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Abstract: This paper is a contribution to the following question:
consider the classical wave equation damped by a nonlinear feedback
control which is only assumed to decrease the energy. Then, do
solutions to the perturbed system still exist for all time? Does strong
stability occur in the sense that the energy tends to zero as time
tends to infinity? We prove here that the answer to both questions
is positive in the specific case of the one-dimensional wave equation
damped by boundary controls which are functions of the observed
velocity. The main point is that no monotonicity assumption is made
on the damping term.
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Introduction

This paper is a contribution to the following question: consider the classical
wave equation damped by a nonlinear feedback control which is only assumed

to

decrease the energy. In particular, no monotonicity assumption is made.

Then, do solutions to the perturbed system still exist for all time? Does strong
stability occur in the sense that the energy tends to zero as time tends to infinity?
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We give here a complete and positive answer to this question in the sim-
ple case of the one-dimensional wave equation damped by boundary feedback
controls. More precisely, let us consider the following system:

Uy — Upzr =0, z € (0,1), £ 20, (1.1)
uw(0,¢8) =0, t >0, (1.2)
ug(1,8) = —qu(1,t)), t >0, (1.3)
(u(z,0),u(z,0)) = (uo(z), w1 (x)), = € (0,1), (1.4)

with initial conditions (ug, u;) given in V x L2(0,1) (where V = {v € H'(0,1) |
v(0) = 0}), under the basic assumption that

q: R — R is continuous and satisfies YA € R, Ag(A) > 0. (1.5)

Then the questions are: does the system (1.1)-(1.4) have a global solution
in time? Does the energy tend to zero as ¢ — +oo if, for instance, Ag(\) > 0
for A # 0 (which corresponds to a “strict” decrcase of energy)?

Indeed, solutions of (1.1)-(1.3) satisfy the well-known energy equality

oty
Vi, ts € Ry, Eu(ts) — Eu(ty) = — f w(1,1)q(ue(1, 1)) dt,

Jiy

where the energy of u is given by

1 5 "
Vt € Ry, Eu(t) = 5(Ilua( 8 F200.0) + el ) Z20,1)-
2

Thus, under assumption (1.5). energy is nonincreasing and the trajectories
(w(:),ue(:)) are bounded in the energy space. The term g represents a damping
force which is a nonlinear function of the observed velocity.

The question is to decide whether this only assumption on the control g
provides

—- global existence of solutions for (1.1)-(1.4).

— convergence to zero of £, (1) as t — 4020, when incquality in (1.5) is strict
(sce (1.6) below).

Let us recall the state of the art ou this question.

When ¢ : R — R is continuous increasing such that ¢(0) = 0, global
existence of solutions of (1.1)-(1.4) is known for all initial conditions (ug, 1)
given in V x L*(0,1) (where V = {v € H(0,1) | v(0) = 0}). This result is,
for instance, a consequence of the general theory of nonlinear semi-groups of
contractions generated by a maximal monotone operator (see Brézis, 1973).

Moreover. if we impose on the control the condition YA # 0, ¢(A) # 0, or
even the “unilateral” condition

YA >0, g(A) >0 (or YA <0, g(A) <0}, (1.6)

then strong asymptotic stability of solutions occurs in V x L*(0, 1), i.c.,
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This result follows, for instance, from the invariance principle of LaSalle (see
for example Haraux, 1979, Lasiccka, 1989, Conrad, Pierre, 1994). This is a
very specific situation of a general setting for evolution equations of second
order (wave, beam or plate equations...) in a bounded open subset Q of RY
with a nonlinear damping ¢(u;) applied to a part of Q or of its boundary: a
monotonicity assumption on ¢ and a growth condition at infinity ensure strong
compactness of trajectories.

But, if we remove these hypotheses, few results seem to be known. If we
assume ¢ : R — R continuous satisfying (1.5) and such that

Va > 0, inf{g(A) | A > a} >0,
then at least weak asymptotic stability of all global solutions holds, i.e.,

(u(:yt), ue(,t))

(0,0) weakly in the energy space.

t— 400
This is a particular case of a general result of weak stability in Vancostenoble,
1998a, 1998b; see also Slemrod, 1989, for other results in this spirit.

