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Abstract: This article deals with state constrained optimal con-
trol problem for semilinear elliptic equation in a domain 2. The
state constraint is lumped on the compactum X C 2 and contains
a functional parameter ¢ € C(X). It is shown that any minimizing
approximate solution (m.a.s.) in the sense of J. Warga satisfies the
pointwise maximum principle (the maximum principle for m.a.s.) if
the problem is meaningful, i.e., the value of the problem is finite. It
is also shown that a condition of Slater’s type is sufficient for the nor-
mality in the so-called “linear-convex™ problem, and the normality
of the problem for some fixed value of the parameter ¢ € C(X) im-
plies the Lipschitz continuity of its value function in a neighborhood
of q. The paper contains illustrative examples.
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1. Introduction

Optimal control problems for systems with distributed parameters governed by
semilinear elliptic and parabolic equations with pointwise state constraints have
been the subject of many publications during the last ten years (see, e.g., Alibert
and Raymond, 1994, Bergounioux, 1992, Bonans, 1991, Bonans and Casas,
1991, 1992, 1995, Casas, 1993, 1997, 1998, Li and Yong, 1995, Raymond and
Zidani, 1998, 1999). The primary attention in the references listed was devoted
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to deriving Pontryagin's maximum principle and to the question how stability
of an optimal control problem (in some natural sense) under one-dimensional
perturbation of the state constraint is connected with realizability of both the
maximum principle and the regular maximum principle.

We can formulate the following main differences with respect to papers re-
ferred to. First, we take as a “basic element of the theory” a minimizing se-
quence (m.s.) of ordinary controls (but not optimal control) or, in other words,
the so-called minimizing approximate solution (m.a.s.) in the sense of Warga
(1971) (see Warga, 1971, Ch.1II, for the advantages of m.a.s. from the viewpoint
of applications). Such approach allows us to consider optimal control problems
(a family of problems) in the broadest generality without certain suppositions
ensuring the existence of optimal elements (ordinary or relaxed) and does not
use the relaxation of the optimal control problem in the sense of Warga (1971).
We call the obtained necessary conditions for m.a.s. the maximum principle for
m.a.s. All results derived in this way may be “closed” and rewritten in terms
of optimal relaxed controls if the relaxation of the optimal control problem is
possible, i.e. the maximum principle for m.a.s. turns into the ordinary max-
imum principle “in the limit” when there exists a relaxed (or usual) optimal
control. In particular, this may by done with the results of the present paper.
At the same time, we do not rewrite our results in terms of relaxed controls in
this paper for two reasons. One of them consists in space limitation. Another
reason is the larger practical (engineering) significance of the results expressed
in terms of usual controls and not containing the relaxed controls (abstract mea-
sures). In other words, all information about optimal controls is contained in
the maximum principle for m.a.s. and, in this sense, the maximum principle for
m.a.s. “rather” than the ordinary maximum principle for optimal controls. The
more so as m.a.s. gives for the optimal control problem, generally speaking, a
deeper “minimum” than the usual optimal control (sce Examples 8.1, 8.2, here,
and also Warga, 1971, Ch.1I1I, for details).

Second, we consider the so-called parametric optimal control problem. More
precisely, we study the problem containing an infinite-dimensional parameter ¢
in the state constraint. This parameter is put into the most natural space of
perturbations C(X). Here X C 2 is a compactum where the state constraint
must be fulfilled and © is a domain where an elliptic boundary value problem
is defined.

Third, we discuss together with the regularity and normality conditions of
the maximum principle for m.a.s. (the corresponding concepts, Sumin, 1995,
1996, 1997a, 1997b, are defined in the article) the sensitivity problem as well.
We show that a condition of Slater’s type is sufficient for the normality in the
so-called “linear-convex” problem, and the normality of the optimal control
problem for some fixed value of the parameter ¢ implies Lipschitz continuity
of its value function in a neighborhood of g. We show also that regularity is
a tvpical property of the similar optimal control problems in the sense that it
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the set of all values of the parameter for which the problem “has a meaning”
(the value function is finite).

Finally, we offer an alternative method, Sumin (1986), for investigation of
the problem with the state constraint differing from the methods of the papers
quoted. According to this method we first approximate the primal problem
(a family of problems) with the state constraint (with continuum of functional
constraints) by a sequence of problems (of families of problems) with a finite
number of functional constraints. Then, we derive the maximum principle for
m.a.s. in the approximating problems and, at last, pass to the limit in the de-
rived results as the number of functional constraints converges to infinity. In
particular, because of the results in Sumin (1995, 1996, 1997a, 1997b) such
approximation allows us simultaneously to write normality conditions for ap-
proximating problems with a finite number of the functional constraints and to
use them for investigation of the sensitivity properties in the primal problem
with the state constraint.

2. Problem statement

Let € be a bounded domain in R™. Given a compactum U C R™ and a set
D= {u€ Lo(Q) : u(z) € U ae. on Q}, consider the family of optimization
problems depending on functional parameter ¢

In(w) — inf, Ii(u) e M+q, ueD, q¢€ C(X), (7))

where
Ip(u) = /Q F(z, z[u)(z),u(z)) dz, I(u) = G(-,z[u](-)),

M c C(X) is a convex closed set of all continuous nonpositive functions on
X,X c Qis a compactum, z[u] € W(Q) is a weak solution, in the sense of
Ladyzhenskaya and Ural'tseva (1973), of the Dirichlet problem for semilinear
elliptic equation with a divergent principal part

%a;‘j{x)z% +a(z,z,u(z)) =0, 2(z) =0, z € S, (2.1)
corresponding to the control w € D
Assume that the following conditions hold for the initial data of Prob-
lem (P,):
(i) functions G,0G/dz : & x R' — R' are continuous in (z,z), functions
F,0F [0z : Qx R'xR™ — R!, a,0a/0z: Qx R x R™ — R!, are Lebesgue
measurable in (z,z,u) and continuous in (z,u) for a.e. z, functions a; ; :
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(ii) estimates
VIE® < aij(@)6is < Wl vn > 0, aiy(x) = aj4(a),
la(z,0,u)| + |0a(z, z,u) /02| < a.(z) + N(M)
VzeQ, ze Sy, uel,
da(z,z,u)/0z <0 V(z,z,u) € A x R* x U,
hold, where a. € Lg/2(f2), ¢ > n (see p. 181 in Ladyzhenskaya and
Ural'tseva, 1973), S3; = {z € R" : |z| < M};
(iit) the following estimates hold
|F(z,0,u)| + |0F(x, 2z,u)/0z| < f.(x) + N(M)
VzeQ, z€ 8}, uel,
|G(z,2)|,|0G(z, 2)/0z| < N(M) ¥(z,z) € Q x S},
where f. € Ly/2(R2), ¢ >n, N(M) > 0 is a positive nondecreasing func-
tion of M > 0;
(iv) the boundary S = 9Q is Lipschitz.

