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Abstract: Management of bond portfolio is formulated as a mul-
tiperiod scenario-based stochastic program with random recourse.
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1. Problem formulation

We shall describe a stochastic programming model for management of portfolio
of fixed income securities, called bonds for brevity. The main purpose of the
portfolio management is to maximize the expected utility of the wealth at the
end of a given period and, depending on the specific field of investment activities,
to secure the prescribed or uncertain future paymvntq Slmllat proh](,ms cul‘,(,
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of liabilities can rank from fixed prescribed or planned external outflows (or
inflows) to liabilities whose value depends on various external random factors
such as mortality rates. In contrast to the problem of a dedicated portfolio
selection (see e.g. Hiller and Eckstein, 1993, Shapiro, 1988), we allow for an
active trading strategy. Accordingly. we formulate constraints on conservation
of holdings for each asset at each time period and, similarly as in Golub et al.
(1995), we extend the constraints on cashflows for each time period to include
the possibility of rebalancing the portfolio.

The prices of bonds and sometimes also the coupon cashflows f; are driven
by the assumed evolution of the interest rates: Given a sequence of equilibrium
future forward short term interest rates r¢ valid for the time interval [¢,¢ + 1),
t=0,...,7—1 the fair price of the j-th bond at time ¢ equals the total cashflow
generated by this bond in subsequent time instances discounted to ¢:

T—1

"
Bi(r)= Y fir [J1+r)™ (1)

T=t+1 h=t

where T is greater than or equal to the time to maturity.

In reality, however, the sequence of the future short term interest rates that
determines the prices (1) is not known, the sequences of interest rates are pre-
scribed ad hoc or modeled in a probabilistic way. We shall consider a discrete
distribution carried by S possible vectors r of interest rates concentrated with
probabilities p, > 0 Vs, Y, ps = 1 at points r* € RT, s = 1,...,5 called sce-
narios; this is the input information which is used to build the discussed model,
and which influences the results.

We shall mostly use the notation introduced in Golub et al. (1995), Dupacovéa
and Bertocchi (1996), Bertocchi, Dupagova and Moriggia (1996) and Moriggia
(1997):

j = 1,...,J are indices of the considered bonds and ¢; the dates of their
maturities;

t=0,...,7) is the considered discretization of the planning horizon;

b € R’ denote the J-vector of initial holdings (in face value) of bonds;

¢ is the initial holding in riskless asset;

fs € R’ are cashflows generated from bonds portfolio at time ¢ under scenario
s expressed as a fraction of their face value;

& € R’ and ¢ € R’ are the selling and purchasing price J-vectors of bonds
at time ¢ for scenario s obtained from the corresponding fair prices (1) by
subtracting or adding fixed transaction costs and spread; the initial price
vectors & € RY and (o € R” are known, i.c., scenario independent;

L, € R is liability due at time {;

X9 € Ri (and yo € R‘i) is the face value J-vector of bonds to be purchased
(sold) at the beginning of the planning period, i.e., at £ = 0;

70 € R is the face value J-vector of bonds held in portfolio after the initial
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The first stage decision variables xg, yo, 2o are nonnegative,

y0+Zo=b+X0 (2)
and

+ .

Dy +(g X0 = ¢+ & Yo (3)

where the auxiliary nonnegative variable ‘?506 Ry denotes the surplus.

The second-stage decisions on rebalancing the portfolio, borrowing or rein-
vestment of the surplus depend on individual scenarios and have to fulfil con-
straints on conservation of holdings in each bond at cach time period and for
each of scenarios

z; +y; =z +x{ Vs,t (4)

where x7,y$.z; denote the face value of bonds purchased, sold, held in the
portfolio at time ¢, ¢t = 1,...,T; under scenario s, and constraints on rebalancing
the portfolio at cach time period 1 <t < T}

S S

s s s s s = -
STy BTz (L =) Uy + v,
] . _s 48 .
=Le+ QX+ (1 4+8+15_, —m) vy + 0, Vst (5)

s
where z§ = 2zg, Vs, $t€ R, denotes the surplus in cash for scenario s and
s

v, € R, is the short position in cash for scenario s. Parameter 7 measures the
distortion between risk-free asset and market short rate, parameter § accounts
for the positive cost of borrowing.

