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Abstract: In this paper sliding mode control systems are consid-
ered and a new technique to attenuate chattering is proposed. The
technique employs simple, first-order dynamical devices, i.c. an in-
tegrator or a low-pass filter. to compensate in part for unknown and
changing disturbance. As a result of this compensation, the magni-
tude of the discontinuous control term is essentially reduced. The
term does not depend on the admissible disturbance or its change
rate, but only on the uncertainty of the disturbance at the initial
time t = t3. The technigue proposed in this paper attenuates the
undesirable chattering without any deterioration of the system per-
formance.
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1. Introduction

In recent years much of the research in the area of control systems theory focused
on the design of a discontinuous feedback which switches the structure of the
system according to the evolution of its state vector. This technique, usually
called sliding mode control, provides an effective and robust means of controlling
nonlinear plants, DeCarlo et al. (1988), Hung et al. (1993), Utkin (1992). The
main advantage of the technique is that systems in sliding wode are insensitive
to disturbances and parameter uncertainties. However, favourable performance
of the systems is usually achieved at the price of chattering, i.e. high-speed
switching of the control signal. The chattering is undesirable not only because
it may excite the non-modelled high-frequency dynamics of the plant, but also
becanse it will result in unnecessary wear and tear on the actuator components.

In order to alleviate the problem of chattering, continuous approximations of
the discontinuous control laws, Ryan and Corless (1984), Slotine and Li (1991),
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proposed. However, if a continnous approximation of the discontinuous sliding
mode control law is applied, the total invariance properties associated with the
ideal sliding mode are lost and the system performance, at least to some extent,
deteriorates. On the other hand, the robustness of dynamical controllers was
not analysed in the research reported. This is mainly due to the fact that for
the systems of this type, the disturbance typically affects the system input,
while the discontinuous action counteracting the disturbance affects the input
derivatives rather than the input itself. Consequently, the so called matching
conditions are not satisfied in the systems and direct conclusions concerning the
robustness cannot be drawn.

In this paper a new technique to attenuate chattering without compromising
the system robustness is proposed. The technique is based on the observation
that when the system is in sliding mode, information about the disturbance can
be extracted from the equivalent value of the discontinuous control. Therefore,
sliding mode strategies without reaching phase are considered and an auxil-
iary continuous control signal which partly compensates for the disturbance is
introduced. The signal is generated by a single integrator or a low-pass filter ac-
cording to the equivalent value of the discontinuous control term. Consequently,
the discontinuous term can be essentially reduced without any deterioration of
the system performance. In fact, the magnitude of the discontinuous control
term is determined only by the uncertainty of the disturbance at the initial
time ¢ = tg. The most important difference between the technique proposed in
this paper and the previous work on dynamical controllers is that in this paper
the disturbance is explicitly considered and insensitivity to the disturbance is
guaranteed.

2. Problem statement

Let us consider a single-input single-output, possibly time-varying and nonlin-
ear, system

2™ = f(x,t) + bu+d(t) (1)
where 2 is the output of interest, u is the control input, z = [z, 4, ..., 1|T
is the state vector, d(t) is an unknown disturbance, f(z,t) is a known function
of time and the state vector, and b # 0 is a known constant. The system
is supposed to track a demand trajectory z4(t). We define the tracking error
¢ = — x4 and the error state vector e = [e,é,...,e" VT = [ey,eq,...,e,]"
The purpose of this work is to propose a sliding mode strategy which drives
the error of the system to zero, makes the system completely insensitive to the
disturbance d(t) for any ¢ > £y (i.c. from the very beginning of the proposed
control action), and causes as little chattering as possible. In other words, we
winl ba abbannata chattoarine ae mneh as nossible without compromisine the
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3. Integral compensation

In this section the disturbance d(t) is not required to be bounded by a known
constant at any time ¢ > £y. The only assumptions made are:
o the initial disturbance d(tp) is bounded

dy < d(tp) < dy; (2)

e the disturbance does not change infinitely fast, i.e. there exists a possibly
very big constant ¢ such that at any time ¢ > ¢y

ld(t)] < 8. (3)
The following notation is used throughout this paper
dy + do dy — dl
= k = .
do = 5 (4)

Note that if the initial disturbance is known precisely, then dy = d(fp) and
k is an arbitrarily small constant. We choose a (possibly nonlinear and /or time
varying) switching surface o(e, t) = 0 in such a way that o[e(ta), to] = 0. i.e. the
error state vector e(tg) belongs to the surface at time ¢ = t5. This is possible
either if a time-varying switching surface adaptable to initial conditions of the
system, Bartoszewicz (1995, 1996), Choi et al. (1994), Lu and Chen (1995), is
applied or if integral sliding mode control realised in an extended state space,
Slotine and Li (1991), is considered. In the latter case the controlled plant is
augmented by an extra state egp(t) = C + f:n e1(r)dr where C is a constant
which can be appropriately selected to satisfy ole(tp),to]) = 0. This can be
easily realised ’in practice since no extra differentiation is required.