We equip the set D with Ekeland’s metric d(u',u?) = meas{z € Q: u'(z) #
u?(x)}, to then convert this set into a complete metric space. According to
Warga (1971), the sequence u' € D, i = 1,2,..., is called a minimizing approx-
imate solution (m.a.s.) in Problem (F,) if

Io(w') < Blg) + 7', w € DS, 74,6 20, 4',é =0, i — o0, (2:2)
where D; = {u € D: p(L1i(u), M +q) < ¢}, p(I,LM+¢q) = migfw [m+q - 1’15\9)‘
Bla) = Brola) = Jim Aela) < fola), Bla) = inf Io(u), fela) = +oo, if

D; =0, lal¥’ = llalecr)-

3. Auxiliary results

In this section we give auxiliary lemmas necessary for proving the main results.
These lemmas contain information about properties of solutions of the boundary
value problem (2.1) and of the adjoint boundary value problem.

LEMMA 3.1 There exists a unique solution 2[u] € W1(Q) n C@(Q) of the
Dirichlet problem (2.1) for every control w € D such that

B )
lzlu]ligig + 21l < €,

where a € (0,1), C; > 0 are constants independent of u € D. Moreover, the
solution z[u] depends on u € D continuously in metric W3 () N C)(RQ).

For the proof of the lemma see Bonans and Casas (1991), Bonans and Casas
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LEMMA 3.2 The functional I : D — R' and the operator I : D — C(X) are
bounded and continuous. The value function f: C(X) — R U {+o0} is lower
semicontinuous.

Proof. The first assertion of the lemma is a trivial consequence of Lemma 3.1
and conditions (i), (iii) for functions F,G. The proof of the second one is the
same as a proof of the similar assertion in Sumin (1996, 1997a).

LEMMA 3.3 The adjoint problem

0
%ai,j(:v)nl-l + V.a(z, z[u](z), u(z))n = ¢¥(z), n(z) =0, z €S,  (3.1)
Zj
has a unique solution n[u, ] in the class W%(Q)DC«‘")(Q) for any control w € D
and any function € Ly/9(Q), ¢ > n. The solution nlu, 1] satisfies the estimates

I, YIS < Collllgzr IInfw YIS + Il $lloo.a < Call$lly/2.0:
with constants a € (0,1), Ca,C3 > 0 independent of uw € D, 1 € Lg2(€2).

The proof of the lemma may be found in Bonans and Casas (1991) (see also
Bonans and Casas, 1995, Lemma 2.2, Gilbarg and Trudinger, 1977, Theorems
8.6, 8.16, 8.29).

In order to obtain the necessary information about the Dirichlet problem for
a linear elliptic equation with a Radon measure in the right-hand part we apply
the results of Bonans and Casas (1995), Lemma 2.4. We will denote by M (Q)
the space of real regular Borel measures in §2, which is identified with the dual
space of Co(§2), the space formed by all the real continuous functions defined in
Q and vanishing on S.

LEMMA 3.4 For every nonpositive function b€ Ly(€2) and every Radon measure
1€ M(Q) there exists a unique solution nfu] € WL(Q), for all ¢ < n/(n-1),
of the problem

0
—a; ;(2)N; +b(x)n =p, n(z) =0, z€S. (3.2)
al'j

Moreover, there exists a constant C > 0 independent of b such that
1
{55 < Clul.

In particular, there exists a unique solution nfu, p| € l/OV},(Q), o<nf(n-1), of
the problem

0
0——ai‘j(.1:)7]‘v,. + V.a(z, z[u](z),u(z))n = p, n(z) =0, 2 €S (3.3)
€Ty
for every control uw € D and every Radon measure jp € M(S2). This solution
satisfies the estimate

] I k) = i we. = e — AL
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4. Maximum principle for m.a.s. in the problem with state
constraint

We prove in this section a theorem about necessary conditions for elements
of arbitrary m.a.s. in Problem (7). These necessary conditions are also called
maximum principle for m.a.s. To formulate the maximum principle we introduce
the following notations:

Ho(z,z,u,m) = nalx, z,u) - Fla, z,u), H(z,z,u,n) = na(z, z,u),
H(x, z,u,m, o) = nalz, z,u) — poF(z, z,u).
THEOREM 4.1 Let 3(q) < o0 and u®, s = 1,2,... be an m.a.s. in the sense

of (2.2) of Problem (P,;). Then, there exists a sequence of numbers v* > 0,
s=1,2,...,9 = 0, s = 0o and a sequence of pairs (j5,A\*), uy > 0, A* €

M(Q), g + |A*] = 1, with a positive Radon measure \* having a support in
{z € X :|G(z, z[v*](2)) = q(z)] £ ¥*} such that

| maetGo, ). 00 o)), )
= H(z, z[u’)(z), v’ (2), ¥*[w’](z), p1g) } dz < °, (4.1)

where Y*[u®] = pinolu®] + n°[u®], n°[u’] = ylu’, =V.G(, 2z[u](:))A], i.e., it is
the solution of the adjoint problem (3.3) with w = v*, p = —V_.G(-, z[u"](-))A*.

REMARK 4.1 It follows from Theorem 4.1 that if a control u® € D) satisfies the
equality In(u®) = B(q) then it satisfies the usual mazimum principle (1§ = jo,
A=A 4 =9 = 0). Some modification of the proof stated below allows us
to prove also that the same marimum principle is correct for any such control
u e Dg for which Io(u®) = Bo(q).

