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Abstract: This paper is a contribution to the following question: 
consider the classical wave equation damped by a nonlinear feedback 
control which is only assumed to decrease the energy. Then, do 
solutions to the perturbed system still exist for all time? Docs st rong 
stability occur in the sense that the energy tends to zero as time 
tends to infinity? We prove here that the answer to both questions 
is positive in the specific case of the one-dimensional wave equation 
damped by boundary controls which are functions of the observed 
velocity. The main point is that no monotonicity assumption is made 
on the damping term. 
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1. Introduction 

This paper is a contribution to the following question: consider the classical 
wave equat ion damped by a nonlinear feedback control which is only ass·umed 
to decTeasc the ene1yy. In particular , no monotonicity assumption is made. 
Then, do solutions to the perturbed system still exist for all time? Does strong 
stability occnr in the sense that the energy tends to zero as time tends to infinity? 

This work was done whi le the second author was working in the I.R.M.A. Universite 
T ~ •• : ,.. n -- J.. - .... C" 1 1 T T .,..... " ,. o T"o. •• -
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We give here a complete and positive answer to this question in the sim­
ple case of the one-dimensional wave equation damped by boundary feedback 
controls. More precisely, let us consider t he following system: 

Utt- Uxx = 0, .'1: E (0 , 1) , t 2 0, 

u(O,t) = 0, t 2 0, 

Ux(1, t) = -q(ut(1, t)), t 2 0, 

( U (X, 0), Ut (X, 0)) = ( V.o (X), 1L 1 ( :1: )) , X E ( 0, 1) , 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

with initia l conditions (u0 , ul) given in V x £ 2 (0 , 1) (where V = {v E H 1 (0 , 1) I 
v(O) = 0} ) , under the basic a..ss umption t hat 

q: R ___, R. is cont inuous and satisfies \:f).. E R, >..q(>..) 2 0. (1.5) 

Then the questions are: does the system (1.1) - (1.4) have a global solution 
in time? Does the energy tend to zero as t ___, +oo if, for instance, >..q( /\ ) > 0 
for).. =f 0 (which corresponds to a "st rict " decrease of energy) ? 

Indeed, solutions of (1.1)- (1.3) satisfy the well-known energy equa li ty 

't:/t1, t2 E R+ , Eu(t2) - Eu(tl) =- (
2 

Ut(l, t)q('ut(1, t)) dt, 
./11 

where the energy of n is given by 

1 2 . 2 
\:ItER.+ , Eu(t) = 2(11ux(-, t)ll£2(0,1) + llut(-, t) ll u(D,l)). 

Thus, under assumption (1.5) , energy is nonincreasing and the trajectories 
(v.(-), lf,t (-)) are bounded in the energy space. The term q represents a da mping 
force which is a nonlinear function of the observed velocity. 

The question is to decide whet lter this only assumption on the control q 
provides 

- -- global existence of solutions for (1.1) -(1.4), 
- convergence to zero of Eu(t) as t ___, +oo, when inequality in (1.5 ) is strict 

(see (1.6) below). 
Let us recall the state of t he a rt Oil thi s question . 

When q : H. ___, R is continuous increasing such that q(O) = 0, global 
existence of so lutions of (1.1) -(1.4) is known for all ini tial conditions ('uo , ·u.l) 
given in V x £ 2 (0 , 1) (where V = {v E H 1 (0,1) I v(O) = 0}). This result is, 
for instance, a consequence of the general theory of nonlinear semi-groups of 
contractions generated by a maximal monotone operator (see Bre:;,is, 1973). 

Moreover, if we impose on the control t he condition \:/ ).. # 0, q(>.. ) # 0 , or 
even the "uni lateral" condition 

\:f ).. > 0, q(>..) > 0 (or\://\< 0, q(/\) < 0), ( 1.6) 

then strong asymptotic stabili ty of so lutions occms in V x L2 (0 , 1), i.e. , 
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This result follows, for instance, from the invariance principle of LaSalle (see 
for example Haraux, 1979, Lasiecka, 1989, Conrad, Pierre, 1994). This is a 
very specific situation of a general setting for evolution equations of second 
order (wave, beam or plate equations ... ) in a bounded open subset n of RN 
with a nonlinear damping q( ut) applied to a part of n or of its bonndary: a 
monotonicity assumption on q and a growth condition at infinity ensure st rong 
compactness of trajectories. 

