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Abstract: For some heuristic approaches to boundary variation
in shape optimization the computation of second derivatives of do-
main and boundary integral functionals, their symmetry and a com-
parison to the velocity field or material derivative method are dis-
cussed. Moreover, for these approaches the functionals are Fréchet-
differentiable in some sense, because at least a local embedding into
a Banach space problem is possible. This allows the discussion of
sufficient condition in terms of a coercivity assumption on the sce-
ond Fréchet-derivative. The theory is illustrated by a discussion of
the famous Dido problem.
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1. Introduction

Shape optimization problems have been intensively studied in the literature
throughout the last 2530 years with respect fo various directions of investiga-
tion. A lot of methods for description of domain variation have been developed
and derivatives of functionals and solutions of state equations with respect to
these domain or boundary variations can be computed. Morcover, the necessary
optimality conditions are given, and numerical algorithms for a wide variety of
problems are applied (sce the surveys in Pironnean, 1983, and Sokolowski and
Zolesio, 1992). Nevertheless, due to some difficulties arising from the theoret-
ical as well as technical point of view, the study of sufficient conditions seems
to be not very well developed at the moment. Only a few number of papers
are concerned with related investigations (Fujii, 1994, Belov and Fujii, 1997).
Therelore, it seems to make sense to discuss the easiest case of shape Iinction-
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In Eppler (1998a, b, 1999) the author discussed an easy approach to the
description of the boundary variation for starshaped domains by the use of po-
lar coordinates. This allows the description of the boundary and the boundary
perturbation in the same way by functions of the polar angle ¢. Consequently,
a (global) Banach space embedding of the shape problem is possible, which al-
lows the investigation of Fréchet-differentiability using the standard differential
calculus for Banach spaces. In this way the existence of first Fréchet-derivatives
for domain and boundary integrals of the type

J1(R2) = /!’1 dz and J5(R2) = /gdSp. I' =909, (g,h are given data),
Q T

is shown, which arc equivalent to formulas for first (directional) derivatives for
other approaches.

As a starting point for this paper we have the following in the case of star-
shaped domains:

Similar to first derivatives d.J;(2)[r1], (i = 1.2), second derivatives can be
directly obtained in the sense of

d.],‘{ﬂfj,‘__,)[?'l] = (’SJ:'(Q{])ITI] 1
5 , A=

d*Ji(Qo)[r1;72) = }in{n} 1.2,
because the first derivatives can be expressed as integrals over the interval [0, 27],
where only the integrand contains the perturbation parameter §. These deriva-
tives are of Fréchet-type and therefore they have to be symietric.

Following the ideas of Kirsch, Kress and Potthast, this is investigated for
boundary perturbations by smooth fields for the case of two-dimensionional
domains, too. Although this approach allows at least a “local” Banach space
embedding, the computation of second derivatives is not straightforward and
needs a special definition of the direction of boundary perturbation on perturbed
domains (in a neighbourhood of the reference surface). Furthermore, the normal
boundary variation method is investigated for the sake of completeness. The
derivatives of the area and boundary arc length are discussed as examples.

Based on this, second order sufficient optimality conditions are obtained, at
first for the case of starshaped domains. After them, a comparison to other
approaches is also discussed. An extension of the results involving equality con-
straints is given and finally these conditions were applied to the Dido problem.

2. Domain perturbations and first derivatives

In this paper we shall study shape optimization problems for 2-dimensional
simply connected bounded domains 2 C D, where D is given. In the first part
we assume the domains satisfying a condition of starshapeness with respect to

sntwhhanvhand THfaa) = {4 e R2 | lu = zal < 8}, with some fixed § > 0.
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advantage of this assumption is that the boundary I' = 982 of such domains can
be described by a Lipschitz continuous function r = r(¢) of the polar angle ¢
, r(¢)cos ¢
i = s
e T i= {ate) = (1)

domain (boundary) can be identified with this describing function.

¢ € [0.2#]}). Moreover, vice versa, cach

REMARK 1 Due to a result of Mazja (1979), the boundary function of a do-
main €, starshaped with respect to an open subset Us, is Lipschitz continuous
with a constant, depending only on § and on dg := sup{|z| | z € Q}. Con-
sequently, if we assume that all domains under consideration are uniformly
starshaped and bounded (i.c., there exists a bounded outer “security set” D),
then they have uniform Lipschitz continuous boundaries.

REMARK 2 The assumption I' € C*, (k € IN) is equivalent to
r(-) € C¥[0,2] := {r(-) € C*[0,2n] | r(0) = r@D(2r), i=0,...,k}. (1)

For transformations into polar coordinates we recall the well known formulac
for the (local) curvature #(-) (and related curvature radius R(-) = =1(-) — for
I' € C?), arclength I(-), and unscaled and scaled outer normal of the boundary,
given by

2(9) +77(¢9) — r(9)r"(9)

R g) = nl6) = =
r2(¢) +1(¢)
and U(¢) = \/r2(4) +r*(4),
and
o _ [T(d)cosd+1'(¢)sing "y
a(¢) = <7'(¢)sin¢ — T ¢> (unscaled)
= 1(9) = —meii(4).
r2(¢) + ' (¢)

In the following a reference domain Q € C* is given, where the boundary I is
associated with the describing function r € CIHU,QW]. In this way, the “vari-
ables” (the admissible domains) are identified with clements of an open subset
of the Banach space C’IE [0,27], and differential calculus in Banach spaces can be

applied to the study of the problem.