However, strong stability under assumptions (1.5)-(1.6) as well as even global
existence under (1.5) seemed to be an open problem. We solve it here completely
in the particular case of equation (1.1)-(1.4).

Note also that results of global existence and strong stability may also be
found in the literature for other one-dimensional problems with non monotone
distributed feedback controls, but with some restrictions on the initial data or
on the control (see e.g. Feireisl, 1993a and also Feireisl, 1993b, Feireisl, O'Dowd,
1998, and Vancostenoble, 1998b, c).

We prove here existence, uniqueness and strong stability for the boundary
problem (1.1)-(1.4). The proof is elementary and essentially based on the par-
ticular structure of solutions of (1.1) given by D’Alembert formula.

2. Results
2.1. Global existence of solutions

The main existence result is

THEOREM 1 Suppose that ¢ : R — R is continuous and satisfies (1.5). For all
(ug,ur) € V x L*(0,1), there exists u(x,t) solution of (1.1)-(1.4) such that

w(z,t) = f(t+ )+ gt — ), (z,t) € (0,1) x (0, +00), (2.1)

where f : (0,400) — R and g : (—1,400) — R are absolutely continuous
functions such that

Y $ 4 a
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REMARKS. 1. For such a solution, the boundary condition (1.3) makes sense
for almost every t € Ry, indeed u,(1,-) = f'(-+ 1) — ¢'(- — 1) and w(1,-) =
f'(-+ 1)+ ¢'(- = 1) exist and belong to LE ([0, +00)).

2. We can verify that u belongs to the class

(u,ue) € C([0, +00f; V x L2(0,1)). (2.3)

3. Condition (1.5) is essential. Global existence may fail even if ¢ is a
Lipschitz continuous function. Indeed, we can verify that for ¢ = —Id and
(wo,u1) # (0,0) the system (1.1)-(1.4) has no solution (see Vancostenoble,
1998b).

4. 1f we assume (ug,u1) € (V N W1>2(0,1)) x L**(0,1), then we can casily
prove that

1
171l 2o (0, 40032 9 Il oo (=1, 400y < '2'(““3”L°°(U,l) + [luall L= 0,1))-

This was the case considered in Feireisl (1993a) for distributed control.

About wniqueness: it is known that any weak solution of (1.1) has the
structure given by (2.1). If we impose that u.(1,-) and w(1,-) belong to
L} ([0, 400)), then f and g verify (2.2). The “natural” space for the solutions

of (1.1) is therefore given by (2.1)-(2.2). In this class, we have the following
uniqueness result:

ProroSITION 1 Under hypotheses of Theorem 1, and if q verifies

VA, Az € R such that A\ # Ma, ﬂ,{—);‘f\—(i“?—) S -
1 — A2

then w is the unique solution of (1.1)-(1.4) in the class (2.1)-(2.2).

i (2.4)

2.2. Asymptotic stability

We give the following result of strong asymptotic stability:

THEOREM 2 Asswme that ¢ : R — R is continuous and satisfies (1.5) and (1.6).
Let (ug,uy) be given in V x L*(0,1). Then, for all solution u of (1.1)-(1.4) in
the class (2.1)-(2.2),

(w(t), w(t)) = (0,0) strongly in V x L*(0,1).
— 400
REMARK. Note that strong asymptotic stability occurs for all global solutions
even in the case of non-uniqueness of solutions of (1.1)-(1.4).

REMARK. If condition (1.6) is not satisfied, the conelusion is false. Indeed, if
there exists An # 0 such that a{Aa) = a(=Xp) = 0, then even weak asymptotic
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ProprosiTion 2 Let ¢ : R — R be a continuous function satisfying (1.5) and
such that g(Ao) = q(—Xo) = 0 for some Ag € R. Then there exists u solution of
(1.1)-(1.4) such that u(t) —F— 0 weakly in V.

t—+oo

REMARK. The existence of (at least) one solution of (1.1)-(1.4) is given by The-
orem 1. In this counter-example, we explicitely give a solution: its originality
is that it satisfies w,(1,4) = £Ag a.e. ¢ and u,.(1,%) = 0 a.e. , so that (1.3) is
satisfied a.c. t.