But , if we remove these hypotheses, few results seem to be known. If we 
assume q : R ---> R continuous satisfying ( 1.5) and such that 

Vo: > 0, inf{q(,\) I,\ ?: a} > 0, 

then at least weak asymptotic stabili ty of all global solu t ions holds, i.e. , 

(u(-, t) , ut(-, t)) ~ (0, 0) weakly in the energy space . 
t->+ oo 

This is a particular case of a general resu lt of weak stability in Vancostenoblc , 
1998a, 1998b; see also Slemrod, 1989, for other results in this spiri t. 

However, strong stability under assumptions (1. 5)-(1.6) as well as even global 
existence under (1.5) seemed to be an open problem. We solve it here completely 
in the particular case of equation (1.1 )-(1.4 ). 

Note also that results of global existence and strong stability may also be 
found in the li terature for other one-dimensional problems with non monotone 
dist ributed feedback controls, but with some restrictions on the ini tial data or 
on the control (see e.g. Feireisl, 1993a and also Feireisl, 1993b, Feireisl, O'Dowd , 
1998, and Vaucostenoble, 1998b, c). 

We prove here existence, uniqueness and st rong stability for the boundary 
problem ( 1.1 )-( 1.4). The proof is elementary and essentially based on t he par­
t icular structure of solut ions of (1. 1) given by D'Alembert formula. 

2. Results 

2.1. G lobal existence of solutions 

The main existence result is 

THEOREM 1 Suppose that q : R ---> R is continuous and satisfies ( 1. 5). For all 
(u0 , ul) E V x L2(0 , 1), there exists u(x, t) solution of {1.1) - (1.4) such that 

u(x , t) = f(t + x) + g(t - x), (x, t) E (0, 1) x (0, + oo), (2 .1) 

wher·e f : (0, + oo) ---> R and g : ( -1 , + oo) ---> R are absolutely continuous 
functions s1tch that 
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REMARKS. 1. For such a solution, t he boundary condition (1.3) makes sense 
for almost every t E R+, indeed u,c(1, ·) = f'(· + 1)- g'(-- 1) and u 1(1, ·) = 
f'(- + 1) + g'(-- 1) exist and belong to Lfoc([O, + oo)). 

2. We can verify that u belongs to the class 

(u, 1Lt) E C([O, +oo[; V x £ 2 (0, 1)). (2.3) 

3. Condition (1.5) is essential. Global exis tence may fail even if q is a 
Lipschitz continuous function . Indeed, we can verify that for q = - Id and 
(uo, u 1) ¥- (0, 0) the system (1.1)- (1.4) has no solution (see Vancostenoblc, 
1998b). 

4. If we assume (uo, ·u.I) E (V n W1•00 (0, 1)) x £ 00 (0, 1), then we can easily 
prove that 

This was the case considered in Feireisl (1993a) for distributed control. 

About uniqueness: it is known that any weak solution of (1.1) has the 
structure given by (2.1). If we impose that ux(1 , ·) and ·u1(1 , ·) belong to 
Lfoc([O, + oo)), then f and g verify (2.2). The "natural" space for the solutions 
of (1.1) is therefore given by (2.1) -(2.2). In this class , we have the following 
uniqueness result: 

PROPOSITION 1 Under hypotheses of Theorem 1, and if q verifies 

q(AI)- q(A2) 
'v'A 1 , Az E R such that A1 ¥- Az, A > -1 , 

Al- 2 
(2.4) 

then ·u is the ·unique solution of {1.1) (1.4) in the class (2.1)·· {2 .2). 

