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Abstract: In the perspective of parallel processing, a new sense
of parametric optimization might be promoted. The paper shows
that it is possible to propose new parallel versions of basic opti-
mization algorithms, as well as an advanced method of securing
convergence in interactive multiobjective optimization and decision
support, all based on a modified concept of parametric embedding.
This general idea is exemplified for the case of the simplex algorithm
of linear programming by a parameterized and coarse-grain parallel
augmented simplez algorithm, where a linear optimization problem
can be embedded into a multiple-objective family which introduces
diversified directions of search cutting through the interior of the
original admissible set. For the case of nonlinear programming, a
parameterized and coarse-grain parallel variable metric pulsar algo-
rithm is shortly presented, where parallel directional searches are
combined with a parameterized variable mefric to produce a pulsat-
ing, robust nonlinear programming algorithm. These two examples
concern very basic optimization tools; at the other end of the spec-
trum of optimization-related methods, a general method called out-
ranking trials of securing convergence of interactive multiobjective
optimization and decision support is obtained through parameter-
izing an outranking relation and using basic properties of order-
consistent achievement functions in reference point methodology for
testing the existence of outranking points by parallel optimization
runs. Thus, the paper presents the use of parallel processing to solve
a wide range of modified parametric embedding problems related to
optimization and decision support.

Keywords: parallel computations, optimization, interactive de-
cision support.
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1. Introduction; parametric embedding for parallelization

Various paradigms of parametric optimization can be distinguished by specifying
various goals of using parametric approaches. These goals might be:

e To make possible solving of the ill-posed or ill-conditioned problems;

e To shorten computations for difficult or large-scale problems;

e To increase the robustness of solutions;

e To broaden the scope of approaches to the analyzed models.

While the first two goals of parameterization are well known, less known are
possible uses of parametric approaches to the remaining two goals; this paper
concentrates on demonstrating such uses. Let us comment only on the last
goal; broadening of model analysis — see, e.g., Wierzbicki (1984) — can refer to
many aspects, such as sensitivity analysis, but always includes optimization,
seen, however, not as the goal in itself but as a tool of various tasks of analysis.
Another specific feature of this paper is concentration on parallel computations
in parametric optimization. There are several classical approaches to paral-
lelization, such as fine-grain parallelization (single-loop parallelization), massive
parallelization, etc. However, the development of very powerful processors used
practically in every personal computer or workstation makes these approaches
obsolete; coarse-grain paralellization, based on large computing tasks performed
parallely, is necessary instead. This paper shows that parametric embedding and
optimization might be good areas for using coarse-grain parallel approaches.

The basic idea of parametric embedding might be specified as follows. Sup-
pose solving a specific problem — e.g. inverting a function f - is difficult (com-
putationally intensive, or ill-conditioned, or even ill-posed). Note that we speak
here of approximate solutions. If, say, a precise inversion is needed, as in cryp-
tography, parametric embedding might be difficult to apply. We construct a
parameterized family of problems which for specific parameters are easy to solve
but include the original difficult problem and we solve these problems consec-
utively. This idea is illustrated by the following example: we have to invert,
instead of a "difficult” function f, a parameterized function F, = (1 —a)l +af,
where I is identity operator, for a sequence of parameter values « starting with 0
and terminating with 1. This basic idea is, however, consecutive in its essence,
hence difficult for parallelization. If the goal of parameterization is different,
e.g. to increase robustness or to broaden analysis, then we can use the same
idea of parametric embedding for coarse-grain parallelization. We proceed as
follows. Given a problem F, we construct a family of parameterized problems
Fu, embedding the original problem (we can use a similar specific embedding
as in the example above). Then we use parallel computing for solving various
instances of parameterized problems. Finally, we combine the results of parallel
computations for increasing robustness or broadening analysis.

This modified idea of parametric embedding will be shown in this paper by
two parallel modifications of basic optimization algorithms and an application
to securing convergence of interactive multiobjective decision support.
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Figure 1. An illustrative example of solving a linear programming problem by
a simplex method.