LEMMA 1 Let h € C(D) and g € CY(D) be given. Then the functionals J, =
[hdx and Jy = [gdSr are Fréchet-differentiable with respect to C;[0,27] at
Q r
every admissible Q0 with the derivatives

2

VJi(r)[r] = /7'((/))1'1((/»)/1,(7'((/)).g/))(/(;'). (i

6o
~—
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and

2
N rry 4 1'r)

ViJo(r)[r] = L ?'2+?"2 ((¢) ¢) + 9(r(¢), ¢) \/T—dfﬁ (3)

REMARK 3 For the proof see Eppler (1998a or 1999). Admissible perturbed
domains (or boundaries) §2. are now defined by the connection I'. & r.(¢) =
r(¢) + ery(¢) with r; € CI}[O, 27] and € > 0 sufficiently small, provided that
re(¢) > 6, ¢ € [0,2n] is satisfied. Obviously, we have directional derivatives
given by (2) and (3), respectively, which are linear and continuous w.r.t. ;.
Moreover, the related operator-norm of the Gateaux-derivative depends con-
tinuously on the C}[0, 2x]-norm of 7. This ensures the continuous Fréchet-
differentiability of the functionals by standard arguments from functional anal-
ysis (see Bogel and Tasche, 1974, loffe and Tichomirow, 1979).

REMARK 4 Shape derivatives are usually denoted by d- [ri] or V- [r] in the se-
quel. Spatial gradients V, and partial derivatives with respect to polar co-

ordinates (especially 5‘ = (V.- €:)) or boundary normals often occur in the
formulae and should not be confused with shape derivatives. Furthermore, be-

T 0, (8, = Cos ¢
‘/1.2 + ?'"’2

cause of &, - 7 = — the radial unit vector), the

sin ¢
perturbations are always regular, i.c., the perturbation field is a tangential field
if and only if r1(-) = 0.

The description of boundary perturbations by smooth fields can be used
for more general domains. Especially for 2D-problems boundaries and pertur-
bations can be described by vector parameter functions, based on the usual
Cartesian coordinates, more precisely, we have for some T' > 0

= (= (o) |e<0m)

with y(t) = 4(t + T), and 4(-) € C*(R).

Moreover, we assume y(t,) = (t2) & t; = tg, t1,t2 € (0,T), i.e., the curve
is free of double points. The curvature (-radius), arclenght and the normal
= o) = B2

x
0 = VEFE, a0 = @) 1)) = 70 = Ha
where the sign for outward normal is “+4", if I" is positive oriented for increas-
ing ¢. Furthermore, differentiation with respect to arclength is connected with

d 4o _vdag__ f

— v

direction are given by R

(t)
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The description of perturbed boundaries . is similar to v:

P {%(t) . <;SE:;> +6<Zj8)lt = [O,T]},

(d= <d1> suff. smooth),
dy

because at least for sufficiently small €, the same parameter interval for . as
for €2 can be taken. In order to have a nontrivial perturbation we additionally
assume (d E g) 7i(-) Z 0. Although, there are some problems with nonuniqueness,
an additional degree of freedom and the existence of smooth tangential fields,
the approach is useful and allows at least a “local” Banach space embedding
in a neighbourhood of Q. Formulae for first derivatives are obtained similar to

Lemma 1 in terms of integrals on [0, 7.

LEMMA 2 Let h € C(D) and g € C*(D) be given. Then the functionals J; =
[ hdz and J, = [ gdSr are Fréchet-differentiable with respect to {C}[0,T]}? at
F

Q
Q with the derivatives

VJi(y [a_f] / i) h dSr = | h(z(t),y(t))(dey — dyd)(t) dt, (4)

and

REMARK 5 Relation (5) is directly clear from

%
Be / il / 9@ (),y(t)) - V= + P dt.
0

r

Moreover, for I' € C?, (5) is equivalent to (see (11)),
dJa(7)[d] = /(ff- V.9) + gdivr ddSr,

where divpd := divr{(f— (- af)ﬁ} + k(7 - d) — for the definition of divp (or
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From the historical point of view the first approach (see Hadamard, 1910)
was the method of normal bounclary perturbation by using

e :7() = 2(t) + ep()i(t), t € [0,T).

However, this approach does not allow a direct embedding of the optimization
problem into a Banach space, because at each step of approximation one degree
of smoothness is lost. Nevertheless, directional derivatives exist for sufficiently
smooth domains.

LEMMA 3 Let h € C(D), g € CY(D) and Q € C? be given. Then the functionals
Ji(+) and Jo(-) are directional differentiable with respect to p(-) € C' at Q with
the derivatives

T

dh(m)le] = / phdSp = / a(t), y()p(t) /T 72 db, (6)

and

d
dJa(7)[p] = jp- (8_5 K %)dsr

¥
=],,
0

REMARK 6 Because of d = r,é, and (d - i)dSp = r(¢)r1(p)d¢ for the polar
coordinates, we have the equivalence of (2) and (4), as well as (3) and (5),
respectively. Moreover, for I' € C?, (3) is similar to (7), which can be seen after
integration by parts.

2(0) + 5°(0) d. (7)

e
e
oy
>
-
S
—~
+

|&
——
e
e
2
[ 3]

REMARK 7 The assumptions on the data fields f and g can be weakened to
fields with weak singularities (sce Eppler, 1998a). Furthermore, regularity of
the boundaries can be reduced, but this will not be studied in the paper.

The next result contains some technical details, useful for the computation
and the transformation of higher order derivatives.