Proof. We use the method of Sumin (1986) in the proof. Since u*, s = 1,2,...
is the m.a.s. in Problem (F,), it follows that it is the m.a.s. also in the problem

J(u) = max{lp(u) - B(q), G(z, z[u](z)) — g(2), z € X} - inf, we€ D
with zero lower bound, i.e.,

J(u®) < inf J(u)+¢€5, €20, ¢ =0, s — 00, (4.2)
u€D

By (4.2), we apply the Ekeland’s variational principle, Ekeland (1974), to the
functional J. As a result, we find a control w® € D providing the minimum in
the problem

JH(u) = J(u) + Vesd(u,w®) — inf, v €D, (4.3)

and satisfying the inequalitics
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Further, let X be a denumerable dense net of the compactum X. Let also
X = {zM1,... ,:1:"'""} C X beafinite 1/k net of the compactum X, X € Xgy1,

k= 1,205 Approximate the problem (4.3) by a sequence of problems
JoF (u) = max{Iy(u) — Blq), If(u) —g(z™), §=1,...,0}
+ Vesd(u,w®) — inf, ue D, k=1,2,..., (4.5)

where the functional I¥

s defined by the equality 1J'~"(u) = G(z™, z[u)(z*9)).
We may assert that

R o T ) = J¥(w®) = J(w® ly — i B
:161%./ (u) “1161%] (u) = J9(w®) = J(w®), k — o (4.6)

Indeed, on the one hand, it is casy to sece that

limsup inf J**(u) < J(w®). (4.7)

koo WED

On the other hand, suppose that for some 6 > 0

liminf inf J*(u) < =6 4+ J(w®). (4.8)
k—oo wueD
Then, there exists a sequence of controls v* € D, k = 1,2,.... such that
sk, K b s ¢
J )g—;+./('1(1 Ve B= 152040 (4.9)

From (4.9), by uniform boundedness and cquicontinuity of the family of solutions
{z[u] : w € D} C C(R) (sce the estimate of Lemma 3.1) and by conditions on
functions F, G, in turn, follows the existence of a number kg > 0 such that

5
J(w*) + Jed@, w) < —(/—1 + J(w*).

The last inequality contradicts the optimality of the control w®. Consequently,
inequality (4.8) is not true. Then, by (4.7), correctness of (4.6) follows.
Obviously, by (4.6), we have

./‘“""('117'°) < ing7 ./”'I"('u,) + 0, 0 >0, 0 — 0, b — .
uel

Due to this inequality, we may apply the Ekeland’s variational principle, Ekeland
(1974), once more, but now to the functional J**(-). Find a control w** € D,
providing the minimum in the problem

J¥(u) /() — inf, € D (4.10)

and satisfying the inequalities
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Now, approximate cach of the problems (4.10) by the family of “smoothing”
problems

J**M(u) = max{Io(u) - B(q), I}"(u) - q(z*7), j=1,..., I}

+ esd(u, w*) + \/5_;,(3(15. w**) — inf, u€ D,
h € [0, ho), ho > 0. (4.12)

where

I¥"(u) = 1/meas (Su(z*7) N Q) G(z, 2[u)(z)) da,
Si(a*2)NN

Si(2%7) is a ball in R" of radius h and center at z*J. Thanks to uniform
boundedness and equicontinuity of the family of solutions {z[u] : u € D} C C(2)
(sce the estimate of Lemma 3.1), we may assert again that

B 8.k h = sk, — sk, sk
‘H;l%.}' (1) ulgg).] (1) = J¥{w»*). (4.13)

Therefore we may write once more

JoR k) < inf JEN )+, g0 2 0, m = 0, h =0, (4.14)

i.c., the control w** is 4, optimal in the problem (4.12). Here we note that the
functional J**¥" has the same form as the functional J¢ , in Sumin (1989). For
this reason, we may apply the results of Sumin (1989) for deriving necessary
conditions for suboptimality of the control w** in the problem (4.12). We turn
our attention briefly to the scheme of deriving these suboptimality conditions.

Due to inequality (4.14), we may apply the Ekeland’s variational principle
to the functional J***. We find a control w**" € D providing the minimum
in the problem

JoR(y) 4+ Vnd(u, w*™") = inf, uw € D, (4.15)
and satisfying the inequalities

d(w**, w** ") < m, J(wEh) < J(w*). (4.16)

The necessary conditions for optimality of the control w**" in the problem

(4.15) can also be treated as conditions for suboptimality of the control w** in
the problem (4.12). Let U* be a denumerable dense subset of U (U* = U if U
is a denumerable or a finite set). Define the variation w**™¢ 0 < ¢ < ¢, of
the control w**h

p=Ll,..m
r=1,..,p

I wh(z), zeQ\ U Q.

ws‘k,h.c(m) =
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r=—1
where Qf . = {2 = (21,...,%a) € R" : 2] ~5273”"<m1<:1—e p Il e

m=1 m=1

g % L a1 s D) 2P B P = LieoyDi; BB
a finite collection of Lebesgue points of the functions a(z,z[w**")(z),v) —
a(z, z[w**"(z), w** N (z)), F(x,z[w>"b)(z),v) = F(z, z[w>*")(z), w**"(z)),
z € (2, simultaneously, for all v € U*; ¥*", p=1,...,p1, 7 = 1....,1p, i85 &

P1 Ty
finite collection of nounegative numbers such that Z Z AP < 1wl e U,

p=lr=1
p=1...,p1,r=1,...,1, is a finite collection of vectors; ¢y > 0 is a suffi-
ciently small 11111111](31 depending on tlle collections ™7, aP, such that the sets
0 = {2} - e E AP 2]} % {H[1 — eoTpy2t]}y » = 1,...,p1, are not

m=1

mutually disjoint.

Denote by N the set of all finite collections n = {aP 4P u”" p=1,...,p1.
r=1,...,7,}, defining the variation w*F e and satisfying all previously men-
tioned conditions for the points z?, for the numbers v”", and for the vectors u?".
We may assert that the following lemma, which is similar to Lemma 7 in Sumin
(1989). is valid.

LEMMA 4.1 The following equalities hold for the first variations
SIo(w** " n) = i (Io(w* nhkiey _ Lo(w ) /e,
ﬁfj-"";'('n:”'k"“,n) = ]1111(1;" h(w”“"‘h“) - If'h(’ms'k‘"'))/eﬂ

of the functionals Iy, I_:-""". F=Tgw0y Ay, for arbitrary fived collection n € N

§Io(w*"" n)
L Tp

==Y > P (HolaP, 2fw*(aP), w" molw” ) (2”))

p=1r=1
— Hy(a?, 2[w**")(2P), -w"“"""’(:z:*‘}‘ 1;9[11:"'"‘"*](3:*’))),
ke 5.k
fSIJ- (w ,n)

P11 Tp

B i 2 Z ’}’II"I(H(LEP, z[,wﬁ.k.h](mpJ' ub, ”;s'.h st‘k,h](:yp))

p=1r=1

— H(a?. z[w**"*](x?), w**" (a?), ?If'h[w“'k'h](11-'3')))?

where 1w "), 1;" Mws k) € WL(Q) are the solutions of the adjoint problem
(3.1) for u = ua”‘ " and for Y(z) = =V.F(z, 2[w**"(2), w*"(z)), P(z) =
~1/meas(Sn(z*7) N ﬂ)\(i‘ "2)V.G(x, z[w*F")(x)), respectively,

ks T g O R () o it
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Let {iy,....ix} € {0,1,...,0;} be the set of all active subscripts, i.c., the
set of all subscripts j for which