2. Augmented simplex algorithm

A typical linear programming problem:

s T
maximiz = 1
iximize(qo = ¢’ ) (1)

Xo={zeR":l<zx<u, b<y=Az<b+reR™},

can be solved by two classical methods:

1) Simplex methods — many variants (two-phase, dual, big M, special for
scarce matrices, etc.) — all moving through simplex vertices, as in the
illustrative example of Fig. 1.

2) Karmarkar and interior point methods (elipsoid; logarithmic barrier func-
tion; primal-dual interior point methods) all moving through simplex in-
terior, see an illustrative example in Fig. 2.

A multiobjective linear programming problem:

1 aocema ol — P
maxinize (g=C=z € RP) (2)

Xo={xc€R":l<z<ub<y=Az<b+rec R™},
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Figure 2. An illustrative example of solving a linear programming problem by
an interior point method.
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Figure 3. An illustrative example of an outcome set in objective space for a
multiobjective linear programming problem and of the Pareto (efficient) frontier
of this set.

where “maximize” is defined by a cone D C RP?, eg.: D = R (the case of
Pareto optimization), has typically an entire set of efficient solutions (so called
Pareto frontier), which can be illustrated as in Fig. 3.

There are many methods of solving (2) — in the sense of finding at least one
element of the entire set of efficient solutions. We can distinguish the following
classes of methods:

1) classical methods which are based on maximizing a weighted sum of ob-
jectives, with weighting coefficients o;:

p
si(g, @) = Z @i
i=1

2) contemporary methods which admit that a linear approximation to a value
function of a decision maker is too simplistic and results in many para-
doxes, thus are based on maximizing a nonlinear scalarizing function. One
of the most useful is the following order-consisitent achievement scalariz-
ing funcion, see e.g. Wierzbicki (1980, 1986, 1998):

P

52(9,q, @) =£=E§1inpa£(qi - Gi) +€Zﬂ’i(qz' — ) (3)
e i=1
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using reference or aspiration levels @; in addition to weighting coefficients
a; (which play a secondary role then or are used only implicitly) as a basic
way of expressing the preferences of the decision maker. The coefficient
€ > 0is usually chosen as a small positive number, in order to eliminate the
so-called weakly efficient solutions and the above function is related then
to a slightly broader cone D. that approximates D = R from outside and
is equal to the zero-level set of this function if all §; = 0. We shall return
later to the properties of such functions; here we shall use its simplest
variant with € = 0.

When using such a variant of the achievement scalarizing function, we can
define an augmented linear programming problem as a parametric embedding
of a linear programming problem. Suppose we have the following linear pro-
gramming problem:

T . m
maixel%’ljze(qo =ic"®)
and let Int X, # 0,c; > 0 Vj = 1,...,n. This problem can be embedded as
follows:

max s,(e,d, 3) (4)

sp(@,d, @) = pc'z+(1—p) min ((z;-2;)/d;)

where:

e p =0 in multi-criteria phase;

e p =1 in single-criterion phase;

e d is a direction in the solution space;

e d; = 1/ are inverse weighting coefficients for the problem of multiobjec-

tive mazimization of all components x;;

e T = @ is a reference point in the solution space.

The augmented simplex algorithm uses first a multi-criteria phase in order
to shorten computations and increase the robustness of the method; then it
switches (either directly or gradually) to the single-criteria phase. The solution
of the multi-criteria phase problem is illustrated graphically in Fig. 4. Even if
we use a simplex method for solving the problem, the algorithm cuts through
the interior of the original admissible solution set along the direction d (but not
through the interior of the resulting admissible solution set, since the multiob-
jective formulation changes this set).

This property suggests that the augmented simplex algorithm can be faster
than the more classical variants of the simplex algorithms when applied to large
scale problems with much more constraints than original variables. However, the
augmented simplex algorithm can be also used for parallel or distributed com-
putations, where various directions d are used on various processors in the mul-
tiobjective phase. The results of testing of such algorithm (including not only
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Figure 4. An illustrative example of the path of solutions in the multi-criteria
phase of the augmented simplex method.

simplex-like algorithms, but also subdifferential approaches, see e.g. Wierzbicki,
1994) indicate that such parameterization and parallelization:
e sometimes shortens computations, but not necessarily in proportion to the
number of processors used;
e always increases robustness, that is, gives more reliable solutions to ill-
defined linear programming problems with solutions determined through
almost linearly dependent constraints.