The optimization problem consists in maximization of the expected utility
of the final wealth

> pUWE) (6)

subject to constraints (2)-(5) and nonnegativity constraints on all variables,
with

S S
s 8T .8 + 5 & T
Wi, = &5 23+ g, —avp Vs (7)

The multiplier o should be fixed according to the problem area. For instance,
a pension plan assumes repeated application of the model with rolling horizon
and values a > 1 take into account the debt service in the future.

Thanks to the possibility of reinvestments and of unlimited borrowing. the
problem has always a feasible solution. The existence of optimal solutions is
guaranteed for a large class of utility functions that are increasing and con-
cave, what will be assumed henceforth. From the point of view of stochastic
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relatively complete recourse and with additional nonlinearities due to the choice
of the utility function. Moreover, due to strict inequalities of elements of prices
vectors &, < (j, Vj,t,s and § > 0, the optimal solutions fulfil the following
conditions

yj-x; =0V

Yie 25, =0Vs,j,1 <t <Tp
+8 5

v, U,=0Vs,1<t<T

whose interpretation is straightforward: to maximize the gain one has to avoid
unnecessary trading and borrowing.

The resulting large scale deterministic program (2)-(7) with a concave ob-
jective function and numerous linear constraints can be solved, e.g., by GAMS.
Its size as well as the numerical values of the coefficients result from the choice
of the considered bonds, their characteristics (initial prices and cashflows) and
initial holdings, from the scheduled stream of liabilities, from the choice of util-
ity function, from the used model of interest rates and the market data used to
fit the model. and from how a modest number of scenarios has been selected out
of the whole population. This is the input. The main outcome is the optimal
value of the objective function (the maximal expected utility of the final wealth)
and the optimal values of the first-stage variables xg, yo (and zg).

In this study we shall assume that the liabilitics are fixed and that the inter-
est rate scenarios have been generated according to Black-Derman-Toy (1990)
and we shall analyze the sensitivity of the optimal value of (6) for the selected
scenarios of interest rates. This is an important task because there is an arbi-
trariness in constructing the probability distribution of the interest rates; there
arce scenarios designed only by experts or required by local authorities (e.g.
the New York State regulation #126 requires evaluation of bonds for 7 specific
scenarios), those based on a continuous time stochastic model, and scenarios ob-
tained by the binomial lattice techniques, e.g., Black, Derman, Toy (1990), that
will be used in our report. Morcover, due to the size of the resulting problem, not
all scenarios can be used and a sampling procedure has to be used to get a man-
ageable number of scenarios out of the fitted binomial lattice. One of possibili-
ties is the nonrandom sampling strategy by Zenios and Shtilman (1993) applied
in the context of the Black-Derman-Toy model. A natural question is the im-
pact of the chosen sampling sivategy and the influence of including additional or
out-of-sample scenarios on the output based on an initial manageable sample of
scenarios. The first question will be treated in the subsequent section and we re-
fer to Dupacova (1999) for a postoptimality technique with respect to additional
scenarios and to Dupacovd, Bertocchi, Moriggia (1997). (1998) for an applica-
tion of these results to the bond portfolios management problem. A selection of
numerical results related to application of model (2)-(7) to the Italian market,
inalndine the enoenetod eenditivitvy analvsis comparisons of results for various
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2. Sampling strategy

The basic assumptions of the Black-Derman-Toy model can be smmmarized as
follows:

e The short rate is the only factor that drives the bond prices, it can move
up or down with equal probability over the next time period: the sequences
of “up-down” and “down-up” moves from any fixed stage at a time point
t result into the same value of interest rate at the time point ¢ + 2 (the
path independence property).

o The expected returns on all securities over one period are equal, short
rates are lognormally distributed with the volatility of their logarithms
depending only on time.

e The input is the yield curve and yield volatilities valid for zero-coupon
governmental bonds at a given date: this input should be available for all
maturities.

o The securities are valued as the expected prices one period ahead dis-
counted by the present short rate.