Js,k,n'l(,ws.k,p'l) 2oy ﬁbj(‘wd'k'n) iz \/E;d(lﬂﬂ'k'h,'wa) ) \/ad('U!"'k"',w"k) = 0

where we use notation ¢o(u) = Io(u) — flq). ¢j(u) = I_:-""'(u) — g(z™), j =
| —

Thanks to affinity with respect to parameters v*" of the expressions for
8Io(w*™ " n), 6!*“"( sk n), the set of all vectors of the first variations K =
{(6Ip(w* ™" n), & IA Pwskh n),. L 810wk ) € R+ e N} ¢ Rt
is convex (this fact may by p:o\red by argument usual for optimal control).
Denote by K, a projection of K on the subspace R* of vectors (yi,....4:.)
of the space R'**! (of vectors (yo,y1,...,y1)). A well-known argument al-
lows one to prove that the convex set K, does not intersect with the convex
set K = {(Yiys--2¥in) € B¥ ¢ yi, < =2(/& + Vo + VAR), J = 1,...,K}
(the intersection of the sets K., K contradicts the optimality of the con-
trol w**"), Thus, these two sets are separated by a vector p**" € R®
pkh = (;‘.‘.:IA n. wo e Wy u.“ FhS 0,5 =1,...,8 |ut*h| = 1. Completing
this vector with zero u)mponcnts (corresponding to the passive components)
to vector p**t € RUF1 (we preserve for this vector the previous notation)
usth = (0,...,0, gsfl'k"".(]. .. .‘0.;1.;7‘_";‘"". 0,...,0), we derive that

Ly
.U-E k !aéjo(wx,k,h! n) + Z 'u;,k,h é-)r;.h(ws.k,hl I"I)

i=1
L

> =23 ud MG + Vo + ) Y eN,
=()

F‘E.k.h(J,@_k,.":(ws,k‘h) _ }a(le,k‘h) + ){3((])

— Jad(w™* " w*) - Vord(w* k) =0,
v.(h()rsi.h( J.h) kh(wq&h]_l_q(i:k.j)

- Jed(w®* ) - \/:d w ot g =0, =1,.... 54 (4.17)

The following lemma is a direct consequence of the last relations if we admit
as the collections n various “single-point™ sets in the form {a! = 2, 4%! = 1,
w'=w, pp =1, Ty = 1} and remember that the funetions a, F' are continuous

in u and the set U* is dense in U.

LEMMA 4.2 There exists a vector p>*" ¢ Rls+1,

Iy
Nhuakh v kb s I
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satisfying the relations (4.17) such that

velU
. H(.’L‘, Z[’U)S'k’h](.’ll), sk, h( ) ,l/’s Ky h[ s, k,h](x).’ug‘k‘h)} d
< 2meas Q(\/es + Vo + V), (4.18)

/ max{H(z, z[ws'k‘h](a:), v, 'lps'k'h['ws‘]"""](a;), p,‘a‘k'}")
Q

where ,l/,s‘k h [ws B h] — * ’\ h,’) [,w.s K h] + Z ’“b Ky h ’» h[ s,k, h] o [ & k,h] is the
j=1

solution of the adjoint problem (3.1) for w = w>*",

Pla) = =V, F(z, z[w* ") (), w**" (2)),

”l[ s kb

UJ s,k, h

| is the solution of the same adjoint problem for uw = w’

P(x) = —1/meas (Su(z¥) N QX" (2) V. Gz, 2[w*F"](z)).

Iy .
Define the Radon measure A**" with support in (J Si(z%%) N Q, by the
i=1
equality

Ik o
AbhE) =Y /E p$*" fmeas (S (aF7) 0 Q)5 (z) da,
Jj=1

where £ C Q is a Borel set. In addition, obviously, the following equality is
valid:

ot 4 Askh| = 1, (4.19)

Then, Lemma 4.2 may by rewritten in the following form.

LEMMA 4.3 There exists a pair (uy™", A>5®) with ™" > 0 and a positive

Radon measure \**" € M(9Q), /1,6A e Yo " =1, having support in totality
of those sets Sy (z*9)NQ, j=1,..., Ak, for which

J.s.k'h( sl\h) /( sk/z)+(1 \/“"d msl\h ,wS)
=/ ord( 'Lu"""h,'zu°" ) =10,
s,k,h

such that the inequality (4.18) holds with %**"[w**") = g™ nofw**"] +
R SR where PR w3 R is the solution of the problem (3.8) with p =

—NF. G( [ s,k, h]( ))/\s K, h, u = ,ws,l\'.h'

We can pass to the limit in the relations of Lemma 4.3, at first, by estimate
(4.11) as h — 0, then, by estimate (4.4) as k — oo. Naturally, these passages
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compactness of a unit ball of the space of Radon measures, positiveness of the
measures A**" and a priori estimates of Lemmas 3.1, 3.4. We omit the details
of these sufficiently cumbersome but entirely obvious passages to the limit. As
a result, we have the following lemma.

LEMMA 4.4 There exists a pair (ug, A®) with a positive Radon measure \° €
M(Q), pg 20, pg+|r°| = 1, having support in {z € X : J(w*)—G(z, z[w®](z))+
g(z) = 0}, such that

| mie{rt(a, o)), ) )
- H(z, z[w®](z), w®(z), ¥°[w’)(z), ug)} dz < 2meas /e,

where P [w®] = pgno[w®] + 1°[w?], n*[w?] is the solution of the adjoint problem
(3.8) with uw = w*, p = -V.G(:, 2z[w’](-))A*.

Finally, the first of estimates (4.4) together with the a priori estimates of
Lemmas 3.1, 3.3, 3.4 give a possibility to rewrite the last lemma in terms of
the primal m.a.s. v®, s = 1,2,.... We get all relations of the theorem being
proved as a result of such entirely obvious but quite cumbersome rewriting.
The theorem is proved.

5. Regularity, normality, Slater condition

In connection with Theorem 4.1 it is natural to introduce the following de-
finitions, Sumin (1995, 1996, 1997a, 1997b), of stationary, normal stationary,
regular stationary and abnormal stationary sequence in Problem (F,).

DEFINITION 5.1 A sequenceu® € D, s = 1,2,... is called stationary i Problem
(P,) if there exist a sequence of numbers v° > 0, 4* — 0, s — o0, u® € ‘D;"’,
s = 1,2,..., and a bounded sequence of pairs (u§,\*), py > 0, A* € M(Q),
e + |A°| # 0, with a positive Radon measure A* such that [ (G(z,z[u*](2)) -
q(z))A\3(dz) > —5° and nonzero limit points (po,A) # 0 only, such that the
inequality (4.1) holds with n®[u®] being the solution of the adjoint problem (3.3)

with w = v, p = —=V.G(-, z[u®](-))A*.