2.3. Comments

We completely solved the problems of existence and of strong stability for equa-
tion (1.1)-(1.4) assuming only that the initial conditions belong to the energy
space and that g satisfies (1.5)-(1.6). Our proof is elementary and essentially
based on the particular structure of solutions of (1.1) given by D’Alembert for-
mula.

[t would be interesting to study the same questions when this formula does
not apply : for instance, we could replace (1.1) by wy — (aw,), = 0 where
a:[0.1] — R is a regular positive function. In the same spirit, it would also be
interesting to study other one-dimensional equations for which some results of
existence and strong stability exist in the literature, but only with additional
assumptions. For example, E. Feireisl (1993a) obtained similar results for a
wave equation with distributed damping for (ug,uy) € Wh>(0,1) x L>=(0,1)
and ¢ of class C'. s it possible to remove the regularity assumptions, especially
on the initial data? (See also Feireisl, 1993b, for similar results for a beam
equation assuming that ¢ is Lipschitz continuons and see Feireisl, O'Dowd,
1998. Vancostenoble, 1998b, ¢, for similar results for hybrid systems with the
restriction that g is locally increasing at 0).

In higher-dimensional spaces, few results seem to be known. We proved in
a very general setting (see Vancostenoble, 1998a, 1998b), that (1.5)-(1.6) imply
at least weak stability of all global solutions. Adding some restrictions on the
initial data and on the control, we managed to prove strong stability in the case
of the wave equation with a distributed control (see Martinez, Vancostenoble).
However, even existence (assuming only (1.5)) seems to be open and no result
of strong stability (assuming ouly (1.5)-(1.6)) nor a counter-example to strong
stability scem to be known.

3. Proofs
3.1. Proof of global existence of solutions

First of all, let us analyse the structure of solutions of (1.1)-(1.4): a general
solution of (1.1) is
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where f and g are two absolutely continuous functions respectively defined on
(0,4+00) — R and (—1,400) — R. Initial conditions (1.4) may be written

f(@) + 9(=2) = wo(x), z € (0,1), (3.2)
and

f'(®) + ¢'(—2) = wi(z), = € (0,1). (3.3)
Consequently,

{f’(/\) = 5(u1(A) +'o(N)), A €(0,1),

g'(N) = L(ur(=)) —wo(=N), Ae(-1,0).

Condition (1.2) imposes

f(A) = -g(A), A€ Ry, (3.4)

and condition (1.3) becomes

FE+1) =g/ (t=1)= —q(f'(t+1) + ¢/t = 1), t € Ry,
or, with A=¢+1,

FA) =g (A-2)= —g(f'(\) + ¢ (A-2), A2 1. (3.5)
In particular,

FO)+(A=-2)=—q(f V) - f(A-2), A22.

For the proofs of Theorem 1 and Proposition 1, we will need the following
technical result:

LEMMA 1 Let ¢: R — R be continuous satisfying (1.5).
(i) For all A € R, the equation
XeR X+A+q¢X-A)=0, (3.6)
has a solution S(A) of smallest absolute value and the application S :
R — R is lower-semi-continuous (l.s.c.) on R.
(it) Moreover, any solution X of (3.6) verifies | X| < |A].
(iii) Furthermore, if q also verifies (2.4), then equation (3.6) has a unique
solution.

Proof of Lemma 1. (i) Let A be given in R. We denote by fa4 : R — R the
continuous function defined by

VX €R, fa(X)=X+A+q(X - A).

We deduce from hypothesis (1.5) that
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Consequently, there exists X € R such that f4(X) = 0, i.e. such that X is
solution of (3.6). So we can define an application S by

g. R—R
" A X,y =inf{X € R | X solution of (3.6)}.