2.2. Asymptotic stability 

We give the following result of strong asymptotic stability: 

THEOREM 2 Assume !.hat q: R---+ R is continuous and sat·isfies {1.5) and {1.6). 
Let (u0 , ·ul) be give·n in V x £ 2 (0 , 1). Then , fo ·r all solution lt of {1.1) - {1.4) in 
the class {2.1)-{2.2), 

(tt(t), u1(t)) __, (0, 0) strongly in V x £ 2 (0, 1) . 
t -->+oo 

REMARK. Note that st rong asy mptotic stability occurs for all globed solutions 
even in the case of non-uniqueness of solutions of (1.1 )-( 1.4) . 

REMARK. If condition (1.6) is not sat isfied , the conclusion is false. Indeed, if 
t.hPrP Pxist.s An -::/:. 0 such that o( An) = o(- An) = 0, then even weak asymptotic 
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PROPOSITION 2 Let q : R---+ R be a continuous funct·ion satisfying (1.5) and 
such that q(..\o) = q( -..\o) = 0 for some ..\o E R. Then the1·e exists u solution of 
{1.1) -·(1.4) s·uch that n(t) ----f--' 0 weakly in V. 

t -->+oo 

REMARK. The c)xistence of (at least ) one so lution of (1.1 ) -(1.4) is given by The­
orem 1. In this counter-example , we explicitely give a solution: its originality 
is that it satisfies ·ut( 1, t) = ± /\ o a.e. t and ux(1, t) = 0 a.e. t , so that (1.3) is 
satisfied a.e. t. 

2.3. Comments 

We completely solved the problems of ex is tence a nd of strong s tability for equa­
tion ( 1.1 )- ( 1.4) assuming only that the initia l conditions belong to the energy 
space and that q satisfies (1.5)- (l.G) . Our proof is elementary and essentially 
based on the particular structme of solutions of (1.1) given by D 'Alembert for­
mula . 

It would be interesting to study the same questions when this formula does 
not apply : for instance, we could replace (1.1 ) by 'litt - (au,J" = 0 where 
a: [0 , 1] ---+ R is a regular positive function. In the same spir it , it would a lso be 
interesting to study other one-dimensional equations for which some results of 
existence and stroug stabili ty exist in the literatme, but only with additional 
assumptions. For example, E. Feireisl (1993a) obtained similar resu lts for a 
wave equation with distributed damping for (u0 , ·n1 ) E W 1•00 (0 , 1) x L00 (0 , 1) 
and q of class C1 . Is it possible to remove the regularity assumptions, especially 
on t he initia l data? (See a lso Fcircisl, 1993b, for similar results for a beam 
equat ion assuming that q is Lipschitz continuous and see Feircisl , O 'Dowd , 
1998, Va.ncostenoblc, 1998b, c , for simila r results for hybrid systems with t he 
rest riction that q is locally increasing at 0). 

In higher-dimensiona l spaces, few results seem to be known . We proved in 
a very general setting (see Vancostenoble, 1998a, 1998b), that (1.5) - (1.6) imply 
at least weak stability of all global solutions. Adding some restrictions on t he 
ini t ia l data and on t he control , we managed to prove strong stability in the case 
of the wave equation with a distributed control (see Martinez, Vancos tenoble) . 
However, even existence (assuming only (1.5)) seems to be open and no resul t 
of s trong stability (assuming only (1.5 )- (1.6)) nor a counter-example to strong 
stability seem to be known. 

3. Proofs 

3.1. Proof of global existence of solutions 

Firs t of a ll , let us analyse the structure of solu tions of (1.1) -- (1.4): a general 
solution of (1.1) is 
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where f and g are two absolutely continuous functions respectively defined on 
(0, + oo)--+ Rand ( -1, +oo)--+ R. Initial conditions (1.4) may be written 

f(x) + g( -x) = uo(x), x E (0, 1), (3.2) 

and 

J'(x) + g'(-x) = u1(x), x E (0, 1). (3.3) 

Consequently, 

{ 
J'(A) = ¥(u1(A) + u'o(A )), A E (0, 1), 
g' (A) = 2 ( u 1 (-A) - u' o (-A)), A E ( -1, 0). 