3. Pulsar variable metric

Consider the elementary problem of nonlinear programming: minimize a twice

differentiable function f : R™ — R! over an open set. One of the basic classes of

algorithms are quasi-Newton or variable metric methods. A variable metric vk

successively approximates the Hessian H (z) = V2f(z) or its inverse H ' (z).
If we assume initially that the function is quadratic:

fle)=056<x®, Axz>+<b, x>+c (5)
Vf(z)=g(x)= Az +g € R",V*f(z) = H(x) = A € L(R", R")
and consider following increments and relations:

s(k) = (k1) _ w(k);y(k) = Vf(:c(k"'”) _ Vf(a:(k)); (6)
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y® = Fs®) o) = fr-1y®)
then we can use these relations to construct V) such that:
s = V(k‘l-l)y(j) forj=1,...,k (7)

which implies that vt = g1 if all y®) are linearly independent.

There are many known formulae for AV®) used not only for quadratic,
but also twice differentiable functions. Most popular are the so-called rank-two
variable metric formulae. However, these formulae require precise directional
search in the following gquasi-Newton directions:

d® = _V(k)g(k); (8)
where V) = I; g®) = v 1 (2(®))
and produce the approximations of the Hessian matrix or its inverse due to the

fact that these directions are conjugate.
There is also a symmetric rank-one variable metric that is defined by formula:

(sk) — V(k)y(k)) >< (s — V(kiy(k))
< () — VK)gyk)) g(k) >

where . >< . denotes the outer product. This variable metric is unpopular,
because it becomes ill-defined when the matrix V*) approximates well H ™ ':

s (S(k) e V(k)y(k)),y(k) S=< (H_] 22 V(k))y(k)‘y(k) > (10)

AV =

(9)

However, this variable metric does not require that the quasi-Newton direc-
tions (8) are used, neither that precise directional search is applied, nor it is
related to the conjugacy of directions (8). When modified with special safe-
guards, this variable metric can produce very efficient algorithms. Because of
these advantages, this variable metric can be applied in parallel computations.
We shall show how it can be used in a parallel pulsar algorithm.

Assume that n > P — 2, where P is the number of processors used (these
processors are indexed by 1 = 1,..., P). Typical jobs assigned to processors
with v > 1 are directional searches. v = 1 is reserved for variable metric
approximation and other coordinating tasks.

Let K denote pulsar algorithm iterations (this number is actually increased
by two during each double pulsar iteration). In odd-numbered (divergent) it-

erations, processors ¥ = 2,..., P perform directional searches (not necessarily
accurate) along the following directions:
d(l,O) — _g(]) or d(K,D) _ _V(K—'I)g(f\’) (] ])
dBD = e;=(0,...,1Gy--,0T,5=1,...,n

to produce n -+ 1 diverse points:
oK) = (B 4 2(K3) g(@)
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where 7(5:7) are the corresponding step-size coefficients. We have then:

y &) = Vi@ 4 ) - v ()

The data fU57), g(K:d) 4(K.3) and s59) are successively transmitted to the
first processor that uses these data to update the approximation of the inverse
Hessian by a safe-guarded rank-one formula.

In even-numbered (convergent) iteration of the pulsar algorithm, the direc-
tional searches are performed from n -+ 1 various points £7) in corresponding
quasi-Newton directions:

AL ) () (13)

Other operations in the even-numbered iterations (computing the increments
of solutions and gradients, transmitting data to the first processor for Hessian
approximation, etc.) are similar as in the odd-numbered. The even-numbered
iteration of the pulsar algorithm ends when the first processor determined a new
inverse Hessian approximation and a new common starting point £*+2) for the
next odd-numbered iteration, chosen among z¥+17) as a point with the lowest
fUEFLI), appropriate stopping tests are repeated.

All points ¥ +1:4) obtained in an even-numbered iteration should rather
precisely approximate the minimum of the goal function f from various sides.
This is shown by the illustrative example in Fig. 5.