By definition of S, there exists (X, ), a sequence of R such that

Xn — S(A) as n — 400,
VreN, Xp+A+qg(X,,—A)=0.

Passing to the limit as n — +o0, we deduce that S(A) is solution of (3.6).
Moreover, S is also l.s.c. on R.

(ii) For all A € R and for all X € R solution of (3.6), we multiply (3.6) by
(X — A), which gives

(X% - A%) = —q(X - A)(X - 4) <0
Consequently, |X| < |A].

(iii) Assume that ¢ also verifies (2.4). Let A be given in R and assume that
equation (3.6) has two distinct solutions X and X'. Then

oX = A)—g(X' = 4) _
(X -A)—-(X"-A) '

which is in contradiction with (2.4). [
Proof of Theorem 1. We define f' on (0,+00) — R by
u1(A) + w'o(A)

FEX) = 5 a.e. A€ (0,1), (3.7)
, ur(=A+2) = uh(~A +2) .
f(A):S(— 5 L )a.c.)\e(l,E), (3.8)
and
f'(N) =8(f'(A - 2)) ae. A € (2,+00). (3.9)
Then we define g' on (=1,400) — R by
{,"()\) . w(—A) ;1;,"0(_/\) ae A€ (=1,0),

-

and
f(A) = —g()\) a.e. A€ (0,+00).

Clearly, f" and ¢’ satisfy conditions (3.2), (3.3) and (3.4). And, from Lemma 1,
(3.5) is also verified.
Moreover, we prove
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Indeed, from (3.8) and Lemma 1, it follows

w1 (=X +2) = uh(=A+2)

I/ < |- 5

a.e. A € (L,2). (3.10)

Consequently, from (3.7) and (3.10), we have

£ 1 200.2) < NollZ2 0.1y + I [Iiﬂ(o.l)-

Similarly, from (3.9), we obtain for all &£ € N,

1122k ok42) S UFNE20k—2.08) < -+ < luollF2g0,0) + NallZ2(0,0)- (3-11)

Finally, we define for (z,t) € (0,1) x (0, +c0),

t4x t—x
u(z,t) :/u f’(s)ds+/u 9'(8) ds + up(0). (3.12)

Clearly u belongs to the class (2.1)-(2.2) and is solution of (1.1)-(1.4). [}

REMARK. When (2.4) is not satisfied, we can use, instead of S, any other
bounded and measurable section of (3.6). This also leads to a solution of (1.1)-
(1.4). On examples, we can construct several distinct solutions of (1.1)-(1.4).

REMARK. Using the properties of f and g, we can prove that u belongs to
the class (2.3). Indeed, since f’ € L}, _([0,400)) and ¢’ € L} ([-1,+00)), we
deduce from the expression (2.1) of u that u,u, u, € C([0, +oo[; L?(0,1)). Let
to be fixed in R. Then

lJae(-1t) = we (- to) 13201

<SS (E+-) = f(to + MEao,ny +2Ng'(E =) = o (b0 = M Zao,
The application “translation” is continuous on R — L?(0,1) (see, for example,
Rudin, 1991), i.e. Vto € R, Vh € L*(0,1), h(- + 1) — —r h(- 4 tp) in L?(0,1).
Consequently, (-, 1) e wy(+, ) in L3(0,1). And similarly, we have ug (-, t)
ey uz( o) in L2(0,1) and u(-,?) g u(+,t) in L2(0,1). m

t—
Proof of Proposition 1. Let u be a solution of (1.1)-(1.4) belonging to the class
(2.1)-(2.2). The analysis of the structure of solutions imposes that f and g verify
(3.2)-(3.5). Since ¢ satisfies (2.4), Lemma 1 implies that f’ and ¢’ are uniquely
determined respectively in L _([0,+00)) and Li ([~1,400)). Consequently,
u is uniquely determined by (3.12). @