LEMMA 4 Let © and the perturbations be sufficiently smooth. Then it holds for
the shape derivative dii of the normal (fi. and k. are related to I'.)

diild)(t) = Li-n ()]e=0 = i%{—%g—(z) F(t) = (i, %J& 7 LA,
ditlr1)(9) = <-ite($)lemo = ‘ﬁ—‘( 6) - 7() L (@), ®)

=0 ey d‘ anl e P . 2ty = —@ AL oa(t)
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where T(p/t) denotes the unit tangential vector on I' directed to increasing ¢(t).
Furthermore, the shape derivative dr of the curvature is given by

d | idy, + jjd, — gd, — id, " id, + yd,

—Rale=p = = Ol = i

de © o 3)23 22 4 52

d 2rry +4r'ry — 1’y — 11 Ty - 11

e e (9
e /72 4 p'? re 4+

dolge Bl

de 0T a2 T @ g2

d [ /3] yod [ d( /a2 2
:—ﬁ{p y2+'L]+2E [pﬁ( l2+y2)]—/’{524-2;11?(\/“"2*‘3/2)-}

i+ y'23 /52 + 2-123

REMARK 8 The relation %ﬁs(t)lszo 1 71 is also known for more general cases
(see Sokolowski and Zolesio, 1992). The last transformation of (9) needs obvi-
ously Q € C®. Morcover, a well founded derivation of the derivative formula in
the case of normal variation needs formally also Q@ € C°. However, the result is
valid for C%-boundaries, too.

Similar formulas for the first directional derivatives hold for the velocity
field (or material derivative) method, developed by Sokolowski and Zolesio. We
present for the sake of completeness the main idea of the approach (for a detailed
investigation see Sokolowski and Zolesio, 1992):

Given a so called “velocity field” V(t,z) : V € C(0,e;C*(D,R"Y)), one
direction of perturbation of a reference domain Q is described by a family of
domains Q;, defined by

dz(r, X)
dr

Q= {a:(t,X) e RY

= V(nnX), 2(0;X)=X EQ}.

The main advantage is that the direction of the domain perturbation is well
defined on D, where V(0)|r can be viewed as the boundary perturbation in
comparison to other approaches. The first directional derivatives are given by

LEMMA 5 Let h € C(D) and g € CY(D) and @ € C* be given. Then the
functionals J1(-) and Jo(-) are directional differentiable with respect to V(-) € C!
at Q@ with the derivatives
J1(82¢) — J1(Q2
dJL (Q)[V(0)] = }illg}—l(—%;(—) = /(V(O),'fz’,)/LdSp, (10)
I r
and

dIo(Q)[V(0)] = /(V(O), Vg) + g(div V(0) = [DV(0), 7i]) dS. (11)
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REMARK 9 DV(0) denotes the Jacobian of the mapping z € R? — V(0,z)
€ R2. Furthermore, the following transformation of (10)

A (Q)[V(0)] = / it - V(0))h dSp
r

= /div[h-V((})] dz, h e C?, (he W),

shows that the velocity method allows the definition of shape derivatives under
essentially weaker assumptions on the domains. Additional degrees of freedom
V1(0)|[r = V2(0)|r = both “velocity fields” represent the “same boundary vari-
ation”) cause no difficulties.

3. Second derivatives

As we had already announced, the second shape derivatives for starshaped do-
mains can be computed “straight forward”, if the data fields are smooth enough.

THEOREM 1 Let h € CY(D) and g € C*(D) be given. Then the function-
als J; = fhda: and Jy = fgdSr are twice Fréchet-differentiable with respect

to Cl[U,E?r at 0 with the ‘;ecoua’ derwatives

2

V2Ji(r)[ri;ra) = /1'2(55)'-"1(@"1(?" ﬁf’)+?‘(4”)?1(@5)?'2(@%(?'ff))dﬁfh (12)

0

and

2n
92
V2 Ja(r)[r1;re) = /fffﬁ{fz(fb)?‘l(‘b)m%

0
C')g[ Hg-f—'.'?'r) ?I[+T71]

+ —
\/{?3+?’“) v/.*~+r"
(r1ra + rirs) (2 + 77%) = (rey 4 v'7)) (772 + 7'1) }

B '33
" .-"?‘2 + =

REMARK 10 Due to the Banach space embedding, the boundary variation ro
on perturbed boundaries I's,, and on I' is defined in the same way without any
additional problem. Thercfore, differentiation can be carried out and leads ob-
viously to symmetry with respect to vy and ro. Moreover, we need no additional
vaonlavity of the honndary for the definition of higher order derivatives of shape

(13)

+g
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In order to investigate higher order derivatives for the other cases, a defini-
tion of the boundary variation on perturbed boundaries is necessary. Following
Potthast and Kirsch, in the case of boundary variation by smooth fields we
may proceed for N = 2 as follows, in some sense similarly to the case of polar
coordinates:

We compute the derivative of d.J;(d), (i = 1,2), after the transformation into
an integral over the fixed interval [0, T'] with

|
rsi= {mit = (3) +0(Ga) |1 011}

because a smooth parametrization of the perturbed domain exists on the same
interval [0, 7] for 6 sufficiently small. The “transformation” of direction d onto
['s is defined by an “unchanged translation”, i.e., d(ys(t)) := d(y(¢)) = d(t).
From

/g T
dJy[d]|s = //;,(@-6,;1,5)((13,% dyis) /1 Wd, @s)(t) dt
0 0
and
([1]2[(2]'5 = / %M A <V:,.g‘5. ((1:'.> > @2+ y3 dt
&3 + 5 dy

0
we immediately obtain

COROLLARY 1 Let h € CY(D) and g € C*(D) be given. Then the functionals
= }/7 dx and Jy = jJ(/bp are twice Fréchet-differentiable with respect to

{(‘1[0 T]}~ at 2 with t/Le second derivatives

T

-

V /1( / / d fJ ({u/ )

0

(e () ()

whmmﬂ=/$w{“y§¥% F?%%%D

and

4. e + )@ +47%) = (do 4 )@ +30)