Condition (1.2) imposes 

f(A) = -g(A), A E R+, (3.4) 

and condition (1.3) becomes 

j'(t + 1)- g'(t- 1) = -q(J' (t + 1) + g'(t- 1)), t E R+, 

or, with A = t + 1, 

j'(A)- g'(A- 2) = -q(J'(A) + g'(A- 2)), A 2 1. (3.5) 

In particular, 

j'(A) + j'(A- 2) = -q(J'(A)- j' (A- 2)), A 2 2. 

For the proofs of Theorem 1 and Proposition 1, we will need the following 
technical result: 

LEMMA 1 Let q: R--+ R. be continuous satisfying (1.5). 
(i) For all A E R., the equation 

X E R, X+ A+ q(X- A)= 0, (3.6) 
has a solution S (A) of smallest absolute value and the application S 
R--+ R is lower-semi-continuous (l.s.c.) on R. 

(ii) Moreover, any solution X of {3.6) verifies lXI ~ IAI. 
(iii) Furthermore, if q also verifies {2.4), then equation {3.6) has a unique 

solution. 

Proof of Lemma 1. (i) Let A be given in R.. We denote by fA : R --+ R the 
continuous function defined by 

VXER, fA(X)=X+ A +q(X-A). 

We deduce from hypothesis (1.5) that 
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Consequent ly, there exists X E R such that f A (X) = 0, i. e. such that X is 
solu tion of (3.6). So we can define an application S by 

{
R -->R 

S: A~----+ XA = inf{X E R I X solution of (3.6)} . 

By definition of S, t here exists (Xn) 11 a sequence of R such t hat 

{
X, --> S(A) as n--> + oo, 
Vn EN, Xn +A + q(Xn - A) = 0. 

P assing to t he limit as n --> + oo, we deduce that S(A) is solution of (3.6). 
Moreover, S is a lso l. s .c. on R . 

(ii) For all A E R and for a ll X E R solu tion of (3 .6) , we multiply (3.6) by 
(X- A) , which gives 

(X 2
- A2

) = -q(X- A)(X- A) :S 0. 

Consequently, lXI :S IAI. 
(iii) Assume that q also verifies (2.4). Let A be given in R and ass ume that 

equation (3 .6) has two distinct solu tions X and X'. T hen 

.::_q('-X_-_A_:_) -~q(-'---X_'_-_A:--'-) = _ 1 
(X - A)- (X ' - A) ' 

which is in contrad iction with (2 .4) . • 
Proof of Theorem 1. We define f' on (0, + oo) --> R by 

j'(/\) = -u 1 (A) + u'o(A) a.e. /\ E (0, 1), (3 .7) 
2 

j'(A) = s(- nl(-A + 2); u~(-A + 2) ) a .e. A E (1,2), (3.8) 

a nd 

j' (A) = S(f'( /\- 2)) a.e. /\ E (2, +oo). (3.0) 

Then we define g' on ( - 1, +oo) --> R by 

'( A) _ ul(- A)- u'o(- A) A (- 1 0) g -
2 

a.e. E , , 

and 

j (A) = - g(/\) a .e. A E (0, + oo). 

Clearly, f' a nd g' sat isfy condi t ions (3.2) , (3.3) a nd (3.4). And , from Lemma 1, 
(3.5) is a lso verified . 

Moreover, we prove 
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Indeed , from (3.8) and Lemma 1, it follows 

lf' (A) I ~ 1- ul( -A+ 2); u~( -A+ 2) I a.e. A E (1, 2). 