3.2. Proof of asymptotic stability
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LEMMA 2 For all sequence (t,)n of R such that t, —— +o0, and for all

n—-+4o00
T>0,
T
/0 la(ue(1,t +ta))| dt ——0, (3.13)
and
T
‘/O (Ut(l,t+t71))+ dt E:;: 0, (314)

where (-)* = max(-,0).
We choose T' = 2, t,, = 2n for all n € N* and we set Fy,(s) = f'(s + 2n).
With the new variable s = ¢t — 1, we obtain
1 L
[ tatutts+ 14 m)lds = [ fa(Pua(s) = Fafolds 0,
-1 -1 n—+—+00
and

i1 1
/ (ue(l,s +14+2n))tds = / (Fr41(8) = Fo(s))T ds —— 0.
= =

n—+o00

Condition (1.3) may be written: Vn € N*, a.e. s € (—1,1),

Fay1(s) + Fu(s) = —q(Fay1(s) — Fa(s)). (3.15)
Thus
1
/ [Frsa(5) + Fa(s)| ds —— 0. (3.16)
- n—+oo
Using

Q(Fn+1)+ < (Fn+1 s Fn)+ + (Fn+1 - Fn)+’

Z(Fn)— < (Fn+1 - Fn)+ + (Fn+1 o Fn)—v

we deduce from (3.15)-(3.16) that F, oo 0in L*(-1,1). Since n — |Fy,(s)]

is nonincreasing (by (3.9) and Lemma 1), we deduce F,(s) et 0 a.e. s and
n—-1+00

' / 2 ' 2
/_lf(s-l-Zn) ds:/_an(s) ds T_.TZO'
Finally, u;(+,2n) = f'(2n+-)— f/(2n— ") and u,(-,2n) = f'(2n+ )+ f'(2n - )

converge strongly to 0 in L?(0,1). Since E,(t) is a nonincreasing, we deduce
m 1iXx B e oo P o
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Proof of Lemma 2. Let 7' > 0 be fixed and let (¢,), be a sequence of R such
that ¢, o +00. The energy equality gives

—00

7
Eu(tn +T) = Eu(ta) = ""/ we(1, 8+ ta)q(ue(1,t + ¢0)) dt.
0

There exists L = lim E,(t). So lim By(ta) = lim Eu(t. +7T) = L.
—+c0

=400 n— 400
Therefore
T
lim f ue(1, t+ ta)g(ue (1, + ) dt = 0. (3.17)
n—-4+00 0

First, in order to prove (3.13), we fix € > 0. By continuity of ¢ at 0, there
exists n(¢) such that

T
/ la(ue(1,t + ta))|dt < e
0 Jue(1,t4t.)|<nle)

So, we have

T T
/|w4u+mm&s] lg(aue(1,t + £a)] dt
0 0

[ue(l,t4tn)|Zn(e)

T
+ / [q(u;(l,t+t:1))|dt
0 Jue(1,t4+t0 )| <n(e)

1 T
o 1,t+tn 1,t+t,))dt +¢.
<o | w4 b)) de e

Finally, from (3.17), we obtain (3.13).
Next, in order to prove (3.14), we fix & > 0 and £ > 0. Then

f (‘th(l,t‘i’tn)) dt:/ w(1l, 8+ t,) dt
0 0 0<u(1,t+t,)<ex

T T
+/ u,(l,t+t,,)dt+/ w(l,t+t,)dt
0 a<u(l,t+t,)<k 0 k<u(1,t4t,)

T Cr
we(1,t + ) q(ue(1,t + ¢,)) dt + =
0

<
<al+ Con

where Cq 1 = inf{g(\) | @ < A < k} > 0, (since g(A) > 0 for all A > 0, we have
Cqk > 0), and where Cp > 0 is a constant. Indeed, we have

w(lt+t,) = flt+ta+1)+g'(t+t,—1), t €(0,T).
From (3.11), we deduce that there exists a constant C'r > 0 such that