3
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The symmetry of VZJQ(’T}[J’; ] can be seen directly from (15). However, after
integration by parts of the first part I (cf: ) of V2Jy(7)[d; ﬂ we obtain (boundary
terms at ¢ = 0 and ¢ = T vanish, because all functions are periodic in #)

z .
L(d: f) = / IMda fy = dy fo) dt = ] ~[hdy) fy + [hdy) £ dt

0

T
L(f:d) + j<v h, ( )> —dy fy + dy fe) dt
0

-

An casy calculation shows (with L(d: f) = ](V h, f) - (d.@)dt) that
0

T .
/<v,,,h, G)>( —dpfy + dyfa) dt = L(f;d) — L(& f),
0

i.e., symmetry holds.
REMARK 11 As a natural method for the definition of domain variations on
perturbed surfaces one may use any smooth extension of the boundary field d,
which is very close to the velocity field approach for autonomous velocity fields.
However, this is not equivalent to the above, because it leads to

i

A [dl|s = / o (t) (o, @) (£) dt
0

= &11(7)[d: ] = V2h()(d A + / h(t}(‘%ﬁznm ot )dr

where the additional part in the derivative implies nonuniqueness (it depends
on the way of extension) and destroys the symmetry of second derivatives in
general,

REMARK 12 For tangential directions of perturbation d=a(t)7, and f = BT
we formally obtain

&
Vle(')')[(E f-] = /(Jrﬁ.‘\‘.h.\f:i’?a + 92 dt = ] aff khdSr,
0

T
and

V212 (v) [d ﬂ /aﬁ[ =+ gk ]\/%2 + 7 +[aﬁ+c‘rﬁ']aq dt

2 .
— m?l-?-—g + !Jhig] - ifm?)-?g dSp = / affgr dSr.
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For the definition of second derivatives for the normal variation approach, we
use the following transformation of direction d=p-iionto Iy := I+ év - ii:
We define d(ys(t)) by (Rvg(t)) = p(t)ii(vs(t)), where only p(+) is “unchanged
translated”, but the “whole direction” is perturbed. Therefore, we get

COROLLARY 2 Let h € CY(D), g € C*(D) and Q € C? be given. Then the
functionals J,(Q) and Jo(2) are twice directionally differentiable at Q with re-
spect to p(-),v(-) € C? with the second derivatives

T -
I (7)[pv] = / [py (/m + %>] V2 4 () dt
0

/pr/[g—l - - ](iSP, (16)
r

and

()71

&2 + g2

-

; § 0? 0 o

(ZZJQ(”)')[/); vl = / {py [Z)ng ) (}] —f—J py. }\/ 2 4 g2 dt. (17)
) ,

Proof. By making use of (8) and

(Tz) &2+ y2lo = ... = v(t)(r(t), —ﬁ(t)) =

we obtain (16) from

dJi(vs)[p] = //)11,5 dSr

I's

T vy
= /h,(s(t)/)(t)\/irg—{—y;;’(t) dh = //1,5(t)((17:g,('1f,s)(t)dt
0 0

and

T
. d .
d2J1 () [p; ] = / h [<—db|0,u> + <(l. (;_(S(—lt§|[)>} + (V. h,vit) - (d, @) dt,
0

where d = p - . For (17) we obtain by differentiation of d.Jo(~ys)[]

' /) dg
d?Jo () [ps ) = / {;S[ 5/5—1— ]|[)+1/<h(]+—> }(/9r
4

.
' d . .
| o ot 8+ ¢ Lokl + P20, )
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+ <V;c9, %ﬁa|o> + VK (ng + ——) } V2 + 2 dt

by (8) and (9). For further transformations we split dz.}g[p: vl = Li(piv) +
I>(p;v) into the direct symmetric part

I

2 .2

I}_(p;f/):f {%'I‘- g-: 2 d’p (V-’L +J) } f.’ifg +-—:!'}2dt,
8 ez

and the (formal) nonsymmetric part

c_)_+g I'+J'

Lpv) = F/TP{UOJ fi [;', = )Vdr(m)]}

Integration by parts of Is(p;v) leads to (boundary terms vanish)

T dg ﬂ[ff\/@z-i-i?-QVﬁ%(\/W)] .

IE(P}V)=l a E1p —vpu—T
0

[P+ - 204 (VEH D) - [T+ - wh (VT +T )]
f.,l':z +y2

An easy calculation shows that
dg(z(t),y(t)) & 9, re—
SRR . (o = =21 /22 4 {2,
dt 9\y)] = arlVE
dg poy* + 2% 98_9

hence, — - — = .
dt 2+ g2 ar
i.c., symmetry holds for the second derivatives of J;. Moreover, we continue
with a further transformation of

T
ik =9 .
i z(V-"'-"""yE)
Iy(p;v) = fzﬁuﬂ‘”(tg+—?}2)2df-
) .

— }'nj_pu___ d }:It(\f" [4(%(\/12__}_-!}_2))?

= "l
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2(!'\‘ V? +J )]} 2P d‘g !ff('ﬁ':i:z—t_?}z) dt

(&2 +92)? dt (@& +§?)?

Integration by parts of —24(pv){...} shows that all terms except of the first
term vanish. The tl‘&lllhf()lll‘ldtl(]ll‘s are formally valid only for I' € C®. However,
for I' € C? we use an easy continuation argument by an approximating sequence
{I's} C C3. Hence, we arrive at (17). [ |

dd .
REMARK 13 Now ﬁh:u is formally present, but the related term for d°.J;
(i

vanishes, because of r}—fr?"z's(z]!g:g L il (sec Remark 8 and Lemma 4). whercas for
d*.J; some of such terms have opposite sign and therefore they vanish.

