
Control and Cybernetics

vol. 29 (2000) No. 3

Tabu Search - a guided tour

by

Magnus Hindsberger and Rene Victor Valqui Vidal

Department of Mathematical Modelling (IMM)
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark

E-mail: mh@imm.dtu.dk ; vvv@imm.dtu.dk

Abstract: The main purpose of this paper is to provide an
overview of the ideas behind Tabu Search - one of the most popu
lar metaheuristic appoaches. For the sake of concreteness a simple
example of the traveling salesman problem will be used in the discus
sion to illustrate the process of designing a Tabu Search algorithm.
In addition, some extensions will be presented . Finally, applications
will also be provided as well as references to more specialized publi
cations.

Keywords: Tabu Search, local search, combinatorial optimiza
tion, metaheuristics.

1. Introduction

Tabu Search (TS) was one of the first metaheuristic techniques - for an overview
of the methods see Osman and Kelly (1996) - developed to solve combinatorial
optimization problems. These problems can be formulated as follows :

Consider a finite config'Uration space (space of configurations or solution
space) S = {.T I x = (x1,x2, ... ,xm)}, where miscalled the dimension of
the space, and a cost j'Unction C(.T) : S --+ IR which assigns a real number to
each configuration, to be specific in a minimization problem, we want to find a
configuration .T* E S, so that Vx E S, C(x*) ::; C(x). Maximization problems
are treated analogously.

Interest in metaheuristics is intense because few important combinatorial op
timization problems can be solved exactly in a reasonable computer time. Most
of these problems arising in practice are NP-complete: all known techniques for
obtaining an exact solution require an exponentially increasing number of steps
as the problem becomes larger. Therefore , emphasis has been directed toward

634 M. HINDSBERGER, R.V.V. VIDAL

Graphically, a simple instance of this problem can be visualized as trying
to find the lowest point in a complex and highly contoured landscape. An
optimization algorithm can thus be viewed as an explorer wandering through
valleys and across hilltops searching for the lowest point. The location where
the explorer is, can be likened to the current solution x, and the height of this
location - to the value of the evaluation function, C(x). Regarded from the
point of view of the purpose of the analogy, the neighbourhood N(x) can be
defined as the locations found by walking one meter to either the North, South,
East, or West.

Staying in the explorer analogy, two LS strategies will be introduced below:
1. the explorer picks randomly one of the four neighbourhood locations, eval

uates the height, and if the height is lower than the one in his current
position, he walks there and continues from this new location picking one
of the new neighbours randomly. Otherwise he remains at his old loca
tion choosing a neighbour from the neighbourhood again. If he has not
changed location for a number of iterations, he is possibly trapped in one
of the local extremes (which might be the global one), and the procedure
is stopped. This kind of strategy is often called Greedy.

2. the explorer evaluates the height of each of the four neighbours. He walks
to the best (i.e. lowest) of them and continues from there, as long as it
is located lower than the position he came from. Otherwise he is in one
of the local extremes, and the procedure is stopped. This strategy, which
was also sketched in the previous section, is called Steepest Descent (or in
case of maximizing, Steepest Ascent).

As it can be noted, the explorer in an LS procedure only accepts downhill
moves. This severely decreases the probability of finding the global optimal
solution as seen in Fig. 2. The explorer is standing at point A, with in this

B

D E

Figure 2. The "landscape" of an unknown function, and an LS operation ex-

Tabu Search - a guided tour 635

example only two neighbours, B and C. He will pick one of them randomly and
evaluate its height or he will evaluate both B and C. But he will never choose
C as the next current solution, since it is located higher than A. Instead, he
will walk downhill toward B and eventually reach the local minimum point D
and thus never come to the global minimum in E. Obviously, by rerunning the
procedure several times with different start locations, the chance of finding the
optimum, or at least a better solution, is improved considerably. Using LS in
this way will be described later.

Being fast, the LS strategies are very useful, since they also are both simple
and generally applicable, as long as an adequate topology defining the neigh
bourhood and an evaluation function can be constructed for the problem.

2.2. The traveling salesman problem- part 1

Three things are of importance when implementing local search based methods.
The definition of the neighbourhood, N(x), the objective function, C(x), to eval
uate the neighbours, and the stopping criterion. How they can be implemented
is shown in Example 2.1 below.