As a result, at each time point £, there are t 4+ 1 possible stages and for the

given horizon T there are 271 equiprobable scenarios. Each of them can be
represented by a random binary fraction with 7' — 1 0-1 digits, say

w' = 0wjws ... wp_,

with w} = 0 or 1 Vt.s and their probabilities p, = 2=~1 Vs. The digit 1
at the t-th position corresponds to the “up” move, the digit 0 corresponds to
the “down™ move of the one-period short term interest rate in the step ¢. This
theoretical binomial lattice has to be calibrated by the existing term structure to
get the base rates ryg and the volatility factors &y for all t. Pan Kang and Zenios
(1992). The corresponding one-period short term interest rates for scenario s
and for the time interval (.t + 1] are then given as

?‘f = Ttig(s) (S)

where
t
rei = reoky, 1e(s) = ZW': (9)
=1

That is, i;(s) equals the number of the “up” moves [or the given scenario s
which oceur at time points 1....,t. We denote r° the vector of components
¥ VT

We shall detail now the results on sensitivity of the outcome on the non-
random sampling strategy of Zenios and Shtihman (1993), presented in Dupacova
and Bertoeehi (1996). Our sensitivity analysis will be related to a simplified
version of the deterministic sampling strategy by Zenios and Shtilman (1993):
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binary fraction of length Ty. The sample point w® from [0,1) is determined
by one of these binary fractions and by an arbitrary continuation up to binary
fraction of length 7' — 1. According to (8), (9) we build then S = 270 scenarios
r* and we denote

To
ity (8) = Z wy.
t=1

The lower and upper bounds for »§ with ¢ > Ty are evident:

8T = reok, 1o (#) < v < riok Tetina) =§",

t=To+1,...,T—1Vs (10)

and for t < Ty, 1} are fully determined by the described choice of the path w?.
The input of our problem (2)-(7) consists thus of § = 270 T-dimensional sce-
narios r® whose first component rg is the known initial interest rate, the next
Ty components are fixed for each scenario by the described nonrandom sam-
pling procedure, whereas the subsequent 7' — Ty — 1 components are subject to
perturbations A% such that

A =rp—12, t=Ty+1,...,T (11)

where 7 satisfies (10).

In our setting of the problem, the objective function (6) does not contain
any coefficients depending on scenarios; such coefficients enter equations (5) and
(7) and they are differentiable in r:

The derivatives of the purchasing and selling prices (5, = (j(r®) and £, =
&;e(r®) can be obtained from those of the fair prices (1); the fixed spread and
additive transaction costs evidently do not enter the formulas at all whereas a
fixed multiplicative rule for inclusion transaction costs, say by a factor 1 £ ¢
results in multiplication of the derivatives by the same factor.

The directional derivative of Bj(r®) in the direction of A® is equal to the
scalar product of the gradient of Bjt(r*) (see (1)) and the vector of incre-
ments A*

T T
st A? T
)= 3 50 i - R e 3, T O

for all £; we have used notation D'r =1l ,(l + )L

We denote further ¢(r!,...,r%) the optimal value of (2)-(7) for the initial
“nput® r!,...,r5 and we iufli(:a.tc by asterisk the components of the corre-
sponding optimal solution and of Lagrangean multipliers.

Recides the fixed number of scenarios. the basic assumptions that simplify
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and unique Lagrangean multipliers for the initial choice of scenarios, and a fixed
rank of the matrix of the system (5), (7) for all considered perturbations. If these
assumptions are fulfilled, the linearly perturbed problem that corresponds to the
input r* + pA®, s =1,..., 5 has an optimal solution for x4 small enough and for
arbitrary feasible perturbances A®, there exists the directional derivative of the
optimal value function at the given input r!,...,rS in any feasible direction A®,
s=1,...,5, and it equals the derivative at p = 0+ of the Lagrange’s function
of the corresponding lincarly perturbed problem evaluated at the initial optimal
solution and multipliers

¢'(0%)

a Sk * Sk Sk, 8 .

_0;13( R WhET At b A 8= Loy S)| =0+ (13)
(see Gol'shtein, 1970). The perturbation enters only equations (5) and (7); we
denote the corresponding Lagrangean multipliers by #* € R™* and \* € R.
Using the form of (5), (7) we get for fixed additive transaction costs

S
90’(0+)=Z{Zn D B0 gt = a5)

-1 Sk
Y @ - )A = XY Bin 0025, ) (14)
t=Tp+1 3
whereas for the multiplicative form of transaction costs the optimal values
Yt Tit 7;}1 have to be replaced by 57 = (1 — €)yjr, 257 = (1 +€)ajy, &1, =
(1 - 6) ]T1
The expression obtained is separable with respect to scenarios. Substituting
(12) for B’} and rearranging a bit we obtain separability with respect to scenarios
and time periods:

Z Z +7/ H; (15)

s=1h=Tp+1
where
h
5 __ LS% L, S% T
Hy==Y ") (y3 -5 Z D (
t=1 | T=h+1
S%

y ot
+ K (L + )0, — u,, ) To < h < Ty

7y
Hy ==Y w"> (y5 —23) Z fe. DT
t=1 j

T=h+1

7
AN NT DL (). < h<T.
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Separability of the directional derivative of the optimal value with respect
to scenarios and time periods allows for a quick sensitivity analysis with respect
to changes of the sampling strategy. The desired directions of changes in r} for
h > Tp that result in decrease and/or increase of the optimal value function
can be thus obtained by inspection of the signs of H} only. The magnitude of
these changes is limited by (10) (and also by the fact that this result is of a local
character).