REMARK 14 Formula (17) can be rewritten as

0%g dg dp dv

2 5 — Sl

d Jz(’?)[ﬂ»f’}—] [(3 7 28 ()1’] 4 945 ds & o
I

Therefore, a conjecture for an extension for N > 2 may be the following
3 () () 1\'
d*Ja(y)[piv) = | pv ) + Zhd— + g(Vrp, Vrv)dSp, R CR
r

Due to the definition of velocity fields on D, second derivatives in the sense
of

dJi( Q) Vi] - dJ( QW]

Ji(@)[Vi; Va] = lim r

= 1,2,

can be obtained straightforwardly by using the unitary extension Ny of the unit
normal field 7 on I'.

COROLLARY 3 Let h, g and Q be sufficiently smooth. The second directional
derivatives of the functionals Jy and Jo at § with respect to autonomous vector
fields Vy, Vs are given by

2T (Q)[Vas Va] = /(vg, i) div[h - V] dSr
lLU

= / div[div[h - 1] - Vo] da, (18)

and

d2J5(Q)[Va; Vo] = /L@ Vo {(Vi - Vag) + g(div Vi — [DViNG, No))}
J
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X . av
REMARK 15 For nonautonomuos velocity fields additional terms from —a—t]g=o

. wl . .
oceur in the formula. Moreover, d*J; contain a symmetric part and one from

dVi (v,
—%‘_V‘l (see Remark 11).
Some examples. For the volume J; = [ dz of a domain we have
i Q
.ﬁﬁmwﬂz/ﬁwMWM&
0

-fh@ﬂ=/r@mhm—@mﬂmwn
0

s
o d*N[p:v) = | pren/i? + ikdt = /prxmisr._
0 r

L] dEJl(Vl;Vg) = /dlv[d]\f V] i V_g]di
Q
The second derivative of the volume does not depend on the reference domain
in the first two formulae, hence, third derivatives will vanish (for 2D-domains).
This is not the case for the normal perturbation approach, because the boundary
variations depend on the domain. For the velocity method the nonsymmetric
part “destroys” the independence. Especially for ¥} = d = (1,0)T (parallel
shifting in x-direction) and V2 = f = (0.522,0)7 (“blow up/shrinking” in x-
direction) we get
0= d*Jy(d: f) = 0, (f:d),

whereas 0 = d2J;(Vi: Vo) < @201 (Vo; Vi) = /dﬂ:,
Q

holds for the velocity method. Similarly for the perimeter J, = [ dSp we obtain
r

dep,

.fhhwﬂ=/&WH¢&WM+H7“@%+ﬁUUW+fﬁ)
v + ?‘!2

T 5 % . . . . .

/ (fode + f3dy)(&° + §°) = (dde + 9dy) (& fz + 9 fy) dt

: Vi +y P

T

. i Ipd
° (IZJl[p;v]_—_/ ik v L2+J“(”—-—j££(l(f5r
0

2+J

o d*Jy[d: f] =

A more general formulation in terms of bnumldry integrals seems to be not
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4. Optimality conditions for shape functionals

In the first two subscctions we shall study only the case of free minima. We
denote by ©p a local minimum, where related neighbourhoods are meant in
the sense of Cﬁ for domain integrals, and in the sense of C’;f for boundary
functionals, respectively. Moreover, the subscript “0” denotes in the sequel
all quantities (rg,Lg...), connected to g, whereas directions of domain- or
boundary perturbations, like r, d and p are used without any subscript.

4.1. Volume functionals

Whereas necessary optimality conditions can be easily obtained by using dirce-
tional derivatives of first and second order, the situation for sufficient condi-
tions is generally more complicated in shape optimization. Due to the special
approach for starshaped domains, standard methods are applicable. From the
standard necessary condition it follows immediately (“all r € C! are admissi-
ble”) that

2w

4 (Q)[r] = Vi (ro)r] = / ro(@)r($)h(ro, @) dg = 0= hlr, =0.  (20)

0

Moreover, according to (12) we get for a domain, satisfying the necessary con-
dition

2w
VAol = [ 6 3 h(e) o (21)
0

Optimality can be guaranteed often by some coercivity of the second Fréchet-
derivative. However, it is impossible to have coercivity with respect to C1 (the
“space of differentiation”), only an estimate

2 2 & 0}/
V=D (ro)[r, 7] 2 coll7|lz,, (Where cg > 0 is ensured by 57—1]0((,25) >0, Vo)

can be expected. This is known from other control problems as the so-called
“two-norm-discrepancy” .

oh oh
REMARK 16 The conditions 70:|() > 0 and —O—-IO > 0 are equivalent for star-
3 n

Ol oh oh
shaped domains (we have (€,.,7) > 0 V¢ and 0—;|0 == 0—7_7,|0 = 5#0(5,.,17)).

THEOREM 2 For Qo € C'(rg € Cp[0,27) and h € C? the conditions hr, = 0
-~ Oh . )
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Proof. We have (from differential calculus): Jy(ro+7)—J1(rg) = %[dz.jl(?‘g)[?'. r]
|[92(r)]
”TH%-]
optimality. Nevertheless, by a more careful estimate of the remainder ¥»(r) =
d?Jy(ry)[r, 7] = d*Jy(ro)[r.7] (where 7, := 7 + vr) it follows that

+ d5(r),], where — 0 for ||r|l¢: — 0, but this is not enough to ensure

02(r)1 = | ] 2 o) = 0+ () Gl = o] 40

< max |r(¢)| / r2[er(h,n) + calh,n) + es(h,m)) dé

<c(hn)lirliclirliz,, with [Irllc <.

