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Abstract: In the perspective of paraHel processing, a new sense 
of parametric optimization might be promoted. The paper shows 
that it is possible to propose new paraHel versions of basie opti­
mization algorithms, as weH as a.n a.dva.nced metbod of securing 
convergence in intera.ctive multiobjective optimization and decision 
support, aH ba.sed on a. modified concept of parametric embedding. 
This general ideais exemplified for the case of the simplex a.lgorithm 
of linea.r progra.mming by a. pa.rameterized and coarse-gra.in paraHel 
augmented simplex algorithm, where a linear optimization problem 
ca.n be embedded into a. multiple-objective family which introduces 
diversified directions of search cutting through the interior of the 
original admissible set. For the case of nonlinea.r progra.mming, a. 
pa.ra.meterized and coa.rse-gra.in paraHel variable metric pulsar algo­
rithm is shortly presented, where paraHel directional searches are 
combined with a parameterized va.ria.ble metric to procluce a pulsa.t­
ing, robust nonlinear programming algorithm. These two examples 
eonceru very basie optimization tools; at the other end of the spec­
trum of optimiza.tion-rela.ted methods, a general metbod caHed out­
ranking trials of securing convergence of interactive multiobjective 
optimization and decision support is obtained through parameter­
izing an outranking relation and using basie properties of order­
consistent achievement functions in reference point methodology for 
testing the existence of outranking points by paraHel optimization 
runs. Thus, the pa per presents the use of paraHel processing to solve 
a wide range of modified parametric embedding problems related to 
optimization and decision suppott. 

Keywords: paraHel computations, optimization, interactive de­
cision support. 
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l. Introduction; parametric embedding for parallelization 

Various paradigms of parametric optimiza.tion ca.n be distinguished by specifying 
various goals of using parametric a.pproaches. These goals might be: 

• To make possible solving of the ill-posed or ill-conditioned problems; 
• To shorten computations for difficult or large-scale problems; 
• To increase the robustness of solutions; 
• To broaden the scope of a.pproaches to the a.nalyzed models. 
While the first two goals of parameterization are well known, less known are 

possible uses of parametric approaches to the remaining two goals; this paper 
concentrates on demonstrating such uses. Let us comment only on the last 
goal; broadening of model analysis - see, e.g., Wierzbicki (1984) - can refer to 
many aspects, such as sensitivity analysis, but always indudes optimization, 
seen, however , not as the go al in itself but as a tool o f various tasks o f analysis. 
Another specific feature of this pa.per is concentration on para.llel computations 
in parametric optimization. There are several classical a:pproaches to paral­
lelization, such as fine-gmin parallelization (single-loop para.llelization), massive 
parallelization, etc. However , the development of very powerful processors used 
practically in every persona! computer or workstation makes these approa.ches 
obsolete; coarse-grain paralellization, based on large computing tasks performed 
parallely, is necessary instead. This paper shows that parametric embedding and 
optimization might be good areas for using coarse-grain paraHel approaches. 

The basie idea of parametric embedding might be specified as follows. Sup­
pose solving a specific problem - e. g. invert ing a function f - is diffi.cul t (com­
putationally intensive, or ill-conditioned, or even ill-posed). Note tha.t we speak 
here of approximate solut ions. Jf, sa.y, a precise inversion is needed, as in cryp­
tography, parametric embedding might be difficult to apply. We construct a 
para.meterized family of problems which for specific parameters are easy to solve 
but include the origina.l difficult problem and we solve these problems consec­
utively. This idea is illustrated by the following example: we have to invert , 
instea.d of a "difficult" function j, a parameterized function Fa= (1-a)J + aj, 
where I is identity operator, for a sequence of parameter va.lues a starting with O 
and termina.ting with l. This basie idea is, however, consecutive in its essence, 
hence difficult for pa.ra.lleliza.tion . If the goal of pa.ra.meterization is different , 
e.g. to increase robustness or to broa.den a.nalysis, then we can use the same 
idea of pa.rametric embedding for coarse-grain parallelization. vVe proceed as 
follows. Given a problem :F, we construct a family of pa.rameterized problems 
:Fa. , embedding the original problem (we ca.n use a similar specific embedding 
as in the exa.mple a.bove). Then we use paraHel computing for solving various 
insta.nces of parameterized problems . Finally, we combine the resu] ts of paraHel 
computations for increa.sing robustness or broadening analysis. 