For multiple optimal solutions or Lagrangean multipliers belonging to com-
pact sets M, A, respectively, we get

s
oo c I8 +
¥'(0 )—nﬂxnﬂn;{g ZB (0) (w5t — a5y)
T -1 B
+ Y W - 90A - Y B 0955 ) (16
t=To+1 7

An application of this result is rather involved. One possibility is to refor-
mulate the bond portfolio management problem (2)-(7) to another form, with
constraints independent of 7. In such a case, a variant of (16) does no more
include Lagrangean multipliers and with the right hand side evaluated at an ar-
bitrary optimal solution it provides a bound for the derivative ¢/(0"). This idea
has been detailed in Dupacova (1999) and exploited also in scenario sensitivity
simulation studies, e.g. Abafly et al. (1999).

Notice that by allowing cashflows dependent on scenarios we are able to
extend the results of Dupacova and Bertocchi (1996) to portfolios that include
bonds with call or put options. This means to mark the scenarios for which the
option on a bond is likely to be exercised and to update the cashflows and prices
that correspond to the bonds with options and to the corresponding marked
scenarios accordingly. Clearly, both the program (2)-(7) and the subsequent
sensitivity analysis have to be based on the updated cashflows and prices.

The coefficients of the resulting mathematical program depend on the model
input and they are influenced both by the market data, the chosen submodels
and the related estimation and sampling procedures. The erucial question is the
precision or robustness of the optimal trading strategy in the first time period
and of the optimal value of the objective function. Some of these problems
have been discussed in Dupacova (1999), in Bertocchi, Dupacovd and Moriggia
(1996), in Abaffy et al. (1999) and in Dupacovi. Bertocechi and Moriggia (1997
and 1998).

3. Numerical results
3.1. Inputs of the model

The annlication of the model to the [talian Government bonds market improved
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utility functions with a portfolio of Italian Treasury bonds and puttable bonds
along one year time horizon (T} = 12). September 1% 1994 was used as the
starting date of dynamic management. Portfolio contains five Treasury coupon
bonds (called BTP) maturing between 2 (10¢t1996) and 29 years (1Nov2023) with
semi-annual coupons and two puttable coupon bonds (called CTO) maturing after
6 and 8 years with put option maturing after 3 and 4 years respectively. Table 1
summarizes main features of considered portfolio. Coupons and redemption
prices are after tax.

Bonds Qt | coupon | payment dates | exercise | redemp. | maturity
BTP36658 | 10 | 3.9375 | 0l1Apr & 010ct 100.187 010c¢t96
BTP36631 | 20 5.0312 01Mar & 01Sep 99.531 01Mar98
BTP12687 | 15 | 5.2500 01Jan & 01Jul 99.231 01Jan02
BTP36693 | 10 3.7187 01Aug & 01Feb 99.387 01Augo4
BTP36665 5 3.9375 | 01May & 01Nov 99.218 01Nov23
CTO13212 | 20 | 5.2500 20Jan & 20Jul | 20Jan95 | 100.000 20Jan98
CTO36608 | 20 | 5.2500 | 19May & 19Nov | 19May95 99.950 | 19May98

Table 1. Portfolio composition

Time horizon is monthly discretized and ends at T' defined as follows:

g — _maxltj = 350
where ¢; is the maturity of bond j. Our empirical application does not consider
in-the-period liabilities nor future liabilities, formally: L; =0, for t = 1,...,T,
in equation (5) and & = 1 in equation (7). The interest rate spread (see eq. (5))
equals § = 0.20833%, or, equivalently, 2.5% annually, and the penalty of the
risk-free asset equals 77 = 0.0005.

The development environment is composed of four workstations Digital
5000/240, running Ultrix 4.3 operating system. Source programs in C language
have been compiled with system compiler and the optimization platform is the
General Algebraic Modeling System (GAMS) ver. 2.25.062 (GAMS, 1992).