We arrive (for n sufficiently small) at

Ji(ro +7) = Ji(ro) 2 “? I1Z,. if lIrlle < n,

which ensures the optimality of Q. |

REMARK 17 The easy situation allows an interpretation as follows: From the
necessary and sufficient condition we have for the data field £

(i) Alr, =0,

(]l) h.(‘?,) >0, Vo e Us(I'y) \ Qn,

(i) h <0, Vo € Us(I'y) N Q.
Therefore, each perturbation of the boundary increases the functional value, In
spite of being intuitively trivial, this shows that sometimes the results, obtained
for a restrictive approach, can be valid also for more general sitnations.

REMARK 18 The same discussion is obviously possible using the second deriva-
tives for normal variation. After the transformation of the second derivatives
for the smooth field approach we see that

T

d*Jy(vo)[d / (Voho, dy + du(y/ 32 + £3dt)

0

¥ 4 T
al; dh o
= ]d'n( LIuﬁfu ;Iudf)( U8 + dddt) = /dia lo(\/ 95 + @3dt),
0 0

oh . . gl
because of — g = 0. Hence. second order sufficient conditions are similar for a
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4.2. Boundary functionals

The necessary condition for a free minimum can be directly seen from the

derivative for the case of normal boundary variation, if we additionally assume
Qo € @2,

dJa(v0)[p] = /.p- <()J )dSr =0= {j_g e gh:ll =0.

Iy

Nevertheless, this follows also from derivative formulae for the other approaches.
We have

I ToT + THT
V«]‘) 7‘0 [7 / 7‘0 +7/6()_,I() 90 \}_L d¢
70-}-1

iy —~ 1
Io} & qo,o_u—ﬂ}dgn

.2

g
where { 0 = () — ] = ]| 0
e (/)

/’0_*_ ,3 () n

and analogously

T

- " body +J0(I,, ( di 5
VJa(vo)ld g +{ Vago - \ &5+ v dt
’( 0)[ ] D e m dy 0 0

T
i (i = . 9
= / 90(F - —=d) + (Vago - [dnl + d-7])\/ 45 + U5 dt
0

' g
/ dn <90Hro + E—)llo)dSp.
% n

Lo

For the derivation of sufficient condition we investigate the second derivative
d2 Ty (Q0)[r; 7] = V2 Ja(r0)[r; 7).

V2 Jy(ro)lrv] = / Ly

0 ror + rhr rhr — ror')?
o9 0 +((0 )

— do.
+2 )1 g o 95— d¢
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By integration by parts of the “mixed ferms” r'r - f(¢) we arrive at

27

Vsz(?'n)[?‘;T]=/  F1(V29,Veg.9.70) + 17« fa(g,70) dob, (22)
0

where f; and fo are given by
d [d ) rort
f1(V29,V29,9,70)(¢) = ( g) + 9__&&_7

"%n
" 9 2+ r[’f

g 23 + drrg — r3rl 5 2yt + r3rll — 2rgrl el — 3l

o7 3 9 ——
. 18+ r{lz 8+ r{,
2
T
and fo(g,70)(¢) = —2

e
[ 2 42

REMARK 19 Here, only a H'-estimate

V2 Ja(ro)[r;7] > collr||F, with some ¢g > 0 (23)

is possible. For the verification of such an estimate a Riccati equation technique
may be used.

THEOREM 3 For Qp € C'I?[U, 2] and g € C® the condition [gg + gn] o =0
n

and estimate (23) are sufficient for optimality.
Proof. Similar to the volume case we have to estimate Ja(r) = d*>Jo(r,)[r, 7] —

d*Jy(ro)[r,r]. From (22) it follows that

[92(r)] < [ 72|fL () = F) + 72| F5 () = F(9)] d,

where fY(¢) = fi1(V39,Vg,9,7.)(¢) and f5(¢) = fa(g,m.)(¢), respectively.
Moreover, with g € C? and (22) we get (because of

.2
26) - (¢i<| i (I

+‘2’r3+4?' —r2p! dg 2?'U + 4r') ?07"’09

.'i amiv ,-—-—3

=lof +
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and so on)

[2(r)| < [ r{ealr] + calr’| + calr|} + 72 calr| d,

with ¢; = ¢i(g,70.7), i = 1(1)4.

< &g,70.m) - Irlle2 - lIrllFe - for |I7lce < n.
Summarizing up, we are able to estimate (for sufficiently small 5 > 0)
Da(ro+7) = Jafro) > L, for firles <. =
REMARK 20 If ¢ < 0 holds somewhere on the boundary I'g, €y cannot be
optimal.

The similarity of theﬂsu{ﬁcicut conditions can be seen by the following trans-
formation of V2Jy(7)[d: J]. We use

- -

d= (i, d)it + (F, d)7 = d 71 + d. T, (J” = i d 5

i, d), [, = —(7.d
g\ d), dr = (7. d))

. L. ... L
= d, = k12 + i2d, + <ﬁ,, ;{_td>' dr = =k \9? + i2d, + <'F. (m:,;d.>

and obtain

i
V) dl = (Vo0 ddf33+ 33
0

d - tody — fods)?
+2Vag0,d) - <1"’, &?d> gy 0 )y

. .l’J
Vg + 98
7
9*g 9% g0 : .
2 2 3 g a0
/ (d” ooz 2ndrmmn + di o \ &5 + 93
0

gU(du — Hoy/ 3 + y{)d )
\/’ +1lu

. d (J
+2(f£,+n-ux/w_+7u‘f“)(d’*o o "F)'“

"
= | Bty e dat
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Here we introduced

d%g
flxdi(dE 2:»0 )1)10+J0+d’;
f)ﬂ'n

I = d%( + ’-u.}ﬂ) 3+ i3 + 2d. " Or

0? Jo dgo g : dgo ;
=32 0 o+ 3 + 2d-dy—— — 2d,.d-rogo.
I d,d, (8 Sy + Ko 5y Vi + 95 + 2d-d o dydrKogo