DEFINITION 5.2 A stationary sequence u® € 'D,}a, s=1,2,...,9°20,9° -0,
s — 00, i Problem (P;) is called normal (regular, abnormal) if all (there
exists, does not exist) the sequences (ug, A*), s = 1,2,..., corresponding to i,
according to Definition 5.1, have (having, having) limit points (jg, A) with the
component jig > 0 only (with the component pg > 0 only, with the component ju ).
Problem (P,) is called normal (abnormal) if all stationary sequences in this
vroblem are normal (abnormal). Problem (P,) is called regular if there ewist
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Further, we shall represent sufficient condition of normality for the so-called
“linear-convex” Problem (F,). It generalizes the classical Slater condition in
mathematical programming to the case of a suboptimal problem with state
constraints, We shall call it Slater condition as well. To this end we first prove
the following lemma.

LEMMA 5.1 Let z€ W 3(82) be a solution of the linear boundary value problem

d s .
Ezu;._,-{:rr):;,_-., +b{z)z = f(x), z(z) =0, z € S, (5.1)
with coefficients a; j satisfying condition (i) and with coefficients b, f € Ly/2(2),
q>n.ble) <0 for a.e. x €82, Then, for any measure 1 € M(Q2) we have

[’ z(x) plda) = L':,:[ﬂ.]{;t:)f{:lr} dx, (5.2)

where [y € W1(Q), o <nf(n—1), is a solution of the adjoint problem (3.2).

Proof. Recall first the well known fact that any Radon measure can be *weakly
attained by some sequence (of even smooth functions) bounded in L. Thercefore,
since o € M(€), there exists a sequence ¢', i = 1,2,.... ¢' € C(£2) such that

lg'll.e =[x, lim / g (2)p(x) de = / dlx) pu(dx) Vo € Co(Q)  (5.3)
e Ja

(the existence of the sequence g', i = 1,2,.... can be proved with the same kind
ol construction as in Giusti, 1984, Theorem 1.17). By Lemima 2 on representa-
tion of a lincar functional on the set of solutions of linear Dirichlet boundary
value problem of Sumin (1989), we have the cquality

/ 2(2)g'(z) da = / ' (x)f(x)dz, (5.4)
Q Q
where ' € I—o'lfé(ﬂ) c WL(Q), o € [L,n/(n = 1)), is the solution of the adjoint
problem (3.2) with j = ¢*. Due to the first estimate of Lemma 3.4 and to the
equality (5.3), we can write the estimate ":}’”L,I()z < K with a constant £ > 0
independent of i. Hence. by the limit relation (5.3) and by the uniqueness of
the solution 7 (see Lemma 3.4) we can write [ — 9|0 — 0, i — 00, with
p<na/(n—a). Inturn, by this limit relation and by the limit relations (5.3),
we pass to the limit in the equality (5.4) as i — oo, As a result, we obtain
equality (5.2). The lemma is proved. | |

THEOREM 5.1 Let the function a involved in (2.1) have a form alw,z,u) =
ay(x)z + as(x,u) and the function G selling the state constraint be convex with
respect to z for every x. Let also u° € D be such a control that G(x, z[u’)(x)) -
gla) < =y Vo € X, v > 0, i.e., Problem (P,) satisfies the Slater condition.
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Proof. Assume that the assertion of the theorem is not true. Let u* € D, s =
1,2,..., be a stationary sequence in Problem (1°;) such that the corresponding
sequence of pairs (u3,A%), s = 1,2,..., has a limit point (pp, A) with po = 0.
Then, by positiveness of the measure A*, by convexity in z of the function G
and by Lemma 5.1, we can write for any u € D

AMWAwﬂ%Gmwﬂmnﬂﬂ)
> [ V.60 ) @) Clue) - %)) A (de)
0
= /Q?}”{u“](m)(a(x,z[us](a:),-u.’(a:)) — az, z[u’](z), u(z))) da
= [ (sl (@)lul@)

- H(z, z[v’)(z), u(z), n°[u"](2))) do (5.5)

where 7°[u®] is the solution of the adjoint problem (3.3) with u = w*, p =
—=V.G(-, z[«*](-)A%). In addition, obviously, the difference z[u](z) — z[u*](z) is
a qo]utlou of the linearized boundary value problem

ia;__,-(:a:)zxj + a1(z)z = az(z, u(2)) — az(z,w’(x)), 2(z) =0, z € S.

31?1'
By virtue of the limit relation p§ — 0, s — oo, the inequality (5.5) and station-
arity of the sequence u*, s = 1,2,..., we obtain for some sequence of nonnega-
tive numbers 7. s = 1,2,..., convergent to zero, the following inequality with

O e o
| (G alul(@)) = Gla fu)w) X ()

> [ G, o) ), o)) )

— Mz, 2[u*)(z), (o), ¥ [u¥](), 1))} do
+/&%wwuwmmmmmwmn
- Holz, 2[u)(o), u(@), molu’)(2)))} do > =7

At the same time, by the belongiug to the support of the positive measure A* in
{z € X :|G(z,z[u*](z)) — q(z)| < +4°}, by nondegeneracy of any limit measure
for sequence A\*, s = 1,2,..., and by the Slater condition, we can write

/Q(G{x,z[u"](m)) - Gz, 2[u](2))) A*(dz) < —a

for caome number o > 0. The contradiction obtained completes the proof of the
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6. Approximation of the primal problem with the state
constraint by the problems with functional constraints

Consider the sequence of the optimization problems depending on the finite-
dimensional vector parameter ¢* = (qi"..”,qﬁ) € R™ and approximating the
primal Problem (F,)

Io(u) — inf, I*(u) € M* +¢*, ue D, ¢* € R", (Py)

where M* = {y* € Rl* : yf < (1,‘..,3;{: <0}, I*u) = (If(ta)....,ff';(u)),
IF(u) = G(a® z[u](a*7)). Here the sets X, = {a*1,... 28} X are the
same as in Section 4.

As in case of Problem (F,) and according to Warga (1971), a sequence
w €D,i=12....,is called m.a.s. in Problem (I’f:‘;) if the following relations
hold for the value function 3 : R — R'U {+o0}

L(u') < Bilg) +4', v' € DL 4, € 20, 7, ¢ =0, i — o0, (6.1)
where DS, = {u € D : If(u) - ¢f) < & j = 1,.... 4}, Br(a*) = Brsold®) =
1112“ b’“(q ) < Brolg®), ﬁ;,“ (¢*) = E11:1)1' Io(w), Br.(d*) = +oo, if Dfy = 0.

