that object no. l does not domina.te over object no. 5 and vice 
versa.. There is no dominance between them because object no. l is better 
than object no. 5 on criteria a 1 and a3, but worse on criterion a2. All these 
objects, no. l, 5 and 15, belong to the sa.me decision cla.ss Cl3 . By checking if 
the dominance between objects on the eonsiciered criteria. is consistent with the 
class assignment, we can discover the following "troublesome" ca.ses: 

• object no. 15 (from the best cla.ss Cl3) is domina.ted by object no. 13 
(from the medium cla.ss Cl2 ), 
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• objects no. 12 and 14 (from the worst cla.ss Ch) domina.te over object no. 
3 (from the medium cla.ss Cl2). 

In both ca.ses, the domina.nce principle is viola.ted since objects ha.ving better 
eva.lua.tion on a.ll criteria. a.re a.ssigned to a. decision cla.ss tha.t is worse tha.n for 
domina.ted objects. It is rea.sona.ble , of course, to expect the inverse a.ssign­
ment. These ca.ses show inconsistencies of the second type, connected with the 
domina.nce principle. 

Given a. subset of criteria. P S: C and a.n object x E U , let us define two 
sets cha.ra.cterizing the domina.nce rela.tion , ca.lled: P - dominating set a.nd P -
dominated set, respectively: 

Dt(x) = {y E U : yDpx} 
D}>(x) = {y E U : xDpy}. 

The P-dominating set groups all objects that domina.te over the eonsiciered 
object x, i.e. which are at lea.st as good as this object, a.ccording to preference 
on criteria from P. On the other hand , P-dominated set consists of a.ll objects 
which are dominated by x. We can define the F-lower and the P-upper approxi­
mation of Clt with respect to P S: C (notation PClt and FClt , respectively), 
as: 

E(Clt) = {x E U: Dt(x) S: Clt } 

F(Clt) = U Dt(x) 
xECl~ 

Analogously, we define the P-lower and P-upper approximations of C l[: 

E(Cl[) = {x E U: D}>(x) S: Cl[} 

F(Cl'f) = U D}>(x). 
xECl~ 

The P-boundaries of Cl'f and Clt are defined as: 

Bnp(Clt) = F(Clt)- E(Clt ) 

Bnp(Cl[) = P(Cl[)- E(Cl[). 

Let us illustrate these concepts using our didactic exa.mple. We focus our 
interest on Clt. It consists of objects l , 5, 9, 15. 

P-dominating sets for these objects are the following: 

Dt(l) 

Dt(5) 

Dt(9) 

Dt(15) 

{l} 
{5} 

{9} 

{1, 5, 13, 15}. 
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One can notice that insicle the P -dominating set Df(15) there is also object 
no. 13 from another union Cli:. I ts P-dominating and P-dominated sets are 
Df(13) = {1,5,13} and Dj;(13) = {2,3,4,6,7,8,10,12 ,13, 14,15}. Therefore, 
we discavered that objects no. 13 and 15 axe inconsistent in the sense of the 
dominance principle. 

The upper and lower approxima.tions of the union Clf are given below: 

E(Clf) 

P(Clf) 

{1,5,9} 

{1,5,9,13,15} 

The boundary region Bnp(Clf) = {13, 15} . 
In the similar way we can caleula te upper and lower approximations of union 

Cli:, i.e. 

PCZ:5 
- 2 

Pcl<;_ 
2 

{2,3,4,6,7,8, 10,11,12,14} 

{2,3,4,6,7,8, 10,11,12,13,14,15} 

The bounda.ry region Bnp(Cli:) = {13, 15}. 
The obtained a.pproximations clearly separate certain part of information 

a.bout decision a.ssignments to both unions Clf and Cli: from doubtful part 
that comprises inconsistent examples 13 and 15. Thus, the genera.lized rough set 
approach ena.bles to discover the inconsistency referring to dominance principle. 

Proceeding in an analogous way, one ca.n discover another group of incon­
sistencies, i.e. objects no. 3,12 and 14. They belong to the boundary region of 
unions Clf and Cli:. 

On the basis of the approxima.tions obta.ined by mea.ns of the domina.nce 
relations, it is possible to induce a genera.lized description of the preferentia.l 
information conta.ined in the decision ta.ble, in terms of decision rules. 

The following three types of decision rules are considered: 

l. decision rules of the type D >, which ha.ve the following form: 

(ql ?: rąJ A (q2 ?: rqJ A . . . (ąp ?: rąp) __, (d= Cl~), 
where P = {q1,q2, ... ,qp } r;;; C, and rą 1 ,rą2 , . .. ,rą,, a.re values from the 
domains of respective criteria and t is the index of a. cumula.ted decision 
class C l~; these rules a.re supported only by objects from the P-lower 
approximations o f C l~; 

2. decision rules of the type D <, w hi ch have the following form: 
l l - ' < 

(ql ::; rą,) A (q2 ::; rąJ A . . . (qp::; rąp) __, (d = Clt), 

where P = { q1 , ą2, ... , ąp} r;;; C, and r~,, r~2 , ••• , r~v a.re va.lues from the 

domains of respective criteria and t is the index of a. cumula.ted class Clt; 
these rules are supported only by objects from the P-lower a.pproximations 
of Cl<;_· t , 