By using the necessary optimality condition rggo + Fgﬁ = 0 on I'yg. we immedi-
0

'n+J“

ately get

T '3
/Ig(it=0aud jf;;dt:[],
0 0

because of

T T

agﬂ 2 d do 3gu .9 .9
/"Jd d or = ] d (d'r"e hua ﬂ.(]*i*yndt‘
0

0

for the second part, and the third part vanishes by

990 990
2 n|l— ¢
drdn—— on = [d d ]an wd

2 ' :
(59‘0 +h590) "Lu+?‘2 df)_g_ﬂz[]

— 2dnd-Kogo = 2

anor " "0 ar 07 3t on
Hence, we arrive (for a domain Qg, satisfying the necessary condition) at

V21 (v0)(d; d]
T
() 3_}0 R gD . )
= [ |2 d)? s | 1/ 83 + §2 dt. :
U][rzn((, 4 200 ) (4o gy |55+ )

The same can be directly obtained from (17).

REMARK 21 The equivalence between (24) and (22) is also obvious for star-
shaped domains. Moreover, coercivity holds simultancously.

4.3. Problems with equality constraints

The “standard results” for free local minima can be extended to problems with
finitely many (mixed) equality constraints like (C) {J(Q) — inf, subject to
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domain or boundary integral type with sufficiently smooth data fields. Whereas
this can be done along the lines of standard techniques (for example, see Casas,
Troltzsch, Unger, 1996), we present it for the sake of completeness. To this
alm we assume that p is a regular solution of the system of the first order
necessary conditions, i.c. there exists a A% = (A%, A9,...,AQ)T # 0, satisfying
together with £g(rg)

VL(rg, A\%)[r] = 0, Vr € C?, Ji(Q) =0, i = 1(1)k.

k
Here the Lagrangian L(Q,\) = L(r,A) = AJ(r) — 3> AiJi(r) is defined as usnal,
and regularity means that l
e A\’ = 1 holds, i.e., the necessary condition is of Kuhn-Tucker and not of
Fritz-John type. We do not discuss this assumption in detail, sometimes
for special applications it can be shown explicitly (see the section below).
e The gradients of the constraints are linearly independent at rg, imply-
ing that VJ(ro)[] := (VJ1(ro)[)s- .., VIk(ro)[])T is a mapping from C2
onto R¥. Morcover, this is sufficient for the coincidence of the tangent
cone and the linearizing cone Ti(rg) = {r € C*|VJi(ro)lr] = ... =
V.Jk(ro)[r] = 0}.

COROLLARY 4 Let Qqy be a regular stationary point of problem (C). Then the
condition

V2 L(ro; N)[r,7] > collr||3,, for all v € Te(ro), (25)
is sufficient for the optimality of Qo if only domain integrals occur in prob-

lem (C). For a “mived” formulation, the coercivity condition (25) has to be
required with respect to H'.

Proof. The main “difficulty” of the constraint case is as follows: For some
admissible » (Ji(r) = 0, ¢ = 1(1)k) from a neighbourhood Bs(ro) we have in
general r—rg & Ti.(rp). Consequently, we need for the comparison of J(r)—J(rp)
the existence of a v € T.(rg) satisfying in addition to |[v — (v — ro)llce =
o(|lr = rollc2) for || — rollz — 0

o= (= rolles _
lIr = roll L. ’
llv = (r = 7o)l

lIr = rolla

This can be obtained by using the first order remainder of the constraints.
We have: 0 = Ji(r) = Ji(ro) + VJi(ro)[r — ro) + 9i(r — o), i = 1(1)k, and
define a vy € C? (and related v := 7 — 19 + ry) as a solution of (note that
VvJ:C? 2 RY)

VIro)fral = da(r = r0) i= (0}, 04)7

=10. (26)

or, in the “mixed” case
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Moreover, by the concrete structure, the remainders satisfy for boundary inte-
grals (after integration by parts)

[93(r = o)l = [V{Ji(rs,) = Jilro)}lr = roll < cillr = roliczllr = rollz,

(ry;, = ro + vi(r — o), vi € (0,1)), whereas for domain integrals the related
estimate is

[91(r = ro)| = [V{Ji(ry,) = Ji(ro) }r = 7o)l < cillr = rollcllr = roll s

Consequently, for all ¢ = 1(1)k we obtain in addition

[93(r = ro)| < cillr = rolle: I = rol -

These estimates carry over to ||rg||, because V.J is also a continuous mapping
(more precisely: V.J can be continuously extended) with respect to Ly or H',
i.e., it holds (26). At the end we present a short outline of the remaining
estimates for the “mixed” case (replace H'-norm by La-norm for the other case
with 9% denoting the second order remainder of the Laplacian — see Sections
4.1 and 4.2)

J(r) = J(ro) = -;-V2L(TU, AO)[r —ro;m — o] + 9%, T —7p =v =1y,

Il

%VzLo[v, v] = V2LOv;rg] + éVZLU[?'g; ro] + 9%

v

€p &
~2—Iivllfqn = cllollasliralla = éllrolla — 93]

€p .
2 el = 1951, if lIr = rollc= < 0

co ;
-3—[|?‘ = 1o+ 197 — |95]

o 2 lIro|lm |95 ] } o 2
> —=|lr=ro {l— - 2 —llr = 7ol
31 rolE L e ol ol 2 7 ol
where the last inequality holds once again for |7 — rollc2 < 9. I

REMARK 22 For the stronger norm-requirement in the mixed case we get also a
stronger estimate for the difference of the functional values.