LEMMA 6.1 Let 3(q) < oo, q € C(X). Then, there exisls a sequence of veclors
¢“ e R, I =1,2,..., such that Bi.(¢*) = B(q). k — 0. [An particular, one of
such sequences has the form §* = (7}.. .. r_;f‘l) i | Crialit T T PSS

Proof. Let u®, s = 1,2...., be a sequence of controls such that u* € 1'):," and
To(u®) = Blq), € >0, ¢ — 0, s — oc. Due to Lemuma 3.1 and to the condition
(iii) for the function G, functions of the family /) («®), s = 1,2,..., arc uniformly
bounded and equicontinnous on Q. For this reason, we shall suppose without
loss of generality that

[ (u®) - Fﬂ%” =0, s =00, §€CA). fa) <qlz), z€ X,

max {0, f‘f{'u.‘“} ——E{,‘.H .-’,".)(u.“) - q{ } =0 5—=00 7=12,....
Sinee \,, & \A+1 = . L . it follows by the last limit relation and by defi-
nition ol the function Fy that we may seleet such snhac‘qu(‘m 68k =1 20000
of the sequence s = 1.2..... for which Iy(u**) > B(g") — 6%, 8 > 0. 6* — 0,
Je — oo, Hence, we may assert that limsup ,:)‘;,.{ﬁi") < fA(q). Simultancously. we
he=s x-

can show that the inequality Ilnlluf 3G > Alq) holds. Obviously. the last

will mean the end of the proof. Hummw that this inequality is not true. Then,
it follows without loss of generality that lTim _;ﬂ-{q ) =« < Fq). This strict in-
h—ex
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max{0, I (v*) = q1,.... [f (v°) =7, } = 0, Iy(v’) = a, s — oo. By equicon-
tinuity on € of the family I;(u®), s = 1,2,..., the first of the last two limit
relations leads us to the sequence of inclusions u* € Df: for some sequence of
numbers ¢* > 0, €* — 0, s — co. These inclusions together with the second of
limit relations mentioned above contradict the definition of the function 3(q) as
the value function of Problem (/). The lemma is proved. =

As in Sumin (1995, 1996, 1997a, 1997b) introduce the following definition of
a stationary sequence in Problem (P(:",,)

DEFINITION 6.1 A sequence of controls u' € D, i = 1,2,..., is called a sta-
tionary sequence in Problem (P;‘;. ) if there exist a sequence of numbers v* > 0,

i=1,2,...,9 20,9 —=0,i— co,
WeDY ={ueD: Fu) ~ ¢t <q, j=1,....4)

q"' = ey | J'J_'Y}J-'e-"tkl

and a bounded sequence of vectors ' € R+ i=1,2,...,

[
ST A0, W20, =01, 0,
=0

w5 ) = g5) 2 =, §=1,2,. b,
such that
/ max{H(x, z[u'](x), v, p*" [u'])(2), 1)
o veU
- H(z, 2[u](z), u' (), " [u) (), uh) } dz < &,

A ; ; e . i
where Y [ul] = phno[u'] + 3 ;;jf"n;-"[u‘], nolu'] is the solution of the problem
Jj=1
(3.1) with u = u', Y(z) = =V, F(z, z[u'](x), u'(z)), nf[u'] is the solution of the

problem

%Gg“j{:ﬂ)?}z‘- + V.a(z, 2[u](z), u(z))n = -V.G(z, 2[u](z)),
i
n(z)=0, z €S (6.2)

with u = u', g = 8¢5, and moreover, the sequence p*', i = 1,2,..., has only
nonzero limit points.

As in Sumin (1995, 1996, 1997a, 1997b), together with this definition define the
li .

sets of Lagrange multipliers: Lj;’\ = {- 21 phel € R : p* = (ug, 1ty -0 1f))
J:

€ R+l yk £ 0, uk = ), so that there exists a sequence of stationary controls
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vectors p*f i =1,2,..., has the vector p* as its limit point}, A = 0, 1; M:,;O =
Li’ Ufo}, My = L.

Further, in complete analogy with Sumin (1996, 1997a) we may assert that
the following theorem is valid for Problem (R‘{‘;) with a finite number of func-
tional constraints.

THEOREM 6.1 Let Bi(q*) < +00. Then we have
(98(q) N M) U (9%B(a) N M%) \ {0} # 0
and Clarke’s generalized gradient of the value function By at ¢* is equal to
OB(q") = comv{0B(q*) N A{j;:‘ +0™B(d*) N M{j‘;"}‘
COROLLARY 6.1 Let all problems P;‘;_ be normal in some neighborhood Oy of
a point ¢*, i.e., M;‘;U = {0}, y* € O, and moreover, the sets M::',;l uniformly
boundend with respect to y* € O by a constant K in some norm || - || (e.g..

Euclidean norm || - || = | -|). Then, the value function By is Lipschitz in this
norm on Oy with the same constant K.

Proof. The assertion of the corollary follows immediately from the equality of
Theorem 6.1, Theorem 2.3.7 (mean value theorem in the Lipschitz case) and
Theorem 2.9.7 in Clarke (1983).

7. Lipschitz continuity of the value function, typical of
regularity

First, we show in this section that the normality of Problem (P;) (see Definition
5.2) implies Lipschitz continuity of its value function in the neighborhood of the
point ¢ € C(X). To this end, we show that the normality of Problem (F,)
implies the existence of § > 0 for which all sets M:,[.l € R k=1,2,...for y*,

|y¥ — *|oo < & are uniformly bounded with respect to k = 1,2,... and y* in
c-norm | + |« where we understand c-norm |z|« of a vector a as the quantity
max{|zi|,..., [z}

Assume that it is not true. Then, there exist such sequences of vectors
¢ € R, A\* e M, k=1,2,..., that

[7* = 7o = 0, [A*|oo = 00, k = co.

This means that for every k = 1,2,. .. there exist a sequence of controls u® '_i €D,
i =1,2,..., a sequence of numbers 4% > 0,4 =1,2,..., 45 > 0, ¥% —= 0,
i — 0,

g g kil , . = TP ol Lo
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and a bounded sequence of vectors % = (ub ki) e RV i=1,2,...,

h-
Z”f'l '-a’é 0! “‘j‘.i 2 U: jzﬂ'l"""l:k'

=0
EEAIE ) = ) 2 =M, 5= 1,200,
such that
/lmx{H(I’Z[T‘k'i](fl‘)"U,‘qﬁk"'['uk‘i](m),ugi)
0 vell
= Mz, 2[uh)(z), u (@), Y [t (@), kg } d < A

; Vi ko ARk o
where PF7 = pdino[ub] +ng ;zj?"nj-‘ [®"], no[u* 7] is the solution of the problem
(3.1) with u = u*¥, ¢(z) = = V. F(z, z[u"](z),u*(z)), n¥[u*"] is the solution
of the problem (6.2) with u = u*, ju = §,«.; and, morcover, the sequence ;7.
i =1,2,..., has the point (1, \F) as its limit.

