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Abstract: In this paper sliding mode control systems arc consid
ered and a new technique to attenuate chattering is proposed. The 
technique employs simple , first-order dynamical devices , i.e . an in
tegrator or a low-pass filter, to compensate in part for unknown and 
changing dist urbance. As a result of this compensation, the magni
tnde of the discontinuous control term is essentially reduced. The 
term docs not depend on the admissible distmbance or its change 
ra te, but only on the uncerta in ty of the distmba nce at the initia l 
time t = t0 . The technique proposed in this paper attenuates the 
undesirable chattering without any deterioration of the system per
formance. 
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1. Introduction 

In recent years much of the research in the area of control systems theory focused 
on the design of a discontinuous feedback which switches the st ructure of the 
system according to the evolution of its state vector. This technique , usually 
called sliding mode control, provides an effective and robust means of controlling 
nonlinear plants , DeCarlo et a l. (1988) , Hung et al. (1993) , Utkin (1992) . The 
main advantage of the technique is that systems in sliding lllode arc insensitive 
to disturb<tnces and parameter uncertainties. However, favourable performance 
of the systems is usua lly achieved at the price of chattering, i.e. high-speed 
switching of the control signal. The chattering is undesirable not only because 
it may excite the non-modelled high-frequency dynamics of the plant , but also 
because it will resnlt iu unnecessary wear and tear on the act uator components. 

In order to alleviate the problem of chatter ing, continuous approximations of 
the disc:ontinuous control laws, Ryan and Corless (1984), Slotine and Li (1991), 
Yune· and Lin ( I ()()4) >lnrl rhrn <>Jnli'C> I c•l i r l inn· "''"! " """ • .. ~ 11 ~-·~ 0: .... n . 
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proposed. However, if a continuous approxima tion of the discontinuous sliding 
mode control law is applied, t he tota l invariance properties associa ted with the 
ideal sliding mode are lost and the system performance, a t least to some ext ent , 
deteriorates. On the other hand , the robustness of dynamical controllers was 
not a nalysed in the research reported. This is mainly due to the fact tha t for 
t he syst ems of this type, the disturbance typically affects the system input , 
while the discontinuous action counteracting the disturbance affects the input 
derivatives ra ther tha n the input itself. Consequently, the so called matching 
conditions are not satisfi ed in the systems and direct conclusions concerning the 
robustness cannot be drawn . 

In t his paper a new technique to a ttenuat e cha t tering without compromising 
the system robustness is proposed. The technique is based on the observa tion 
t hat when the system is in sliding mode, informa tion a bout the disturba nce can 
be extracted from the equivalent value of the discontinuous control. Therefore, 
sliding mode stra tegies without reaching phase are considered a nd a n a ux il
iary cont inuous control signal which partly compensates for the disturbance is 
introduced . The signal is generat ed by a single integrator or a low-pass filt er ac
cording to the equivalent value of the discontinuous control term. Consequently, 
the discontinuous t erm can be essentially reduced without any deterioration of 
the system performance. In fact , the magnit ude of the discontinuous control 
term is det ermined only by the uncertainty of the disturba nce at the ini t ial 
t ime t :::: t0 . The most importa nt difference between the technique proposed in 
this paper and the previous work on dynamical controllers is t hat in this paper 
t he disturba nce is explicitly considered and insensitivity to the disturbance is 
guaranteed . 

2. P roblem statement 

Let us consider a single-input single-out put , possibly time-varying a nd nonlin
ear , syst em 

x(n ) :::: f( x , t ) + bu + d(t) (1) 

where x is t he ou t put of interest, u is the cont rol input , x:::: [:r, x, ... , :l;(n - l )]T 
is the st at e vector, d( t) is a n unknown disturbance, f (x, t) is a known funct ion 
of t ime a nd the state vector , a nd b =/; 0 is a known cons tant. The system 
is supposed to track a demand traj ectory :cd(t ). We define the tracking error 
e == x - Xd a nd the error st ate vector e:::: [e, e, ... , eCn -l)]T :::: [e1, e2, .. . , e., p ·. 
The purpose of t his work is to propose a sliding mode stra tegy which drives 
the error of t he system to zero , makes the system completely insensitive to t he 
d isturbance d(t) for any t 2 t0 (i. e. from the very beginning of the proposed 
cont rol act ion), a nd causes as little chat tering as possible. In other words, we 
... : ~ • - • ~ ~H"" ""'~ " r- h ~Hr.,·i no· "" m nrh as nossihle without compromising the 
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3. Integral compensation 