3. decision rules of the type D <;_?., which have the following form : 
(ql ?: rqJ A (q2?: rą2 ) A ... A (qk?: rą,J A 
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(qk+l :S: Tqk+l) 1\ (qk+2 :S: rq,,+2) 1\ ... 1\ (ąp :S: Tą,,)----+ (d= Cls U Cls+l U 
... u Clt), 
where o'= {ąt,ą2, ... ,ąk} <;;;c and o"= {ąk+l,ąk+2, ... ,ąp} <;;;c are 
not necessarily disjoint, r ą 1 , r ą2 , •• • , r ąp are values from the domains o f 
respective criteria, and s, t E T such that t > s are the indices of cumulated 
classes; these rules are supported only by objects from the P-boundaries 
of C l~ and C l{'. 

Two first types of rules correspond to certain part of knowledge extra.cted 
from input data table, while the third type is the approximate one as it is built 
of the doubtful part. 

The rule induction technique, called DOMLEM, generalizes the MODLEM 
algorithm in order to observe the dominance principle (for details of this mod­
ification see Greco et al.,1999b). DOMLEM and its archetype MODLEM are 
characterized by a polynomial computational complexity. 

We give below the list of rules induced from Table l by the DOMLEM 
algorithm. 
Exact rules: 

rule l. (a1 :2':7.5) ----+ (d = Cl~) {1,5,9} 
rule 2. (a3 :2':6.5) ----+ (d= Cl~) {1,5,8,9,10,11,13,15} 
rule 3. (a1 :2':4) 1\ (a2 :2':7.0) ----+ (d= Cl~) {1,2,5,8,9,11,13,15 } 
rule 4. (a1 :::;5.5) ----+ (d= Cl~) {2,3,4,6,8,10,11,12,14} 
rule 5. (a2 :::;6.5) ----+ (d= Cl~) {3,4,6,7,10,12} 
rule 6. ( a3 :::;4.5) 1\ ( a2 :::;6.5) ___, (d = czf) { 4,6, 7} 

Approximate rules 

rule 7. (a2 :2':11) 1\ (a3 :::;8.0) ----+ (d= Cl3 or Cl2) {15,13,} 
rule 8. (a3 :2':5.0) 1\ (a2 :::;4.0) ----+ (d= Cl1 or Cl2) {3,12} 
rule 9. (al ::;3.5) 1\ (a2 :SlO.O) ----+ (d= Cl 1 or Cl2) {14} 
If the above eight rules were applied to the objects from the data table then 

objects no. 1,2, 4-11 would be reclassified exactly to their classes, while objects 
no. 3,12 and 14 would be classified approximately to classes Cl 1 or Cl2 and 
objects no. 13 and 15 to classes Cl2 or Cl3. 

Let us observe that apart from the semantic difference, the set of decision 
rules induced from the rough approximations defined using dominance relations 
gives, in general, a more synthetic representation of knowledge contained in 
the decision table than the set of rules induced from classical approximations 
defined using simple indiscernibility relations. The minimai sets of rules thus 
obtained have a smaller number of rules and use a smaller number of elementary 
conditions. 

4. Conclusions 

Handling inconsistency of information is of major importance for decision anal­
ysis. We claim that inconsistency should not be considered as a noise or error 
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in data - a proper understanding of its semanties ean help in drawing eertain 
(exaet) and possible (approximate) eonclusions from available information. As 
to the semantics of ineonsisteney, we distinguish two kinds: one ineonsisteney 
is related to indiseernibility of objeets deseribed by regular attributes, and the 
other ineonsisteney follows from violation of the dominanee prineiple among 
objeets deseribed by eriteria, i.e. attributes with preferenee-ordered seales. The 
various versions of the rough sets theory ean deal with both kinds of ineonsis­
teney. Rough sets theory has been eombined with rule induetion teehniques in 
order to get exaet and approximate deeision rules. 

We surveyed these eombinations, starting from the simplest ease where el­
ementary eonditions of the rules are of the form attribute=single value. lt is 
typical for indiseernibility-based rough sets theory and nominal seales. Then, 
we eonsicieredan extended syntax in the form of attribute#value, where # means 
one ofthe operators: =, :::;, ?:, <, >. It is typieal for indiseernibility or simila.rity­
based rough sets theory and ordina.l or numeriea.l attribute seales. The above 
eonsiderations were limited to ha.ndling only the first kind of ineonsistency. 

Finally, we eonsiciered criteria and preference-ordered decision cla.sses where 
the second kind of inconsistency has to be taken into account. The rules in­
duced from dominance-based rough approximations of deeision classes have the 
extended syntax of elementary conditions mentioned above; moreover , their de­
eision parts indieate assignment to "at least" or "at most", given decision class. 

Current research directions coneentrate on considera.tion o f re gul ar attributes 
and criteria in a joint model whieh handles both kinds of ineonsistencies within 
the rough sets theory and rule induetion techniques, Greco et al. (1998a) . Yet, 
another ehallenging perspectives is conneeted with taking into aceount missing 
values in the data table, Greeo et al. (J 999d). Other stucli es try to introduce 
grades into the rough sets approaeh using fuzzy extensions, see Greco et al. 
(1998b, 1999c). 
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