= . D 5 CT
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Consequently,
T i
g wllt+t)dr < [ e+ t)Pd <o
0 k<ue(lt+t,) 0

which proves the result. Finally we deduce (3.14) from (3.17). |

3.3. Counter-example to weak stability

Proof of proposition 2. We introduce f : (=1, +00) — R an absolutely continu-
ous function such that

fi(N) = —% a.e. A€ (—1,0) and a.e. A € (4k 4 2,4k +4), k €N,

A
f(A) =5 ae. A€ (4k, 4k +2), k€N,

=

Let then u be defined by
u(z,t) = f(t+a) = f(t—2x), (2,4) € (0,1) x R4.
We easily verify that u is solution of (1.1) with (1.2) and (1.4). And

up(l,t) = fl(t+ 1)+ fi(t - 1) = i’\g—" 4 (; %) =i,

w(l,t)=ft+1)-f(t-1)= i’\z—" - (; 529) = 3.
This implies (1.3) since g(u(1,t)) = g(£Ao) = 0 = —u(1,t) a.e. t € Ry.
On the other hand, with ¢ = 4k + 1 for all k € N, we have for all &k € N,
M o
— 4+ — = Ap a.e. T 0,1
D) : 9 0 a.e. T e( ) )1

(since tp + o and t, — z € (4k,4k + 2)). We denote by ¢ the function of V
defined by p(z) = 2 for all 2 € [0.1].

ug(ate) = f'(te + ) + f'(tk —2) =

1
Vi € N, (u(ty).@)v = (uz(tr),0e)r20,1) = / g (x, b)) dz = Ao.
Jo

Thus, u(t) —A4— 0in V. [ |

k—+o0

References

Brezis H. (1973) Opérateurs mazimaux monotones et semi-groupes de con-
traction dans les espaces de Hilbert. North-Holland, Amsterdam.

CoNRAD F., PIERRE M. (1994) Stabilization of second order evolution equa-
tions by unbounded nonlinear feedbacks. Ann. Inst. H. Poincaré Anal.



484 M. PIERRE, J. VANCOSTENOBLE

FEIREISL E. (19934) Strong decay for wave equations with nonlinear nonmono-
tone damping. Nonlinear Anal., 21, 1, 49-63.

FereisL E. (1993B) Strong asymptotic stability for a beam equation with
weak damping. Proc. Roy. Soc. Edinburgh, 123A., 365-371.

FeIREISL E., O’'Dowp G. (1998) Stabilisation d'un systéme hybride par un
feedback non linéaire, non monctone. C. R. Acad. Sci. Paris Sér. I, 326,
323-327.

HarauXx A. (1979) Comportement & l'infini pour certains systémes dissipatifs
non linéaires. Proc. Roy. Soc. Edinburgh, 84A., 213-234.

Lasiecka 1. (1989) Stabilization of wave and plate-like equations with nonlin-
ear dissipation on the boundary. J. Differential Equations, 79, 340-381.

MARTINEZ P., VANCOSTENOBLE J. (1999) Exponential stability for the wave
equation with weak nonmonotone damping. Portugal. Math., to appear.

Rupin W. (1991) Analyse réelle et compleze. Masson, Paris.

SLEMROD M. (1989) Weak asymptotic decay via a “relaxed invariance prin-
ciple” for a wave equation with nonlinear, nonmonotone damping. Proc.
Roy. Soc. Edinburgh, 113A, 87-97.

VANCOSTENOBLE J. (1997) Stabilisation faible de I"équation des ondes par un
controle non linéaire, non monotone. Inst. Elic Cartan Univ. Nancy I, 3.

VANCOSTENOBLE J. (1998a) Weak asymptotic stability of second order evolu-
tion equations by nonlinear and nonmonotone feedbacks. SIAM J. Math.
Anal., 30, 1, 140-154.

VANCOSTENOBLE J. (1998B) Stabilisation non monotone de systémes vibrants
et Contrélabilité. Ph.D. Thesis, University of Rennes 1.

VANCOSTENOBLE J. (1998c) Strong stabilization (via weak stabilization) of
hybrid systems with a nonmonotone feedback. To appear.

Zuazua E. (1990) Uniform stabilization of the wave equation by nonlinear
boundary feedback, SIAM J. Contr. Opt., 28, 2, 466-477.