In this section the disturbance d(t) is not required to be bounded by a known 
constant at any time t 2 to. The only assumptions made are: 

• the initial disturbance d( to) is bounded 

(2) 

• the disturbance does not change infinitely fast, i.e . there exists a possibly 
very big constant 8 such that at any time t 2 t0 

id(t)i < 8. 

The following notation is used throughout this paper 

do = dr + dz , k = dz- dr 
2 2 

(3) 

(4) 

Note that if the initial disturbance is known precisely, then do = d(t0 ) and 
k is an arbitrarily small constant. We choose a (possibly nonlinear and/or time 
varying) switching surface a(e, t) = 0 in such a way that a[e(t0 ) , t0] = 0, i.e. the 
error state vector e(to) belongs to the surface at time t = to. This is possible 
either if a time-varying switching surface adaptable to initial conditions of the 
system, Bartoszewicz (1995 , 1996), Choi et al. (1994), Lu and Chen (1995), is 
applied or if integral sliding mode control realised in an extended state space, 
Slotine and Li ( 1991) , is considered. In the latter case the controlled plant is 

augmented by an extra state e0 ( t) = C + J~: e1 ( r) dr where C is a constant 
which can be appropriately selected to satisfy a[e(to) , to] = 0. This can be 
easily realised in practice since no extra differentiation is required. 

Provided ~a · b f; 0 we introduce the following switched feedback control 
ue,. 

law 

·u = no + Ud + U c (5) 

where 

- b-1 .(n ) b-1 J uo- . xd - . 

( 
aa ) - r ( aa aa aa aa ) 

- - · b - · C2 + - · C3 + .. . + -- · Cn + -
OCn OCr OC2 OCn- 1 at (6) 

is the so-called equivalent control in the absence of disturbance, 'U<f is a discon-
tinuous term 

k ( aa ) 
U<f = - b sgn( a) sgn ae,. (7) 

and U c is a continuous compensation term 
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with an ini t ial condition uc(t0 ) =- dbo and T > 0. This control law is illustrated 

in Fig. 1. 

Com pens ator 

y 

F igure 1. Cont rol system 

D EFINITIO N 1 Let us define an equivalent valne 'lLdcq(t) of the discontinuous 
term ·ud(t) as follows: 

• if t he system is not in sliding mode 'UcLeq (I;) = v.d ( t) = ± ~ 
• otherwise, i. e. when the system is in sliding mode , ?I.dcq(t) is a continuous 

control signal which drives the system along the discontinuity smface in the 
error state space. In ot her words 1Ldeq(t) is a continuons average of 'ILd(t). 

This definition is different from the conventional definition of the equivalent 
control , DeCarlo et a l. (1988), since it concerns the discontinuous control only, 
and accord ing to this definition the continnous term no docs not contribu te 

to ·ndcq· 

It can be easily verified that t he condition ada < 0 for the existence of the 
dt 

slid ing mode is sat isfied by the system (1) cont rolled accord ing to (5) - (8) at t he 
ini tial time t = t0 . To t his end we take 

ada =a(~a ·c2+ ~a · e:J + ... +!!.!!__·e(n) + Da )· 
rlt De1 De2 De" Dt 

(9) 

T hen, substitnt ing (1) in to (9) 

da { aa da 
a--:- =a -. - · e2 + -. - · C;J + 

rit De 1 8e2 

"a ~ (n) , U I I Hl \ 



Chatter ing atteuuat ion iu s lid ing n1ode control syste ms 589 

Taking into account (5), (G) a nd (7) we get 

da Da 
a-d =a-;:;-· [b (1ld + 1lc) + d(t)] 

t ue" 