This modified idea of para.metric embedding will be shown in th is paper by 
two paraHel modifications of basie optimization algorithms and an a.pplication 
to securing convergence of intera.ctive multiob jective decision support. 
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Figure l. An illustra.tive exa.mple of solving a. linea.r progra.mming problem by 
a simplex method. 

2. Augmented simplex algorithm 

A typica.l linea.r programming problem: 

ma.ximize( q0 = eT x) 
XEXo 

Xa = {x E Rn: l::::; x::::; u, b::::; y = Ax::::; b+ rE Rm} , 

ca.n be solved by two cla.ssica.l methods: 

(l) 

l) Simplex methods - many va.ria.nts (two-phase, dual , big M, specia.l for 
scarce ma tri ces, etc.) - a.ll moving through sim p lex vertices, as in the 
illustrative example of Fig. 1. 

2) Karmarkar and interior point methods (elipsoid; logarithmic barrier func­
tion; primal-dual interior point methods) all moving through simplex in­
terior, see a.n illustrative example in Fig. 2. 

A multiobjective linear progra.mming problem: 

"maximize"(ą = Cx E R P) 
XEXo 

(2) 
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Figure 2. An illustrative example of solving a linear programming problem by 
an interior point method. 
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Figure 3. An illustra.tive exa.mple of a.n outcome set in objective spa.ce for a. 
multiobjective linea.r progra.mming problem and of the Pa.reto (e:fficient) frontier 
of this set. 

where "ma.ximize" is defined by a. cone D c RP , eg.: D = R~ (the ca.se of 
Pareto optimization), has typically an entire set of efficient solu tions ( so calleci 
Pa.reto frontier), which can be illustrated as in Fig. 3. 

There are ma.ny methods of solving (2) - in the sense of finding at least one 
element of the entire set of efficient solutions. We ca.n distinguish the following 
classes of methods: 

l) classical methods w hi ch a.re ba.sed on maximizing a weighted sum o f ob­
jectives, with weighting coefficients ai: 

p 

s1(q, a)= L aiqi 
i= l 

2) eontemparary methods which adrnit that a linear approximation to a value 
function of a decision ma.ker is too simplistic and results in many para­
doxes, thus are based on maximizing a nonlinear scalarizing function. One 
of the most useful is the following order-consisitent achievement scalariz­
ing funcion, see e.g. Wierzbicki (1980, 1986, 1998): 

p 

s2(ą, q, a) = i=rr.i~,p ai(qi- fJi) +E L ai(qi - qi) (3) 
t=l 
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using reference or aspiration levels iJi in addition to weighting coefficients 
ai (which play a secondary rolethen or are used only implicitly) as a basie 
way of expressing t he preferences of the decision maker. The coefficient 
E 2 O is usually chosen as a small positive number, in order to eliminate the 
so-called weakly efficient solutions and the above function is related then 
to a slightly broader cone D" that approximates D= R~ from outside and 
is equal to the zero-level set of this function if all iJi = O. We shall return 
later to the properties of such functions; here we shall use its simplest 
variant with E = O. 

When using such a variant of the achievement scalarizing function, we can 
define an augmented linear programming problem as a parametric embedding 
of a linear programming problem. Suppose we have the following linear pro­
gramming problem: 

maximize( q0 = eT x) 
XEXo 

and let IntXo i= f/J ,cj >O 1::/j 
follows: 

l , ... , n. This problem can be embedded as 

max sp(x, d, x) 
XEXo 

where: 
• p= O in multi-criteria phase; 
• p = l in single-criterion phase; 
• d is a direction in the solution space; 

(4) 

• di = 1/ai are inverse weighting coe:fficients for the problem oj multiobjec­
tive maximization oj all components xj; 

• x = q is a reference point in the solution space. 
The augmented simplex algorithm uses first a multi-criteria phase in order 

to shorten computations and increase the robustness of the method; then it 
switches (either directly or gradually) to the single-criteria phase. The solution 
of the multi-criteria phase problem is illustrated graphically in Fig. 4. Even if 
we use a simplex method for solving the problem, the algorithm cuts through 
the interior of the original admissible solution set along the direction d (but not 
through the interior of the resulting admissible solution set, since the multiob­
jective formulation changesthis set). 