Let ir, k= 1,2,..., be such sequence that

7 = 0, M Moo =7 — 0, b /| \M]oo = — 0,
744 WM aeloe = 1, /1N ¥ = B = (1, .. 2 ).

- =k
Then, it is easy to observe that the sequence u* = u*i ¢ ’D;:' i [ -
7Y = 0, k — oo, satisfies the relations

/I max{H(z, 2[u¥)(x), v, * [uk](x). i)
Jo vet
- M. 2[u*](x), u* (2), 9" [u*] (2). 7i5) } dx < 7*,

where % = fifno[uf]+n*[u*], n*[1*] is the solution of the adjoint problem (6.2)
Iy,
with « = «* and with p = * = X }I;'él_.x-.} (here we preserve for the measure
J=1

the same notation which we exploited above for the vector of multipliers). More-

over, obviously, ik — 0, [ji*| — 1. k — 00, and the positive measure i* € M(Q)
satisfies the inequality j:\.(G(;t:.z{uk]{ﬁ:} - q(:::)}ﬂ'!"{(h') > —Tg, '_y‘g — 0, k — cc.
Here and above 5%, k = 1,2,..., s = 1,2, are some sequences of nonnegative
numbers. Thus, the sequence u*, k = 1,2,..., is a stationary one in Problem
(P) (v* = max{¥F*,5},75}) but simultaneously it is not a normal station-
ary sequence. The contradiction obtained implies that the property of uniform
boundedness of the sets IVI';};I, mentioned above, is proved. By repeating the ar-
guments of this proof, we may show also that all Problems (P_r:",,,) for y* satisfying
the inequality |y"' = T%|eo < 6 are, without loss of generality, normal ones.

So. according to Corollary 6.1, the value functions B(y*). [y* — 7l <
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1,2,.... It follows that the Lipschitz condition with the same constant in §/2-
neighborhood of the point ¢ € C(X) holds for the value function of primal
Problem (P,) as well. In fact, let ¢',¢* € C(X), |l¢' - qu\?) <012, 1= 1,2
Then the inequalities |§"% — %o < 6/2, 4 = 1,2, hold also, where F =
(ﬁ'l‘]",...,ﬁf;k)’ ﬁ;'k = ¢'(z®9), 5 = 1,...,l;. But then, according to the fact
proved above, we may write |8 (q™*) = Br(¢®*)| < K|gV*F =¥ |, k= 1,2,....
Thanks to Lemma 6.1, passing to the limit in the last inequality as k — oo, we
have |8(¢}) — B(¢*)| < K||¢* - q2||‘(‘?). Lipschitz continuity of the value function
is proved.

Further, we will prove a result which is in some sense inverse. We will use
the following definition.

DEFINITION 7.1 A wvector n € R™ 1s said to be a prozimal normal or prozimal

normal vector to set C C R™ at x € C if there exist a vector u ¢ C and a

number A > 0 such that n = Mu —z), |Ju— 2| = p(u,C), p(u,C) = iu(fJ |u—c.
ce

According to Clarke (1983), the vector u — x s called perpendicular to C' at w.
The set of all prozimal normals to C at x € C is denoted by PN (x) in Borwein
and Strojwas (1986, 1987).

THEOREM 7.1 Let the value function 3 of Problem (P,) be Lipschitz contin-
uwous in a neighborhood of q € C(X). Then, there exist reqular m.a.s. for
Problem (Py) in a netghborhood of q.

Proof. Due to space limitation, we give only the main idea of the proof. Consider

the family of Problems (P,) = (P, ~) where ¢ = 1, depending on parameter v.

v
Since function £ is Lipschitz congi;uqous in a neighborhood of g, it follows ob-
viously that the function of one variable B(v) = fB(q + vq) is Lipschitz in a
neighborhood of zero. Therefore, by proximal normal formula for Clarke’s nor-
mal cone (see, e.g., Clarke, 1983, Proposition 2.5.7), there exist such sequences

of numbers v*, ¢, 5, i =1,2,..., that
vi =0, B(v') = B), (¢',=n") = (¢,~n) #0, i — 00, n >0,
(¢, -n") € PNCPiE(Vl,ﬂ(VI)).

By analogy with the proof of Lemma 4.2 in Sumin (1996) (see also Sumin, 1997a,
Lemma 8) and by the above relations, we may conclude that ifu* k=1,2,...,
is a m.a.s. in Problem (P,:) in the sense of (2.2) (y* = y**, ¥ = ¢"'*) then the
sequence (u* v%), k=1,2,..., is the m.a.s., in the same sense, in the problem

. " o 1 .
I'(u,v) = X' lo(u) = N¢W + 511/, To(w) = (', B ))? = inf,
L(u) e M+q+V'q VvV €Sp, ueD, (7.1)

where Sp = (=P, P) is a segment of sufficiently large length such that v* € Sp,
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since the following inequalities hold
' I(uh*) = N¢' + 1|[(;»‘,19 u*'-*‘)) (v, B
< N B) = Xt 4 Xy 4 S,
AL () = g =V M) < ¥, 4 ¥,k = 0, ko0,

and the lower bound in the problem (7.1) is equal to X'y A(v') — Ai¢v*. This
fact may by proved with the same kind of arguments as in Sumin (1996) (sce
the proof of the equality (4.8)).

Further. we will write the maximum principle for the m.a.s. (u'*,07), k =
/O — in the problem (7.1). Since this may be realized according to scheme
of proof of Theorem 4.1 (with the set of controls D x Sp instead of D), we omit
the proof.

LEMMA 7.1 There exist a sequence of numbers v* > 0, k=1,2,..., "¢ —> 0,
k — oo and a sequence of pairs (;L:I'k.,\""")_. ,u.:)"" > 0, Ak g M( ).t o
|AeK| = 1, with a positive Radon measure N** having a support in {x € X :
|G (2, z[u*)(x)) = q(a) = vi| < 4%} such that

/1114}({?‘{ i [TLE'L‘}{:!:}.U.'J',Jr-'i‘k[I‘I‘-i'k](.‘!"}.]I-{';kfi'k)
Q

veU
— H(@, 2[u"*)(2), u'* (@), " ut ¥ (a )m, ) dp £ o™
max (—piFA'C |)\”‘| () = ') <ok (7.2)
W ESp

where gk = At 4+ Iy(uhk) - ;{?:(.v").l ik k) = pi e [u*] + pik ik,
n“""'[u""' = ';}[u*:"", -V.G(., Z[?ii‘k]{-)))\"k].