3.1.1. Interest rate evolution

To obtain the yield curve we solved the non-lincar regression for the Bradley
and Crane (1972) function, applied to BTP’s prices of Milan market on Septem-
ber 15 1994, Estimated coefficients of that function gave the following function:

Y = 0.098671 - t0.065017 » 6_0'005058.t.

The volatility curve has been obtained by Dupacovd, Abafly et al. (1997). Figs.
1 and 2 draft the vield curve and the volatilitv cnrve. resnectively  Similar
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Figure 1. Yield curve on September 15 1994
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Figure 2. Volatility curve on September 1% 1994

Interest rate evolution has been simulated by the Black, Derman and Toy
madal (1000) Ko 3 drafts unner and lower bounds of binomial tree built with
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Figure 3. Upper and lower bounds of interest rate evolution
Lower bound represents the base rate, i.e. the interest rate of all down

movements, whereas upper bound is given by all up movements of binomial
lattice of interest rate evolution. Fig. 4 reports a part of binomial lattice.
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3.1.2. Case studies

The sampling strategy allowed us to consider four diverse case studies, named
A, B, C and D, with a fixed sample size of 32, 8, 16, and 4 scenarios, respectively
(see Table 2).

case | Ty | no. of scenarios
A 5 | 2°=32

B 3 [28=8

C 4 [21=16

D 2 | 2¢=4

Table 2. Scenario sample size

The sampling strategy considered all possible paths in [1,7p] and defined
a path choice strategy for range (7p, T]. Depending on that path strategy we
considered six subcases as Table 3 shows.

subcase | [1,Tp To+1| [To+2,T) | Th+1| [Ty +2,T)
1 all paths | down down up up & down
2 all paths | down down down | up & down
3 all paths | down up up up & down
4 all paths up up up up & down
5 all paths up down & up | down | up & down
6 all paths | repeat repeat repeat repeat

Table 3. Path choice strategy

Case A3, e.g., regards 32 scenarios (see Table 2) that cover all possible
paths for £ = 1,...,5 (Table 3) and move down in ¢ = 6, then move up 7 times
(t=17,...,13) and then alternate up and down movements along time horizon
t = 14,...,350. Subcase no. 6 repeats the pattern of the range [1, Tp] along the
whole sub-horizon (Tp, T (see also Fig. 5).

We decided to consider three different levels of additive transaction costs
depending on three different classes of traders. For that reason we studied all
the subcases shown in Table 4.

subcase | transaction cost
a 100 -0.0001 = 0.01
b 100 -0.0010 = 0.10
e 100 - 0.0100 = 1.00

Table 4. Transaction costs
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Figure 5. Scenario sample of case B6

3.1.3. Fair prices

Given the sample of interest rate scenarios, we used the following backward
algorithm to compute fair prices of bonds:
1. Compute
i Iy r—1
= 5 sy~1
Bj, = Bu(r) = ) fir [[(+13)

T=t+1 h=t
for any bond j = 1,...,J, at any stage t = 1,...,7 and for cach scenario

8= 1S
2. For Vj.t, s, if 3K, exercise price and Ky > Bj,, then

(a) compute
fj'r T L
f; = f(ﬂ T}
0 T =1

(b) compute revised prices as follows:

38 1 5 s
By = ﬁ?._.:(fj,rﬂ + B3 11)
for =y onsds 851wy Tand s=1.,..., 5.
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3.1.4. Utility functions

Most of utility functions used in finance are rather flat growing to infinity. This
fact could cause some inconveniences when we are maximizing the final wealth.
To avoid the dependence on magnitude of invested amount (initial wealth) we
maximized the utility function of the final wealth standardized with respect to
the initial one:

8

. sy V1
= e(W;) = 5

where Wy is the initial wealth, i.e. the amount invested in the risk-free asset e
and in the initial portfolio b at the current price By:

Wo=c+b"Byg

We defined nine subcases for the following utility functions:
case a: U(T®) = In(2 + ¥*).

case f: U(¥®) = In(3 + ¥*).

case : U(P*) = —exp (—%J .

case 6: U(P*) = 2/ U5,

case e U(¥?) = 10 ()10,

case (: U(¥®) = Us.

case n: U(¥*) = —10(T*)" T |

case 8: U(V*) = ~7%F-,.

case v: U(¥*) = 2U° +2.