This property suggests that the augmented simplex algorithm can be faster 
than the more classical variants of the simplex algorithms w hen applied to large 
scale problems with much more constraints than original variables. However, the 
augmented simplex algorithm can be also used for paraHel or distributed com­
putations, where various directions d are used on various processors in the mul­
tiobjective phase. The results of testing of such algorithm (including not only 
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q+ intRi 

s2(q, q, a) = cons 

Figure 4. An illustra.tive exa.mple of the pa.th of solutions in the multi-criteria. 
pha.se of the a.ugmented simplex method. 

simplex-like a.lgorithms, but a.lso subdifferentia.l a.pproa.ches, see e.g. Wierzbicki, 
1994) indica.te that such pa.ra.meteriza.tion and parallelization: 

• sometimes shortens computa.tions, but not necessa.rily in proportion to the 
number of processors used; 

• always increa.ses robustness, tha.t is , gives more relia.ble solutions to ill­
defined linear programming problems with solutions detennined through 
a.lmost linea.rly dependent constraints. 

3. Pulsar variable metric 

Consider the elementary problem of nonlinear progra.mming: minimize a twice 
differentiable function f : Rn ---+ R 1 over an open set. One of the basie cla.sses of 
algorithms are quasi-Newton or variable metric methods. A variable metric V(k) 

successively approximates the Hessian H(x) = \72 f(x) or its inverse H-1 (x). 
If we assume initially that the function is quadratic: 

f(x) = 0.5 < x, Ax >+<b, x >+c (5) 

\7 f(x) = g(x) = Ax +g E Rn, \72 f(x) = H(x) =A E L(Rn , Rn) 

and consider following increments and rela.tions: 

(6) 
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Y(k) =H 8 (k), 8 (k) = H-ly(k), 

then we ca.n use these relations to construct V(k) such tha.t: 

sUl = V(k+l)yUl for j = l, ... , k 
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(7) 

which implies that vCn+l) = H- 1
, if a.ll y(k) are linearly independent. 

There are ma.ny known formula.e for 2.. V(k), used not only for qua.dratic, 
but a.lso twice differentiable functions. Most popular a.re the so-called rank-two 
va.ria.ble metric formula.e. However, these formula.e require precise directional 
search in the following quasi-Newtan directions: 

-V(k)g(k); (8) 

where V(k) =I; g(k) =\l j(x(k))) 

and procluce the a.pproxima.tions of the Hessian ma.trix or its inverse due to the 
fact that these directions are conjugate. 

There is also a symmetric rank-one variable metric that is defmed by formula.: 

,0,. v(k) - (s(k)- v(k)y(k)) >< (s(k) - v(k)y(k)) 

- < (s(k)- v(k)y(k)), y(k) > (9) 

where . >< . clenotes the outer product. This varia.ble metric is unpopula.r, 
beca.use i t becomes ill-defined when the matrix V(k) approximates well H-1

: 

(lO) 

However, this va.riable metric does not require tha.t the qua.si-Newton direc­
tions (8) are used, neither tha.t precise directiona.l sea.rch is applied, nor it is 
rela.ted to the conjuga.cy of directions (8). When modified with special sa.fe­
gua.rds, this va.ria.ble metric can procluce very efficient a.lgorithms. Because of 
these a.dva.ntages, this variable metric ca.n be applied in paraHel computations. 
We shall show how it can be usecl in a parallel pulsar algorithm. 

Assume that n 2 P- 2, where P is the number of processors usecl (these 
processors are inclexecl by '1/J = l, ... , P). Typica.l jobs assignecl to processors 
with '1/J > l are clirectiona.l searches. ·1/; = 1 is reservecl for variable metric 
approximation and other coorclinating tasks. 