We have Iy(u'*) — B(v'). k — oo, ¥’ = 0, i — oco. Hence, there exists a
subsequence k;, i = 1.2,... such that

p(N(w') = . M) < '] + p(La (') = g = v M) <[] + €k,
et =0, M =0, (Io(w') - BN — 0,

AR A0, 1o o0, 1t = ub,

Without loss of generality, by the second inequality (7.2), by the limit relation
A — 0, i — oo, by the condition of normalization ;.zl';,""+|)|"'"| =1, by the *weak
compactness of a unit ball of the space of Radon measures, and by positiveness
of the measures A% we have simultaneously

i 1, ] 0, XN X e M(Q), (1) £0, (4N =
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LEMMA 7.2 There erisf a sequence of numbers v > 0,1 =1,2,..., 9" = 0,
i — 00, an m.a.s. u' € ’D;’ , and a sequence of pairs (juh, \), p > 0, At €
M(Q), py + |X| = 1, with a positive Radon measure N having a support in

{z € X :|G(z, z[v/](z)) — q(z) = v}| < ~'} such that

vel

- H(z, z[u' 1(z) ), i [uf ] ), 1)} dz < 4,
po =n >0, C+|/\|=0.

/ max{H(z z[u] L0, 90 [ (), )
Q

where (po, A) is an arbitrary *weak accumulation point of the sequence (b, A1),
i=1,2,..., P[] = phmolul] + n'[u], n'[uw’] = nlu’, =V.G(, 2[uf](-))\].

Thanks to Lemma 7.2, we can speak about regularity of Problem (FP,).
Naturally, in general situation Lipschitz continuity of the value function 5(q)
does not take place. Nevertheless, the following common result is valid.

THEOREM 7.2 A set of all points ¢ € dom 3, for which there exist only regular
m.a.s. i Problem (P,), is dense in dom f3.

In practice, the proof of this theorem repeats the first part of the proof of
Theorem 7.1 (see the part of the proof before Lemma 7.1). In fact, let ¢ € dom 3,
7 € C(X) be a positive function. Then q + v§ € dom S, v € dom 3 for v > 0
and the value function F(v) = B(q + vq) from the proof of Theorem 7.1 is
only a lower semicontinuous function of the number parameter v > 0 since the
function fB(q) according to Lemma 3.2 is lower semicontinuous. It follows, by
Borwein and Strojwas (1986, 1987), Theorem 7.1, that points v where there
exists a proximal normal (¢, —n) € PN, - =(v,B(v)) with 5 > 0, are dense in
the segment [0, 0], vo > 0. As in the proof of Theorem 7.1, the last means that
for some A > 0 a m.as. v* € D, k= 1,2,..., in Problem (FU) is also m.a.s.
(in pair with ») in Problem (7.1) for X' = A\, n' =, ¢! = ¢, v' = v. Writing
the maximum principle for this m.a.s. in the problem m(‘ntlonul (sece Lemma
7.1), we derive the regular maximum principle for the m.a.s. u*, k= 1,2,...,
in Problem (1’ ) Since we may take the point v arbitrarily near to zero, it
follows that any 11015111301 hood of the element ¢ € dom 3 contains an clement
¢ + vq where Problem (P,H-ﬁ) is regular. Hence, the theorem is proved.

REMARK 7.1 Using the normals in the sense of Mordukhovich (1988), Mor-
dukhovich and Shao (1996), instead of the proximal normals in the sense of
Definition 7.1, we may improve the result of Theorem 7.2. Namely, it may
be proved that for any ¢ € domf and for any positive function ¢ € C(X) in
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8. Illustrative examples

In this section we will consider two illustrative examples in which usual optimal
controls do not exist. At the same time, we can apply our results in their
analysis.

ExaMPLE 8.1 Let us consider the problem with the well-known functional

/( z[u)(z))? = w?(z)) dz — inf, z[u)(z) < q(z), = = (21,22) € O,

geC@), Q=[0,1]x [0,1], U =[-1,1}, n =2,
Az—z=u(z), 2€Q, 2(z)=0, z € 8S.

It is easy to see that this “linear-convex” problem satisfies all conditions of
Section 2. Since z[u](z) = 0 for w(z) = 0, then due to Theorem 5.1 and
Section 7 the value function £ is Lipschitz continuous in a neighborhood of any
positive ¢ € C(Q). The maximum principle of Theorem 4.1 for ¢ = 0 may be
written in this example in the following form:

L x50 = (@) + 9 [ (@) (0 0) - )} o <o,

ve[-1,1]
where 7' — 0, i — oo, p§ > 0, ¥*[u'] is a solution of the problem
A -y = —pﬂ?z['tmf](m) -X,z€eQ, ¥(x)=0,z€8S

with the positive measure A' € M(f2) having a support in {z € Q : |2[u](z)| <
7'}, ph+|AT| = 1. An elementary analysis of these relations shows (see analogous
examples in Sumin, 1986, 1996, 1997a, 1997b) that any sequence u’ € 'DSI,
i=1,2,..., in our example will satisfy the maximum principle if the following
relations hold: ph — 1, |[¥'[w]llie — 0, |[u']1e — 1, i = oo. Obviously,
one of such sequences has the form u'(z) = {1, 2k/2i < z; < (2k +1)/2i, -1,
(2k+1)/2i <z < (2k+2)/2i, k=0,1,...,i—1}, |\| = 0, i — co. It is easy
to show that this sequence is really the m.a.s. in our example for ¢ = 0. Finally,
we note that the usual optimal control does not exist in this example for ¢ = 0.

EXAMPLE 8.2 Let us consider now the same problem as in Example 8.1 but
with the state constraint zz[u] < g(x) instead of z[u](z) < g(z). It is easy to
see that the control u(z) = 0is a unique control in this optlmaI control problem
for ¢ = 0 for which the state constraint holds in the proper classical sensc.
Therefore, we have the equality Fp(0) = 0. At the same time, it is easy to show
with the same kind of arguments as in Example 8.1 (in this example the adjoint
functions 9 [u!] satisfy the same adjoint equation but with the right-hand side
— it 220l — 921N that B(0) = —1. Thus, we have the strict inequality
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