3.2. Portfolio management

Considering the results of numerical solution of the problem (2)-(7), we com-
ment on case Blaa. Table 5 shows that the (locally) optimal investment for
scenario 0 consists of 104.58 units of BTP 12687 along the whole time horizon,
whereas the payments of matured coupons (in ¢ = 4, i.e. 1Jan95 and in ¢ = 10,
i.e. 1Jul95) are reinvested in bond BTP 36658. Note that even the coupon cash
of this last bond (in ¢t = 7, i.e. 1Apr95) is reinvested in itself. Fig. 6 summarizes
that investment strategy.

When utility function has not been linear and concave, our model has been
very stable. In fact, it often chose the same investment strategy along almost
every scenario. When utility function is linear and the scenario sample includes
extreme scenarios, i.c., all up and all down movements of interest rates (sce
Fig. 5), investment strategies change along different scenarios. Figs. 7 through 9
show how case B6a( leads to different strategies along different scenario. Finally,
increasine in transaction costs forces a static behaviour of our model, i.e., the
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CASE: /usr/users/marida/d5240/gams/B1

BID: 0001 ASK: 9999 FUN: log RAF: 2

optimal solution: 1.14

scenario: 0

final wealth: 11530.66 initial wealth: 10295.23 11.81Y%

time BTP36658 BTP36631 BTP12687 BTP36693 BTP36665 CT013212 CT036608 yPLUS yMINUS

0 0 0 104.58 0 0 0 0 0 0
1 0 0 104.58 0 0 0 0 0 0
2 0 0 104.58 0 0 0 0 0 0
3 0 0 104.58 0 0 0 0 0 0
4 5.6 0 104.58 0 0 0 0 0 0
5 5.6 0 104.58 0 0 0 0 0 0
6 5.6 0 104.58 0 0 0 0 0 0
7 5.83 0 104.58 0 0 0 0 0 0
8 5.83 0 104.58 0 0 0 0 0 0
9 5.83 0 104.58 0 0 0 0 0 0
10 11.38 0 104.58 0 0 0 0 0 0
11 11.38 0 104.58 0 0 0 0 0 0
12 11.38 0 104.58 0 0 0 0 0 0

Table 5. Optimal solution of case study Blaa on scenario 0

Scenario 0

120 O BTP36858
1 BTP36531

0
B sTP12687

)]
40 (] BTP36593
20 BTP36565
[ cTo13212
X cTOR08

months =
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Scenario 0

O BTP36858
BTP36531
B sTP12687
BTP38693
BTP38665
B cTo13212
® cTO38608

Figure 7. Optimal solution of case study B6a¢ on scenario 0

Scenario 2

O BTP36858
BTP36531
B gTP12587
BTP38593
BTP36665
Bl cT013212
& cTOBE0S
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Scenario 7

140 O 8TP38853

120 _

100 2 BTP36531
2] & gTP12687
60

[
B ] BTP38R93
20 BTF36565
0] cTO13212
& cTo:s608

months

Figure 9. Optimal solution of case study B6a¢ on scenario 7

3.3. Sensitivity analysis

In the previous section equation (15) showed that the sensitivity of the optimal
value of the objective function (6) with respect to sample of scenarios depends on
signs of Hj. In particular, positive values of these H} indicate positive effects
on changes Aj of interest rate r}. In other words, when interest increases,
first derivative ¢’(0%) is positive and, consequently, optimal value of objective
function increases. We get opposite results for either negative Hj or negative
changes of interest rate.! Finally, note that when Lagrangean multipliers x*
and A* are zeros, our portfolio management model does not depend on interest
rate changes.

Let us see, for example, what are H} values for scenarios 0 and 3 of cases B4a.
Figs. 10-13 show how much sensitivity changes with respect to utility function
and scenario of interest rate. The diagrams show that, although sensitivity
depends on utility function, the trend is the same. In fact, we have constant
and negative values close to zero on interval (Ty. T), whereas in [T, T) we have
an initial positive section, followed by an all-zero section. Since the model is
stable, sensitivity analysis is stable too, with exception of lincar utility function
case. Actually, the lincar case ¢ in scenario 0 (Fig. 9) has a different trend in
H} with respect to scenario 3 (Fig. 11).

In all cases we studied, we found negative values of H; in (Ty,7:) and
positive or zero in (T3, T).
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Figure 10. Sensitivity analysis of cases B4a in (Tp,17)
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