This spread of points, this pulsating justifies the name of the pulsar algo-
rithm, but at the same time increases the robustness of the algorithm with
respect to:

e numerical inaccuracies,

e ill-conditioning of optimization problem,

e Jocal minima

e inaccuracies of the stopping tests.

The tests of the pulsar algorithm — see Sobezyk et al. (1994) — show that the
algorithm sometimes increases the speed of computations, but not proportion-
ally to the number of processors used. On the other hand, the algorithm displays
a substantially increased robustness for ill-conditioned problems; for example,
it solves with high accuracy problems with singular Hessian at the optimal so-
lution, while sequential variable metric algorithms can solve such problems only
with very low accuracy.

4. Qutranking trials
4.1. Interactive methods of multicriteria decision support

Multicriteria optimization and decision theory is very broad and contains many
approaches and problems; see e.g. Gutenbaum (1977), Sawaragi et al. (1985),
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D)

Figure 5. An illustrative example of the odd-numbered (divergent) and even-
numbered (convergent) iterations of the pulsar algorithm.

Steuer (1986), Rios (1994), Gal et al. (1999). However, we limit the presentation
here to interactive methods in this field. Generally, interactive methods support
the interaction with the user of a decision support system (DSS) or a decision
maker; in multicriteria approaches, this interaction has often the goal of selecting
a point on a Pareto frontier. This point might optimize the value function of the
decision maker, or be the best according to other forms of her/his preferences.
We can distinguish — see Wierzbicki (1997):
e Interactive methods with proven convergence, such as:

— the Geoffrion-Dyer-Feinberg procedure, see Geoffrion et al. (1972);

— the Zionts-Wallenius procedure (more effective, but with more re-
stricted class of multi-objective linear programming models — see
Zionts and Wallenius, 1976, 1983);

— the Korhonen-Laakso Procedure and Pareto Race, related to the con-
cept of a reference direction, see Korhonen et al. (1985).

— Stochastic Quasi-Gradient Procedures, see e.g. Ermolev et al. (1988).
e Interactive methods with accelerated convergence, such as:
— Reference Ball, see Wierzbicki (1997);

— Contracted Cone — by Steuer and Choo, see Steuer et al. (1983),
later versions by Jaszkiewicz and Slowinski (1994);
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— Satisficing Trade-Off — by Nakayama and Sawaragi, see Nakayama et
al. (1983), Nakayama (1994);

— Light Beam Search - by Jaszkiewicz and Slowinski, see Jaszkiewicz
et al. (1994).

Most approaches with proven convergence imitate mathematical program-
ming techniques — see Bogetoft et al. (1988), Wierzbicki (1997). Other ap-
proaches concentrate on accelerating practical convergence instead, and are
quite effective. Reference point approaches, mentioned earlier in this paper
and exemplified here by the Reference Ball, Satisficing Trade-Off and Pareto
Race procedures, are also quite effective, but their convergence was proven only
for special cases. We shall present below the Outranking Trials procedure, in-
troduced in Wierzbicki (1997). This procedure not only combines an outranking
relation with a reference point approach, but also adds an important element:
the application of parametric embedding and parallel computations.

4.2. Properties of reference point approach

As mentioned earlier in this paper, reference point approaches are based on the
maximization of a nonlinear order-consistent achievement scalarizing function,
which can have diverse forms — see Lewandowski et al. (1989), Wierzbicki (1986,
1999). The most fundamental of these forms is given in Eq. (3); we repeat it
here with slight changes of notation:

P
o(q,q) zi:n;linp(g,' — &) +EZ(% - Gi) (14)
B i=1
As already indicated, the zero-level set of this function corresponds to a
slightly broader positive cone D.:

D.={gcF": min (@)+e) (a)20} (15)

i=1

This function shifts the above cone to the reference or aspiration point q.
Due to this property, the achievement function nonlinearly separates the attain-
able criteria set g, and the cone g + D is efficient if g lies on Pareto frontier.
Because of this separation property and the monotonicity of o(g,), we can
state the most important properties of the reference point approach:

e each maximum of o(g, q) is efficient;
e for each g that is efficient with respect to D, there exists such g that the
maximum of o(qg,§) over g € Q is attained at g;
e if the maximum of a(q, @) over g € Qg is negative, then g ¢ Qo.
All these properties are independent of the convexity of Qp; this is shown in
the illustrative example in Fig. 6.
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£ r q}