Provided ,—(?— b # 0 we introduce the following switched feedback control

€n
law
U= U + Ug + U (5)
where
up = b1 ':I":(:") bt f
do b ~1/ 0o " do P da " do ()
- =—- —_— —-e3+...+—-en+ —
dey, dey 2 deg > deq—y at

is the so-called equivalent control in the absence of disturbance, uy is a discon-
tinuous term

k d
==y sgn(o) sgn (%) (7)

and u, is a continuous compensation term

I
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with an initial condition u.(tp) = ——E-:l and T > (. This control law is illustrated

in Fig. 1.
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Figure 1. Control system

DEFINITION 1 Let us define an equivalent value wge, () of the discontinuous
term wuq(t) as follows:

e if the system is not in sliding mode wge,(t) = ua(t) = :I:-E

e otherwise, i.e. when the system is in sliding mode, uaq,(t) is a continuous
control signal which drives the system along the discontinuity surface in the
error state space. In other words wg.4(t) is a continuons average of uq(t).

This definition is different from the conventional definition of the equivalent
control, DeCarlo et al. (1988), since it concerns the discontinnous control only,
and according to this definition the continuons term wug does not contribute
to wieq-

. . - do ;
It can be casily verified that the condition o= < 0 for the existence of the

sliding mode is satisfied by the system (1) controlled according to (5)-(8) at the
initial time t = tg. To this end we take

do do de do  (,y  do
Um:g(%.czﬁ-a;.{r3+"‘+5;;le +W) (9)
Then. substituting (1) into (9)
da do do
URZ:O'{E‘EQ E-rﬁ;;%-‘..
Ao . ; % i, 00 10y
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Taking into account (5), (6) and (7) we get

do do
E = U—a—ez » [()('U(l + 'U,C) Tt d(f)]
oo oo
= U% . [—A. - sgn <0&:> + bu. + d(t)}- (11)

. d
Since at t = tg, uc(tg) = —IE, we have
)

do(to)
dt

dolt
= —k‘a(to)%l

00’(1‘,0)

J(t()) e

s O'(to)

[~do+d(to)] <O (12)

which is by definition (4) negative. Consequently, the system is in sliding mode
at t = tg and

k
|'“'(1(:q(t0)l L ==

ik (13)

On the other hand when the system is in the sliding mode the following relation
holds

bltedeq (t) + uc(t)] + d(t) = 0. (14)
Differentiating equation (14) we obtain

Ditgeq (1) + biic(t) = —d(t), (15)

then, substituting relation (8) and replacing wg(t) with wgeq(t), we get

Td(t)

T/I‘/'{Icq(’f) o5 u(l(}([(t) =i b

(16)

Since this equation describes a typical first order dynamics, taking into account
inequality (3), we conclude that wge,(t) evolves in such a way that for any ¢ > to

k Té
[tteq ()] < Jtigeq(to)] < m or |ugeq(t)] < W (17)
Consequently, we have
kTS :
[thaeq(t)] < max [—: —-] (18)
: o] [0]

On the other hand, it follows directly from Definition 1 that the system is in
sliding mode if

k

ae oo TaXl &
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Therefore, taking into account (18), one may easily conclude that the system
will always remain in sliding mode if

T<3 (20)

By this means a new variable structure control strategy which essentially atten-
nates chattering and guarantees existence of the sliding mode on the switching
surface o(e,t) = 0 was proposed. In this strategy, the discontinuous control
term does not depend on the magnitude of disturbance or its change rate. The
only factor which determines the magnitude of the discontinuous control term is
the uncertainty of the disturbance at the initial time ¢ = g, and therefore proper
evaluation of the bounds d; and d» in relation (2) is critical for the effectiveness
of the proposed strategy.

4. Low-pass filter compensation

In the sequel, again system (1) is considered and similarly to the previous section
it is assumed that inequalities (2) and (3) hold. Furthermore, it is assumed that
there exists, a possibly very big, constant D such that at any time ¢ > ¢

|d(t)| < D (21)

Similarly as in the previous section, a switching surface o(e,t) = 0 is chosen in
such a way that o[e(tg), t] = 0 and control law (5)-(7) is proposed. However,
now a modified continuous compensation term is introduced

e + Tl = Kuy (22)

. e d
with an initial condition wu.(tg) = ——D, T > 0and K > 0. Now we recall

relations (9)-(12) to point out that the considered system with compensation

k
term (22) is in sliding mode at ¢ = tg. Therefore, we have |uge,(to)| < m

On the other hand, again when the system is in sliding mode, relations (14)
and (15) hold. Substituting these relations into (22) and replacing uq(t) with
Udeq(t) we obtain

Td(t) + d(t)

(K + 1) (28)