5. The Dido problem

As an illustrating example we want to apply the foregoing investigations to
the Dido problem of maximizing the volume (area) of a domain subject to a
given length of the perimeter. There are two elementary proofs known for the
optimality of the circle (see, for example, Tichomirow, 1990). One of them is
mainly based on investigations of Zenodorus in ancient Greece. The second proof
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of the problem are given in the calculus of variation (see loffe and Tichomirow,
1979). If we restrict our considerations to starshaped domains only, the problem
seems to become

( 2m

N 1

J(r)= [ =ldz = | —=7%(p) d¢ — inf,
[

(P) < subject to

J(r) = / 1dSp = / 728 + () do = bo.
\ T

However, the problem is invariant with respect to parallel shifting. Hence, for
the investigation of sufficient condition we additionally fix the baricentre, for
convenience at the origin, which “forbids” the parallel shifting and does not
influence the original problem otherwise. We arrive at the following modified
problem

( 2%

Ty / ke ] ~5r2(#)dp — inf,
0 0
subject to

2
h(r) = / 1dSp =y = / Jr(@) + (@) db - lo =0,
r

(PM) <
2 f‘(‘ﬁ)
Jo(r) = /&:1 dapi= ]cosqb / p?dpdg =0,
Q 0 0
2 r(d)
Ja(r) = /xz dz = /siuqﬁ / p?dpdd = 0.
\ Q 0 0

Whereas the discussion of necessary conditions is known from calculus of vari-
ation, we repeat it in terms of shape funtionals. We define the Lagrangian

3
L(r;A) = J(r) = Y Medi(r)

k=1
and obtain for r € C?
27
dL(r; A)[r] = / —7(¢)r1(9)[1 + Aar(¢) cos @ + Agr() sin ¢]

0

i i
L bl T
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27

= / —r(d)r1(d)(1 4+ A1 - k(&) + Az cosgr(9)

0

+ A3 sin ¢r(4)) do = 0,
= 1+ A1 k(@) + Agcos ¢r(¢) + Azsin¢r(¢p) = 0, ¢ € [0,27].

With A} = A} = 0 and according to our constraints, we get

ko = const. # 0 = ro(¢) = 1o, A} = —n',;l =—7py = -%.
REMARK 23 The assertion A = A} = 0 makes sense, because the optimal
value function is obviously constant with respect to a variation of the value of
the second and third constraint. Moreover, a vanishing Lagrange multiplier
of the objective (i.e., A = 0) implies \; = 0 or #9 = 0. Therefore, regularity of
the Lagrangian can be assumed.

REMARK 24 The additional constraints are formally not needed for the necessary
condition. Also for Problem (P) we obtain
0 4 o
ko =const. #0and A} = -y = ——.
2m
However, we cannot conclude uniquely ro(¢) = ry, because all “shifted” circle
with centre at € = (e1.€2)7 satisfies the necessary condition for €7 + s% < 'rg

(= e(¢p) = £1cosd +easin @ + \/:f% — e?sin® ¢ — €3 cos? ¢ — 162510 29).
For the validity of a sufficient second order condition we need

V2L(ro, A°)[r; 7] > collrll3,

for all » from the tangent cone T? at Q of the constraints. Due to the regular-
ity, the tangent cone coincides with the linearizing cone, i.e., according to the
derivatives of Jy,

T2 = To(Do)

= {1‘602

LEMMA 6 [t is true that

27 27 2w

[1‘(qﬁ)d(b =0, / () cos pdgp = 0, /?‘((}5) sin ¢pd¢p = 0}.
0 0

0

A
V2L(ro, A [r; 7] > =Tl

for all + € TC. ensuring that a sufficient second order condition is satisfied for
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Proof. An ecasy caleulation yields

iy

V2L(rg, A%)[r; 7] = /?' (¢) = r*(¢) dep.

0

Morcover, the system of trigonometric functions {1.cosné,sinngd,n > 1}
complete in €% and a orthonormal basis in A, hence,

Zn o0
Il = [ 7200 +r2(6)db = i) + (14 0%) Y- w2 (0) + V200
0 n=1
2
The Fourier-coefficients ol r are given as usual pg(r) = ;r /'f'if:’}) de,
1]

27
f/ d)sinngdd, pn(r)= \/_/ b) cos ng da.

Furthermore, the tangent cone is contained iu the closure of the linear hull of
{eosng.sinng.n > 2}. Therefore. we are able to estimate as follows for r € 4

/ '!"'2(9“;} %)) dp = Z(n3 - l‘.l[ﬂi{':‘) + I/;‘f(?'}}
.U n=2
= 3(n?+41) 3
2 2 -——-[ () + v(r) = ;Ilr'll;’;l»
=1
Hence, we have the desived coercivity of V2 L{rg. AY)[riv]. |

REMARK 25 From calculus ol variation the validity of
VEL(rg. A%)[r:r] 2 0. Vr € TY = {-:- € ('.'3’ / r(¢)dp = u}
I

is known. However, this is direetly clear from the discussion above. Moreover,
the Iunetions ry(¢) = cos ¢ and ra(@) = sin ¢ are associated with the “lincarized
directions of parallel shifting” at g with respect to oy and g, respectively.

REMARK 26 Sufficient conditions for shape functionals only are not too impor-
tant. because some ol the results are obviously or intnitively clear. Neverthe-
less. it can be a first step for the study of more interesting shape optimization
problems. For example, it seems to be possible to combine the presented tech-
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Hackbusch, 1989) for the computation of shape derivatives for elliptic equations
(Potthast, 1994a, 1994b, Fujii and Goto, 1994, Eppler, 1998a), also related to
investigations of Fujii (Fujii, 1986, 1990, 1994, Belov and Fujii., 1997). This will
be discussed in a forthcoming paper.
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