Let K clenote pulsar algorithm iterations ( this number is actually increa.secl 
by two eluring ea.ch double pulsar itera.tion). In odd-nv.mbered {divergent) it­
erations, processors '1/J = 2, .. . , P perform clirectiona.l searches (not necessarily 
a.ccura.te) along the following clirections: 

_ 9 (1) or d(K,O) = -V(K-l)g(K) (11) 

ej= (0, . .. , 1Cil • .. . ,of ,j = 1, ... , n 

to procluce n + l diverse points: 

X(K ,j) = X(K) + f(K,j) d (j), 
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where f(K,j) are the corresponding step-size coefficients. \!Ve bave then: 

s(K,j) 

f(K,j) 

y(K,j) 

f(K,j) d(j). 
' 

f(x(K) + s(I<,j)); g(I<,j) = V f(x(K) + s(K,i)); 

V f(x(K) + s(K,j))- V f(x(I<l) 
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(12) 

The data j(K,j), g(K,j), y(K,j ) and sU<,]) are successively transmitted to the 
first processor that uses these data. to upcla.te the a.pproxim ation of the inverse 
Hessian by a. sa.fe-guarded ra.nk-one formula.. 

In even-numbered (convergent) itera.tion of the pulsar algorithm, the direc­
tiona.l searches a.re performed from n + l va.rious points xU<,j) in corresponding 
quasi-Newton directions: 

(13) 

Other operations in the even-numbered itera.tions ( computing the increments 
of solutions and gra.dients, tra.nsmitting data to tbe first processor for Hessian 
approximation, etc.) are similar as in the odd-numbered. Tbe even-numbered 
iteration of tbe pulsar algoritbm ends w hen the first processor determined a new 
inverse Hessian approximation and a new co mm on startingpoint x(K +2) for the 
next odd-numbered iteration, chosen among x(K +l,j) as a point witb the lowest 
j(K +l,j); a.ppropriate stopping tests ar e repeated. 

All points x(K+l,j) obtained in an even-numberecl iteration should rather 
precisely approxima.te the minimum of the goa.l function f from various sides. 
This is shown by the illustrative example in Fig. 5. 

This sprea.d of points, this pulsating justifies the name of the pulsar algo­
rithm, but at the same time increases the robustness of the algorithm with 
respect to: 

• numerica.l inaccura.cies, 
• ill-conditioning of optimiza.tion problem, 
• local minima 
• inaccuracies of the stopping tests. 
The testsof the pulsar algorithm - see Sobczyk et al. (1 994) -show that the 

algorithm sometimes increases the speed of computations, but not proportion­
ally to the number of processors used. On the other hand, the algorithm displa.ys 
a substantially increased robustness for ill-conditioned problems; for exa.mple, 
it solves with high a.ccuracy problems with singular Hessian at the optima] so­
lution, while sequential variable metric a.lgorithms can solve such probl ems only 
with very low accura.cy. 

4. Outranking triais 

4.1. Interactive methods of multicriteria decis ion support 

Multicriteria. optimiza.tion and decision theory is very broad and conta.ins ma.ny 
a.pproaches and problems; see e.g. Gutenba.um (1 977), Sawaragi et al. ( 1985), 
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x(2,1) 

x(2,2) ._::_...--x 
-.....,~------- x(2,3) 

Figure 5. An illustrative example o f tbe odd-numbered ( divergent) and even­
numbered ( convergent) iterations o f the pulsar algorithm. 

Steuer (1986), Rios (1994), Gal et al. (1 999). However, we limit the presentation 
here to interactive methods in this field. Genera.lly, interactive methods support 
the interaction with the user of a decision support system (DSS) or a. decision 
maker; in multicriteria approa.ches, this interaction has often the goal of selecting 
a point on a Pareto frontier. This point might optimize the va.lue function of the 
decision maker, or be the best a.ccording to other forms of her/his preferences. 
We can distinguish- see Wierzbicki (1997): 

• Interactive methods with proven convergence, such as: 

- the Geoffrion-Dyer-Feinberg procedure, see Geofirion et al. (1972); 

the Zionts-Wa.llenius procedure (more effective, but with more re­
stricted class of multi-objective linear progra.mming models - see 
Zionts and Wa.llenius, 1976, 1983); 

the Korhonen-Laakso Procedure and Pareto Race, rela.ted to the con­
cept of a reference direction, see Korbonenet a.l. (1985). 