Figure 6. An illustrative example of the properties of reference point approach:
q’ is the maximum of the function (14) with the reference point g, and g is
the maximum of the function (14) with the reference point g+; Qg denotes the
Pareto frontier of the set of attainable objectives Qg which is nonconvex in this
example.
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4.3. The decision process including outranking trials

We suppose that a multiobjective optimization model is investigated with the
help of reference point methodology. We assume the following form of the
decision process:

e Stage I: Learning — consists either of:

1. Unrestricted change of reference points and learning about efficient
outcomes;

2. Application of any method with accelerated practical convergence.

Stage I ends when the decision maker (DM) asks for support in check-
ing whether a more preferred solution is available. We assume that DM
preferences are stabilized at this point.

e Stage II: Outranking Trials — consists of a special convergent. procedure
using outranking relations and reference points. The use of outranking re-
lations is justified because the DM is usually interested only in significant,
not infinitesimal improvements, see Roy et al. (1981), Vincke (1998).

4.4. A family of outranking relations

In particular, we use the following family of outranking relations. The decision
maker should define four threshold values for each eriterion (objective outcome):

1. wveto threshold Agy,,; >0,

2. negative indifference threshold Agnii > 0, Agni: < Aqav.

3. component outranking threshold Aqe.; > 0,

4. positive indifference threshold Agpii > 0, Agpii < Ageoi

Given two points in the objective space: g (a current best point, usually
already efficient or Pareto-optimal) and g (any point suspected of outranking
the point ¢), we can construct with these thresholds the following five index
sets:

I = {ie{l,...,p}: ¢ 2 G+ Dgps}
I = {ie{l,....,p} ¢ <G — Ognii}
Iy = {1,...,p}\(I+UL) (16)
I. = {i€{l,...,p}:q =G+ Dgeoi)
L, = {8€{lyuiiip) 1 G G— Oy}

These index sets indicate the possibility of g outranking g. If I, # 0, then
there is no outranking. If I_ = 0, then [, = 0; if, additionally, I, # 0, then
there is component outranking of g by q. If I, = 0 and there are much more
elements in Iy than in I_, then we can define parametrically an outranking by
the difference of the cardinalities of these sets, | I, | — |I_]

Thus, we define two outranking relations, where the second one is actually
a parametric family of such relations, dependent on a number k < p, where p is
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the number of objectives:

qCq & (L#0)AN(I-=0) (17)
qPrq & (I —|I-|Z k)A (L, =0)

It is easy to show that C C Py, if k = 1 and that C is usually stronger than
Pr. Thus, outranking can be tested with increasing sensitivity:
1. start by checking if g C g for some g € Qy,
2. then, set consecutively k = p—1,p—2, ..., 1 and check if g Py g for some
q € Qo.

4.5. An outranking test with reference point methods

This test is based on the general property of order-consistent achievement scalar-
izing functions mentioned earlier:

v maxgeq, o(¢,q) > 0;
q€Qo= { § = argmaxgeo, 0(0:@) > G (18)

Because of this property, in order to test gC g, it is sufficient to test the
attainability of the reference point g'¥) defined as follows:

() : .

= q; +AQC91?: 1=7 s

4G= e ' ; ; 136{11'--11{)} (19)
{ QEJ)—AQm,i iFJ }

If the maximum of a(q,qm) is nonnegative, we can present the maximiz-
ing point to DM for acceptance. If the maximum is negative, no component
outranking point exists for the objective j; we can repeat this (or compute in
paralel and present to the DM) for all j € {1,...,p}.