Consequently, from (3 .7) and (3.10), we have 

llf'lliz(o,2) ~ ll ·n~lli 2 (0,l) + llu1lli2(0,1)· 

Similarly, from (3.9) , we obtain for all k EN, 

(3 .10) 

llf'lliz(2k,2k+2) ~ llf'll i 2(2k-2.2k) ~ · · · ~ llu~lli2(0 , l) + llutlliz(O,I)· (3.11) 

Finally, we define for (x, t) E (0, 1) x (0, + oo), 

u(x, t) = 1t+x j'(s) ds + 1t-x g'(s) ds + uo(O). (3.12) 

Clearly ·n belongs to the class (2.1)- (2.2) and is solution of (1.1)- (1.4). • 

REMARK. When (2.4) is not satisfied, we can use, instead of S, any other 
bounded and measurable section of (3.6). This also leads to a solution of (1.1)­
(1.4). On examples, we can construct several distinct solutions of (1.1)-(1.4). 

REMARK. Using the properties of f and g, we can prove that u belongs to 
the class (2.3). Indeed, since f' E Lfoc([O, +oo)) and g' E Lfoc([-1, + oo)), we 
deduce from the expression (2.1) ofu that u,ut,Ux E C([O,+oo[;£2(0,1)). Let 
to be fixed in R. Then 

llut(- , t)- Ut(- , to)lliz(o,I) 

~ 211/'(t + ·)- J'(to + ·)lli2(0,l) + 2llg'(t- ·)- g'(to- ·)ll i2(0,I)· 

The application "translation" is continuous on R-+ L2 (0, 1) (see, for example, 
Rudin, 1991), i.e. 't:/to E R, 't:/h E L2(0, 1), h(· + t) ----+ h(- + t0 ) in L2(0, 1). 

t-tto 

Consequently, Ut(-, t) ----+ ut(- , t0) in L2 (0, 1). And similarly, we have ux(· , t) 
t-tto 

----+ ux(-, to) in L2(0 , 1) and u(·, t)----+ u(-, to) in L2 (0, 1). • 
t-tto t-tto 

Proof of Proposition 1. Let u be a solution of (1.1)- (1.4) belonging to the class 
(2.1)- (2.2). The analysis of the structure of solutions imposes that f and g verify 
(3.2) ·-(3.5). Since q satisfies (2.4), Lemma 1 implies that f' and g' are uniquely 
determined respectively in Lfoc([O , +oo)) and Lfoc([-1, +oo)). Consequently, 
u is uniquely determined by (3.12). • 

3.2. Proof of asymptotic stability 
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LEMMA 2 For all sequence (tn)n of R such that tn ____, +oo, and for all 
n-++oo 

T > 0, 

t lq('ut(1 , t + tn))l dt ____, 0, k n-+= 
(3.13) 

and 

(3.14) 

where(·)+ = max(-,0). 

We choose T = 2, tn = 2n for all n E N* and we set Fn(s) = f'(s + 2n). 
With the new variable s = t- 1, we obtain 

and 

;·1 !1 (nt(l, s + 1 + 2n))+ ds = (Fn+1(s)- Fn(s))+ ds ____, 0. 
- 1 -1 n-+= 

Condition (1.3) may be written: Yn EN*, a.e. s E (-1 , 1) , 

Thus 

Using 

2(Fn+1)+ :S (Fn+l + Fn)+ + (Fn+l - Fn)+ 1 

2(Fn)- :S (Fn+l - Fn)+ + (Fn+l + Fn)-, 

(3.15) 

(3.16) 

we deduce from (3.15)- (3.16) that Fn ____, 0 in £1(-1, 1). Since n 1---+ IFn(s)l 
n-+= 

is nonincreasing (by (3.9) and Lemma 1), we deduce Fn(s) ____, 0 a .e. sand 
n-+= 

!
1 

J'(s + 2n) 2 ds = 11 

Fn(s) 2 ds ____, 0. 
- 1 -1 n-+= 

Finally, Ut(·, 2n) = f'(2n + ·)- J'(2n- ·)and ux(-, 2n) = J'(2n + ·) + J'(2n- ·) 
converge strongly to 0 in £ 2 (0, 1) . Since Eu(t) is a nonincreasing, we deduce 
1<' ( +\ . () •.. t. ~-~~ "''- ---··· " 
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Proof of Lemma 2. Let T > 0 be fixed and let (tn)n be a sequence of R such 
that t11 _, + oo. The energy equality gives 

t-++oo 

Eu(fn + T)- Eu(tn) =-!aT Ut( 1, t + f11 )q(ut(1, t + tn)) dt. 