Stocha.stic Quasi-Gradient Procedures, see e.g. Ermolevet al. (1988). 

• Intera.ctive methods with a.ccelera.ted convergence, such as: 

R.eference Bal!, see Wierzbicki (1997); 

Contracted Cone - by Steuer and Choo, see Steuer et al. (1983), 
later versions by Jaszkiewicz and Slowiriski (J 994); 
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- Satisficing Tra.de-Off- by Nakayama and Sawara.gi, see Nakayama et 
al. (1983), Nakayama (1994); 

- Light Beam Search - by Jaszkiewicz and Słowiński, see Jaszkiewicz 
et al. (1994). 

Most approaches with proven convergence imitate mathematical program­
ming techniques - see Bogetoft et al. (1988), Wierzbicki (1997). Other a.p­
proaches concentrate on accelerating practica.l convergence instead, a.nd are 
quite effective. Reference point a.pproa.ches, mentioned earlier in this paper 
and exemplified here by the R.eference Ba.ll, Satisficing Trade-Off and Pareto 
Race procedures, are also quite effective, but their convergence was proven only 
for special cases. We shall present below the Outranking Tria.ls procedure, in­
troduced in Wierzbicki (1997). This procedure not only combines a.n outranking 
relation with a reference point approa.ch, but also a.dds an important element: 
the application of para.metric embedding and paraHel computations. 

4.2. Properties of reference point approach 

As mentioned earlier in this pap er, reference point approaches are based on the 
maximization of a nonlinear order-consistent achievement scalarizing function, 
which can have diverse forms- see Lewandowski et a.l . (1989), Wierzbicki (l 986, 
1999). The most fundamental of these forms is given in Eq. (3); we repeat it 
here with slight changes of notation: 

(14) 

As already indicated, the zero-level set of this function corresponds to a 
slightly broader positive cone De:: 

p 

De: = {q E RP: _min (qi) +s l:)ąi) 2 O} 
2- l, . . . ,p . 

>=l 

(15) 

This function shifts the above co n e to the reference or aspiration point q. 
Due to this property, the achievement function nonlinearly separates the a.ttain­
able criteria. set Q0 , and the cone q+ D is efficient if q lies on Pa.reto frontier. 
Because of this separation property and the monotonicity of CJ(q, q), we can 
sta.te the most important properties of the reference point a.pproa.ch: 

• each maximum of CJ(q, q) is efficient; 
• for ea.ch q that is efficient with respect to De: , there exists such q that the 

maximum of CJ(q, q) over q E Q0 is a.ttained at q; 
• if the maximum of u( q, q) over q E Qo is nega.tive, then q ~ Qo . 

All these properties are independent of the convexity of Qo; this is shown in 
the illustrative example in Fig. 6. 
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Figure 6. An illustra.tive exa.mple of the properties of reference poin t a.pproa.ch: 
q' is t he ma.ximum o f t he function ( J 4) w i t h t he referen ce poi n t q', and q" i s 
the ma.ximum of the function (14) with the reference point q"; Q0 clenotes t he 
Pa.reto frontier of the set of attainable objectives Qo which is nonconvex in this 
example. 
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4.3. The decision process including outranking triais 

We suppose that a multiobjective optimization model is investigated with the 
help of reference point methodology. We assume the following form of the 
decision process: 

• Stage I: Learning- consists either of: 

l. Unrestricted change of reference points and learning about efficient 
outcomes; 

2. Application of any metbod with accelerated practical convergence. 

Stage I ends when the decision maker (DM) asks for support in check­
ing whether a more preferred solution is availa.ble. \Ve a.ssume that DM 
preferences a.re stabilized at this point. 