In order to construct a test for P, outranking, we define sets If ), I (_j ), Ié,j )

such that |If) | — |I(_j)| = k, where the upper index (j) denotes one of possible
subdivisions of the set {1, ..., p} into such sets. The number num(p, k) of such

subdivisions can be generated in a combinatorial way; the sum of such numbers
has an upper bound 27,

Using again the property (18) we observe that, in order to test for q Py 4,
it is sufficient to test the attainability of the reference point g defined this time
as follows:

o | G A e 5

G _) o e =Yy

&= aqi Aqgv,t 1 & }'(_) 1 j= - ,num(p, k) (20)
G — Dgnigy 1€ Iy

When testing the attainability of such reference points, we again maxi-
mize, for each j = 1,...,num(p, k), the order-consistent achievement function
olq, g\9). If the maximum value of this function is negative, no outranking
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exists; if the maximum is nonnegative, the maximal point should be presented
for acceptance to the decision maker. Again, we can use parallel computations
and present to the decision maker possibly several points resulting from them.
If no maximum with positive value of the achievement function can be found,
we can decrease k and repeat the procedure; if no maximum with positive value
of the achievement function can be found even for k = 1, no outranking points
exist even in the weakest sense.

4.6. Outranking-value consistence axiom and convergence proof

It is now easy to show the convergence of Outranking Trials as described above.
We need only to define the meaning of convergence; we are using outranking
relations and convergence is typically understood in value function terms. Thus
we assume that the decision maker has a value function (which has stabilized af-
ter the learning stage of the decision process) and that this function is consistent
with the outranking relation. We need the following:

Outranking-value consistence axiom: Outranking relations defined above
are consistent with a continuous, monotone value function v(q) if there is a fi-
nite, positive value indifference threshold such that, if v(q) — v(g) = Awv, then
g outranks g at least in some weak sense — and conversely.

Assuming outranking-value consistence, the proof of convergence for com-
pact Qo and continuous v(g) is immediate (we can use also a weaker assumption
— that supg € Qo < o0). We give here only an outline of the proof:

1. If the set Qg of attainable outcomes is compact, the continuous value func-
tion can only finitely increase .... Since Av is finite, and every accepted
step of the procedure produces a finite Awv, there might be only finitely
many steps of the procedure in which an outranking point is found.

2. If no point with positive achievement can be found, then no attainable out-
ranking point exists, due to the basic property (18). Because of outranking-
value consistence axiom, this means that the value function is maximized
at the endpoint with the accuracy of Awv.

Note that the proof is existential, not constructive: we cannot say in advance
how many steps of the procedure are needed, because the relation between the
four threshold values used in outranking relation and the increment Av might
be quite complicated.

4.7. Parallel computation aspects and concluding properties

The number of subsequent optimizations for one iteration of Outranking Trials
can be large (up to 27, say 128 with p = 7). However, these computations can be
made in parallel (or be distributed) and do not bother DM: she/he is only asked
to approve of the decisions and outcomes suspected of outranking or to select
between such decisions. Moreover, observe that the amount of computations in
an iteration of Outranking Trials might be smaller in the initial iterations: as
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soon as an outranking point is found and accepted by the decision maker. a new
iteration starts. The amount of computations increases in final iterations, when
it should be proven that no outranking points exist.

Preliminary (distributed) tests of Outranking Trials are being performed;
the results until now show the applicability of the idea. An idea of combining
Outranking Trials with a genetic algorithm is also being tested.

Outranking Trails offer also an alternative theoretical approach to the issue
of convergence of other interactive procedures of multi-objective and decision
support, such as Satisficing Trade-Off, Contracted Cone or Light Beam Search
procedures.

5. Conclusions

We present here only some short conclusions stressing the main points presented
here:

e Outranking Trials show an application of parametric embedding and par-
allel or distributed computations for the purpose of broadening analysis of
multi-criteria models, in this case — proving convergence of computer-men
interaction.

e Parametric embedding and parallel or distributed computations can be
also used for increasing robustness of optimization procedures, as illus-
trated by Augmented Simplex and Variable Metric Pulsar algorithms.

e The basic objective of parallel computations ~ shortening of computations
for difficult problems — will probably remain the main motivation (we
always try to solve more difficult problems — and we always can saturate
with them the most advanced computers!)

e However, it is good to know that there are also other objectives for paral-
lelization and to use such objectives in practice.
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