=a%;,· [-k·sgn (a %~ ) +buc +rl(t) J. (11) 

Since at t = to , uc(to) = r~: , we have 

da(to) I 8a(to) I aa(to) a(to) -
1

- = -k a(to) - ::l- + a(to) - ::l-[-do + d(to)] < 0 
c.t uen ue'/1 

( 12) 

which is by definition ( 4) negative. Consequently, t he system is in sliding mode 
at t = to and 

(13 ) 

On tlw other hand when the system is in t he sliding mode the following relat ion 
holds 

b[udcq(t) + llc(t)] + d(t) = 0. (14) 

Differentiat ing equat ion (14) we obtain 

(15) 

then , substi tuting relation (8) a nd replacing ud(t) with 'llde"(t) , we get 

( 16) 

Since this equation describes a typical first order dynamics, taking into accoun t 
inequality (3) , we conclude t hat. 'lldcq(t) evolves in such a way t hat for any t 2 to 

Consequently, we have 

Ou the ot her baud, it fo llows directly from Definition 
s liding lllOdc if 

/,: 
t ... . lf\1..-- _ 

( 17) 

( 18) 

t hat the systern is in 
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Therefore, taking into account ( 18), one may easily conclude that the system 
will always remain in sliding mode if 

(20) 

By this means a new variable structure control strategy which essentially atten
uates chattering and guarantees existence of the sliding mode on the switching 
surface O"(e, t) = 0 was proposed. In this strategy, the discontinuous control 
term does not depend on the magnitude of disturbance or its change rate. The 
only factor which determines the magnitude of the discontinuous control term is 
the uncertainty of the disturbance at the initial timet = t0 , and therefore proper 
evaluation of the bounds d1 and d2 in relation (2) is critical fo r the effectiveness 
of the proposed strategy. 

4. Low-pass filter compensation 

In the sequel, again system (1) is considered and similarly to the previous section 
it is assumed that inequalities (2) and (3) hold. Furthermore, it is assumed that 
there exists, a possibly very big, constant D such that at any time t 2: t0 

Jd(t)J < D (21) 

Similarly as in the previous section, a switching surface (}(e, t) = 0 is chosen in 
such a way that O"[e(to) , t0] = 0 and control law (5)- (7) is proposed. However, 
now a modified continuous compensation term is introduced 

(22) 

d 
with an initial condition 7Lc(t0 ) - bo, T > 0 and K > 0. Now we recall 

relations (9)- (12) to point out that the considered system with compensation 
1.; 

term (22) is in sliding mode at t = to . Therefore, we have Judeq (to) I < ibt. 
On the other hand, again when the system is in sliding mode, relations (14) 
and (15) hold. Substituting these relations into (22) and replacing ud(t) with 
Utieq(t) we obtain 

Td(t) + d(t) 
(K + 1)b . 

(23) 

Since equation (23) represents first order dynamics , we conclude that udeq (t) 
evolves in such a way that for any t 2: to 

k 
Judeq(t)J ~ Judeq(to) J < ibt 

I rlf+\ ..L 'Trir+ \ I n + rfi 
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Now we get 

[ 
k D + T 5 ] 

Jndec1(t) J <max lbl; (I{+ 1)Jbj . (25) 

Therefore, the system will always remain in the sliding mode if big enough f{ 
and small enough T arc chosen. Formally, if the following condition is satisfied 

}( D +T5 > - 1 
- /,; 

(26) 

existence of the sliding mode on t he Burface a(e, t) = 0 is guaranteed. This 
relation is consistent with t he assumption J( > 0, since D is always equal to 
or greater than /,;. In t his strategy, again the discontinuous control term does 
not depend on the magnitude of disturbance or its change rate , but only on the 
uncertainty of the disturbance at the initial time t = to. Finally, let us point 
out that (26) is sufficient but not a necessary condition for the existence of the 
sliding mode in the system. 