& 5
}{__ﬁ“dcq(t) + ut!eq(t) ==

Since equation (23) represents first order dynamics, we conclude that wug.,(t)
evolves in such a way that for any ¢t > ¢y

k
Iud'—"‘.’(tn S Iu’(ft‘q(c(l)[ < m

LAY L TAHY | N 4TS
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Now we get

(25)

tuduq(r‘)l < max [ k D + T(s }l

EREED

Therefore, the system will always remain in the sliding mode if big enough K
and small enough T are chosen. Formally, if the following condition is satisfied

D+T{‘i*1

K 7

v

(26)

existence of the sliding mode on the surface o(e,t) = 0 is guaranteed. This
relation is consistent with the assumption K > 0, since D is always equal to
or greater than k. In this strategy, again the discontinuous control term does
not depend on the magnitude of disturbance or its change rate. but only on the
uncertainty of the disturbance at the initial time ¢ = {5, Finally, let us point
out that (26) is sufficient but not a necessary condition for the existence of the
sliding mode in the system.

5. Simulation example

In order to verify the performance of the control techniques proposed in this
note we simulated the following system

Y1 =Y2 97
g2 = —y2 — 3y +u+d(t) #7)

with the initial condition y;(0) = 100, y2(0) = 0. The demand trajectory was
defined as yq1(t) = yaa(t) = 0. We assumed for disturbance |d(0)] < 1 and
for disturbance change rate |d(t)] < 10. Consequently, we have dy = 0 and
k = 1. Furthermore, for the purpose of comparison with conventional sliding
mode control we assumed |d(t)| < 10. The actual disturbance simulated in this
example was

d(t) = 9.99sin(t + 0.1). (28)

We choose the switching surface

aley,eat) =e; +ea—g(t)=0 (29)
where
100 — 40t fort < 2.5 >
9(t) = {U for ¢t > 2.5 )

and the following parameters of the compensators:
e integral compensator T' = 0.1:
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Our control strategies are compared with the conventional sliding mode con-
trol scheme without disturbance compensation. The scheme employs a fixed
switching line o(e;,ez2) = e; + e2 = 0, and the control signal in the scheme is
determined as u = 0.5y — 10sgn(o).

Simulation results for the case of infinitely fast switching are shown in Figs.
2 and 3. Fig. 2 illustrates control signal in the considered system. Fig. 2a shows

20 —— T
u(t) a
4 W

-20

0
20

0 4 8 12 16 ¢ 20

Figure 2. Control signal: (a) — proposed strategy with integral compensation,
(b) — proposed strategy with first-order filter compensation, (¢) — conventional
sliding mode

Figure 3. Error convergence: (a) — proposed strategy with integral compen-
cation (hY — nronosed strateey with first-order filter compensation, (¢) -—
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the signal for the strategy with integral compensation, Fig. 2b for the strategy
with first-order filter compensation, and Fig. 2¢ for conventional sliding mode
control scheme. The chattering for both our strategies is reduced ten times when
compared with the conventional scheme. In both our strategies the control signal
evolves in a very similar (although not exactly the same) way. This is a natural
consequence of the enforced error dynamics and the fact that both strategies
have to compensate for the same disturbance. Fig. 3 shows error convergence
in the system (1). It can be easily seen from this figure that the undesirable
chattering is reduced without any deterioration of the system performance. Our
strategies gnarantee faster error convergence than the conventional scheme and
they indeed assure insensitivity of the system to the external disturbance since
the very beginning of the system motion (£ = 0) while the conventional scheme
makes the system insensitive only after its representative point (RP) has reached
the switching line a(ej,e2) = ey +ex = 0, i.c. for £ > 10.945. Finally, Fig. 4
shows the evolution of the switching variable o in the case of finite switching
frequency f = 500. From this figure, it can be seen again that both our strategies
effectively attenuate chattering in the controlled system.

0.05 T T T T T
a(t) a
0 - — | S—— M

-0.05 : T :
8 10 12 14 16 18 ¢ 20

0.05 ' —r— T T
a(t) b
0

-0.05 e
8 10 12 14 16 18 ¢ 20

0.05 e

o(t)
0

L5t —t s —

8 10 12 14 16 18 ¢ 20

Figure 4. Evolution of the switching variable o (sampling rate f = 500): (a) —
proposed strategy with integral compensation, (b) — proposed strategy with
first-order filter compensation, (¢) — conventional sliding mod2

6. Conclusions

In this paper two new sliding mode control strategies which effectively atten-
nate chattering in the controlled systems are proposed. The strategies employ
simple, continuous compensation devices — l.e. an integrator or a first-order
filter -— to partly compensate for the unknown disturbance. Conseauentlv. the
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on the magnitude of the disturbance or its change rate. The only factor which
determines the discontinuous control term is the uncertainty of the disturbance
at the initial time t = t5. Both of the strategics presented in the paper can
be directly applied to the control of multi-input multi-output (MIMO) systems.
Simulation results comprised in Section 5 illustrate feasibility and favourable
performance of the proposed strategies.
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