There exists L = lim Eu(t). So lim Eu(tn) = lim Eu(tn + T) L. 
t-++oo n-++oo n-++oo 

Therefore 

lim ( Ut(1, t + tn)q(ut(1, t + t11 )) dt = 0. 
n-++oo Jo 

(3.17) 

First, in order to prove (3.13), we fix c > 0. By continuity of q at 0, there 
exists rt( c) such that 

{T lq(ut(1 , t + tn) )l dt ~c. 
Jo lu,(l,t+t,.)I::;7J(c) 

So, we have 

+ {T lq(ut(1, t + tn))l dt 
Jo lu,(l ,t+t ,.)I::;7J(c) 

1 ( 
~ rt(c) Jo Ut(1, t + t11 )q(ut(1, t + tn)) dt + c. 

Finally, from (3.17), we obtain (3.13). 
Next , in order to prove (3.14) , we fix a> 0 and k > 0. Then 

( ( 1lt ( 1, t + tn)) + dt = ( Ut ( 1, f + tn) dt 
Jo Jo o::;u,(l ,t+t,.)::;o: 

+ ( 1Lt(1, f + tn) dt + ( Ut(1, f + fn) dt 
Jo o:::;u ,(l, t+tn)::;k Jo k::;u,(l,t+tn) 

1 1T Cr ~aT+ -
0 

u1(1, t + t11 )q(u1(1, t + tn)) dt + -k· , 
a,k 0 

where Co:,k = inf{q(A) I a~ A~ k} > 0, (since q(A) > 0 for all A > 0, we have 
C<>,k > 0) , and where Cr > 0 is a constant. Indeed, we have 

Ut( 1, f + fn) = f'(t + f 11 + 1) + g1
(f + fn- 1) , f E (0, T). 

From (3 .11 ), we deduce that there exists a constant. Cr > 0 such that 

, Cr 
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Consequently, 

T T 
k r . Ut(1 , t + t,.) dt ~ r lut(1, t + tn)l 2 dt ~ Cr, 

.fo k:'Ou,(l.t+t,) .fo 

which proves the result. Finally we deduce (3.14) from (3.17). • 
3.3. Counter-example to weak stability 

Proof of proposition 2. We introduce f: ( -1 , +oo)---+ Ran absolntely continu­
ous function such that 

f'(>..) =- )..
2
° a.e.).. E (-1 , 0) and a .e.).. E (4k+2,4k+4), kEN, 

1 >..o ( j (>..) = - a.e. /\ E 4k, 4k + 2), k EN. 
2 

Let t hen ·u be defined by 

n(x, t) = f(t + .x)- f(t- x), (x, t) E (0, 1) x R+. 

We easily verify that u is solution of (1.1) with (1.2) and (1.4). And 

Ux ( 1 , t) = f' ( t + 1) + J' ( t - 1) = ± ,.\
2
° + ( =f )..

2
° ) = 0, 

1 1( ) >..o ( Ao) u1(1,t)=f(t+1)-f t-1 =±-- =t= - =±>.o. 
2 2 

This implies (1.3) since q(7t1(1 , t)) = q(±>..o) = 0 = -v.x( 1, t) a.e. t E R+. 
On the other hand , with tk = 4k + 1 for all k EN, we have for all k EN, 

1 1 ) >..o Ao ( ) n,"(:r, tk) = f (t,, + x) + .f (tk- .r = 2 + 2 = Ao a.e. x E 0,1 , 

(since l;k + x and t,- x E (4k,4k + 2)). We denote by r.p the function of V 
defi ned by r.p( :z:) = J: for all x E [0, 1]. 

j
· l 

'<//,:EN, (u(tk), r.p)v = (ux(th), 'Px)U(O,l) = 
0 

'll :I:(x, tk) dx = AQ. 

Thus, u(tk) ~ 0 in V. • k-->+ oo 
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