5. Simulation example 

In order to verify the performance of the cont rol techniques proposed in this 
note we simulated t he following system 

Yl = Y2 
i/2 = -y2- im +n+d(t) 

(27) 

with the initial condition yl(O) = 100, 1/2(0) = 0. The demand trajectory was 
defined as y,a(t) = Yc12(t) = 0. We assumed for disturbance jd(O)j < 1 and 
for disturbance change rate jrl(t) J < 10. Consequently, we have do = 0 and 
k = 1. Furthermore, for the purpose of comparison with conventional sliding 
mode control we assumed Jd(t) J < 10. The act ual disturbance simulated in this 
example was 

d(t) = 9.99sin(t + 0.1). 

We choose t he switching surface 

where 

g(t) = { 100- 40t 
() 

fort < 2.5 
for t 2: 2.5 

and t he following parameters of the compcusators: 
• in tegral compensator T = 0.1; 

(28) 

(29) 

(30) 
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Our control strategies arc compared with the conventional sliding mode con
trol scheme without disturbance compensation. The scheme employs a fixed 
switching line a( e1 , e2 ) = e1 + e2 = 0, and the control signal in the scheme is 
determined as u = 0.5y1 - lOsgn(a) . 

Simulation results for the case of infini tely fast switching arc shown in Figs. 
2 and 3. Fig. 2 illustrates control signal in the considered system. Fig. 2a shows 

0 4 8 12 16 t 20 

Figure 2. Control signal: (a) -- proposed strategy with integral compensation , 
(b) - proposed strategy with first-order filter compensation, (c) - conventional 
sliding mode 

~c 

_r-a& b 

4 8 12 16 20 

Figure 3. Error convergence: (a) --- proposed strategy with integral compen
"" r.inn (h) - nnmoscd st rategy with first-order filter compensation, (c) ---
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the signal for the strategy with integral compensation , Fig. 2b for the strategy 
with first-order filt er compensation, and Fig. 2c for conventional sliding mode 
control scheme. The chat tering for both our strategies is reduced ten times when 
compared with the conventional scheme. In both our strategies the control signal 
evolves in a very similar (although not exactly the same) way. This is a natural 
consequence of the enforced error dynamics and the fact that both strategies 
have to compensate for the same disturbance. Fig. 3 shows error convergence 
in the system ( 1). It can be easily seen from this figure that the undesirab le 
chattering is reduced without any deterioration of the system performance. Our 
strategies guarantee faster error convergence than the conventional scheme and 
they indeed assure insensitivity of the system to the external disturbance since 
the very beginning of t he sys tem motion (t = 0) while the conventional scheme 
makes the system insensitive only after its representat ive point (RP) has reached 
the switching line !T(e1, e2) = e1 + e2 = 0, i.e. fort 2: 10.945 . Finally, Fig. 4 
shows the evolution of the switching variable !J in the case of finite switching 
frequency f = 500 . From this figure, it can be seen again that both our strategies 
effectively attenuate chattering in the controlled system. 

Figure 4. Evolution of the switching variable !J (sampling rate f = 500): (a) -
proposed strategy with integral compensation, (b) - proposed strategy with 
first-order filter compensation, (c) - conventional sliding mod~ 

6. Conclusions 

In this paper two new sliding mode control st rategies which effectively atten
uate chattering in the controlled systems are proposed. The strategies employ 
simple, continnous compensation devices - i.e. an integrator or a first-order 
filter - to partly compensate for the unknown disturbance. Conseq uentlv. the 
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on the magnitude of the disturbance or its change rate. The only factor which 
determines the discontinuous control term is the uncertainty of the disturbance 
at the initial time t = t0 . Both of t he st rategies presented in the paper can 
be directly applied to the control of multi-input multi-output (MIMO) systems. 
Simulation results comprised in Section 5 illustrate feasibility and favourable 
performance of the proposed strategies. 
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