• Stage II: Outranking Triais- consists of a spec:ial convergent proc:edure 
using outranking relations and reference points. The use of outranking re­
lations is justified because the DM is usua.lly interested only in significant , 
not infinitesima.l improvements, see Roy et al. (1981), Vincke ( 1998). 

4.4. A famiły of outranking relations 

In particular, we use the following fa.mil y of outranking relations. The decision 
maker should define four threshold values for each criterion (objective outcome): 

l. veto threshold /:}.qav,i > O, 
2. negative indifference threshold /:}.qn i ,i > O, /:}.qni,i < /:}.qav ,i 

3. component outranking threshold /:}.qco,i > O, 
4. positive indifference threshold /:}.qpi,i > O, /:}.qpi ,i < /:}.qco,i 

Given two po in ts in the objective s pace: q (a current best point , usua.lly 
already efficient or Pareto-optimal) and q ( a.ny point suspected o f outranking 
the point q), we can construct with these thresholds the following five index 
sets: 

h 
L 

lo 

{i E {1, .. . ,p}: ąi 2:: ć}; + [:}.ąp; ,i} 

{i E {l , ... ,p} : qi :S ćJi- /:}.qni ,;} 

{l, ... ,p} \(I+U L ) 

fe {i E {l, ... ,p}: q; 2:: ćji + /:}.qco,i} 

f v {i E {1, ·· · ,p}: qi :S ćji- /:}.qav, ;} 

(16) 

These ind ex sets indicate the possibili ty o f q outranking q. Tf lv i= 0, then 
there is no outranking. If L = 0, then l v = 0; if, a.ddi tionally, f e i= 0, then 
there is component outranking of q by q. Jf Iv = 0 and there a.re much mo re 
elements in J+ than in L , then we can define parametrica.lly a.n outranking by 
the difference of the cardinalities of these sets, II+ l - l L l· 

Thus, we define two outranking relations, where the second one is a.ctually 
a para.metric family of such rela.tions, dependent on a number k < p , where p is 
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the number of objectives: 

q C q ~ (Je f= 0) 1\ (L = 0) (17) 

qPkq ~ (II+I-ILI2: k)I\(Iv =0) 

It is easy to show that C ~ Pk , if k = l and that C is usually stronger than 
Pk. Thus, outranking can be tested with increasing sensitivity: 

l. start by checking if q C q for some q E Qo , 
2. then, set consecutively k = p- l , p - 2, ... , l and check if q Pk q for som e 

q E Qo. 

4.5. An outranking test with reference point methods 

This test is based on the general property of order-consistent achievement scala.r­
izing functions mentioned earlier: 

_ Q { maxqEQo er( q , q) 2: O; } 
q E o =} , ( -) > -q= argmaxqEQo er q, q _ q 

(18) 

Because of this property, in order to test q C q, it is sufficient to test the 
attainability of the reference point qUl defined as follows: 

- { ąij) + /::,.q co ,i, i = j } · { } q i = , (j) . . , J E l , .. . , p 
qi - /:::,.qni,i Z f= J 

(19) 

If the maximum of er( q, qUl) is nonnegative, we can present the maximiz­
ing point to DM for acceptance. If the maximum is negative, no component 
outranking point exists for t he o b jective j; we can repeat this ( or compute in 
paralel and present to t he D M) for all j E {l, . .. , p}. 

In order to construct a test for Pk outranking, we define sets I~), I~ ), I~j) 
such that l I~) l - l I~) l= k , where the upper index (j) clenotes one of possible 
subdivisions of the set {l, . .. , p} into such sets. The number num(p, k) of such 
subdivisions can be generated in a combinatorial way; the sum of such numbers 
has an upper bound 2P. 

Using again the property (18) we observe that, in order to test for ąPk q, 
it is sufficient to test the attainability of the reference point q defined this time 
as follows: 

i E I(J) } + . l . (j) Z= . , .. . , p, 
z E I _ , . 
. () J =l , ... ,num(p,k) 
z E I 0

1 

(20) 

When testing the attainability of such reference points, we again maxi­
mize, for each j = l , .. . , num(p, k) , the order-consistent achievement function 
er( q, q Ul). If the maximum va.lue o f t his function is nega.tive, no outranking 
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exists; if the maximum is nonnegative, the maximal point should be presented 
for acceptance to the decision makero Again, we can use paraHel computations 
and present to the decision maker possibly severa.l points resulting from themo 
If no maximum with positive value of the achievement function can be found, 
we can decrease k and repeat the procedure; if no maximum with positive va.lue 
of the achievement function can be found even for k = l, no outranking points 
exist even in the weakest senseo 

4.6. Outranking-value consistence axiom and convergence proof 

It is noweasy to show the convergence of Outranking Trials as described aboveo 
We need only to define the meaning of convergence; we a.re using outranking 
relations and convergence is typica.lly understood in value function termso Thus 
we assume that the decision maker hasa value function (which ha.s sta.bilized af­
ter the learning stage of the decision process) and that this function is consistent 
with the outranking relationo We need the following: 

Outranking-value consistence axiom: Outranking relations defined above 
are consistent with a continuous, monotone value function v (q) if there is a fi­
nite, positive value indifference threshold such that, if v(q) - v(q) ~ /::,.v, then 
q outranks q at least in some weak sense - and converselyo 

Assuming outranking-value consistence, the proof of convergence for com­
pact Q0 and continuous v(q) is immediate (we can use also a weaker assumption 
- that supq E Q0 < oo) o We give here only an outlin e o f the proof: 

l. If the set Q0 of attainable outcomes is compact, the continuous value func­
tion can only finitely increase o o o o Since /::,.v is finite , and every accepted 
step of the procedure produces a finite /::,.v, there might be only finitely 
many steps of the procedure in which an outranking point is foundo 

20 If no point with positive achievement can be found, then no attainable out­
ranking point exists, due to the basie property (18)0 Because of outra.nking­
value consistence axiom, this means that the value function is maximized 
at the endpoint with the accuracy of /::,.vo 

Note that the proof is existential, not constructive: we cannot say in advance 
how many steps of the procedure are needed, because the relation between the 
four threshold values used in outranking relation and the increment /::,.v might 
be quite complicatedo 

4.7. Parałlei computation aspects and concluding properties 

The number of subsequent optimizations for one itera.tion of Outranking Trials 
can be large (up to 2P, say 128 with p= 7)0 However, these computations can be 
ma.de in para.llel (or be distributed) and do not bother DM: she/he is only asked 
to approve of the decisions and outcomes suspected of outranking or to select 
between such decisionso Moreover, observe tha.t the amount of computa.tions in 
an iteration of Outranking Trials might be smaller in the initial iterations: as 
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soon asan outranking point is found and accepted by the decision maker , a new 
iteration starts. The amount of computations increases in fina! itera.tions, when 
it should be proven that no outranking points exist. 

Preliminary ( distributed) tests of Outranking Triais are being performed; 
the results until now show the a.pplicability of the idea . An idea of combining 
Outranking Trials with a genetic a.lg01·ithm is a.lso being tested. 

Outranking Trails offer a.lso a.n a.lterna.tive theoretica.J a.pproach to the issue 
of convergence of other interactive procedm·es of multi-objective a.nd decision 
support, such as Satisficing Trade-Off, Contracted Cone or Ligl1t Beam Search 
procedures. 

5. Conclusions 

We present here only some short conclusions stressing the main points presented 
here: 

• Outranking Triais show an application of parametric embedding and par­
allei or distributed computations for the purpose of broadening analysis of 
multi-criteria models, in this case- proving convergence of computer-men 
intera.ction. 

• Parametric embedding and para.llel or distributed computa.tions can be 
a.lso used for increasing robustness of optimization procedures, as illus­
trated by Augmented Simplex and Varia.ble Metric Pu\sar a.Jgorithms. 

• The basie objective ofparallel computations- shortening of computa.tions 
for diffi.cult problems - will probably remain the main motivation (we 
a.lways try to solve more diffi.cult problems - and we always can saturate 
with them the most advanced computers!) 

• However, it is good to know that there are also other objectives for para.l­
lelization a.nd to use such objectives in pra.ctice. 
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