EXAMPLE 2.1 (THE TRAVELING SALESMAN PROBLEM) The Traveling Sales
man Problem, TSP, involves the design of a minimum cost path for a salesman,
which has to visit a number of cities. Each city must be visited exactly once and
the path has to end in the same city it started from.

In this case the problem has 6 cities numbered 0 through 5, where the sales
man has to start from (and thus end in) city no. 0.

A solution can be expressed as:

where Sequence denotes the order in which the cities are visited. For instance,
in the solution above, city 2 is visited as number 3 and city 4 as number 4, when
the salesman departs from city 0 as illustrated in solution A in Fig. 3.

Solution A Solution B Solution C

636 M. HINDSBERGER, R.V.V. VIDAL

THE NEIGHBOURHOOD: A neighbourhood of the TSP can be defined in sev
eral ways:

• as moving one city in the sequence to another place in the sequence, e.g.
city 1 is visited last instead of first and the other cities are thus visited
one "step" earlier.

• as an exchange of two cities in the succession they are visited, for instance
the two marked with an asterisk *, resulting in the B solution of Fig. 3,
where city 2 now is visited 4th and city 4 is visited 3rd. This kind of neigh
bourhood is traditionally denoted 2-exchange in the literature, sometimes
with the restriction of not exchanging two cities next to each other in the
succession.

In the following of the example the neighbourhood is the latter of the two
mentioned with no restriction.

Note that in this example the column for city 0 must be unchanged, since the
city to start from is fixed.

The solution space S is then given by the number of permutations of city 1
through 5, resulting in 5! = 120 possible solutions.

The number of neighbours to each solution is C(5, 2) = 10. For a larger num
ber of cities, n, the number of neighbours to each solution would be astronomic,
and the Steepest Descent strategy unusable.

OBJECTIVE COST: If the cost of traveling between two cities is assumed to
be proportional to the distance, the cost of each solution can be calculated from
the distance chart below. ·

2 3 4 5

0 12.0 2.0 3.5 3.5 4.0

1 3.5 2:0 4.0 3.5

2 4.0 2.0 3.5

3 3.5 2.0

4 2.0
~

Figure 4. The distance between the cities in the TSP

Assuming the current solution is A, the objective cost, C (A), of this solution
is found as:

C(A) = d(O, 1) + d(1, 3) + d(3, 2) + d(2, 4) + d(4, 5) + d(5, 1) = 16

where d(0, 1) denotes the distance between city 0 and city 1. Now, a random

Tabu Search - a guided tour 637

calculated as:

C(B) = d(O, 1) + d(1, 3) + d(3, 4) + d(4, 2) + d(2, 5) + d(5, 1) = 17

Since C(B) > C(A) the move to B is rejected and the search from A is continued.
Another random neighbour is picked from the neighbourhood, this time C from
Fig. 3, by exchanging the number in the succession cities 2 and 5 are visited.
By calculating the objective function as before, C(C) is found as:

C(C) = d(O, 1) + d(1, 3) + d(3, 5) + d(5, 4) + d(4, 2) + d(2, 1) = 12

Now a better solution is found and C can be assigned as the current solution.
So in the next iteration the neighbourhood of this point is searched.

STOPPING CRITERION: It is chosen to continue as above until 20 new neigh
bours in a row have been rejected, since it is then assumed that a local minimum
point has been reached. Other stopping criteria will be discussed in the next
sections.

Whether the Greedy or Steepest Descent strategies should be used depends
upon the problem. A Greedy procedure requires only C(x) to be calculated once
in each iteration, but has in general more iterations than Steepest Descent, since
the latter will go faster to the "closest" minimum point. If the size of the de
fined neighbourhood is big compared to the computation time of the evaluation
function, a Greedy procedure would normally be most efficient. On the other
hand Steepest Descent will generally do best with small neighbourhoods. The
two strategies can be combined, searching a selected sub-neighbourhood, which
in some cases will make the implementation more efficient.

For both methods the computation time of the procedures finding neighbours
and calculating C (x) should be optimized, since these procedures will be called
many times during a single run.

2.3. Tabu Search

TS can be seen as an improved version of the Steepest Descent strategy. TS
utilizes flexible memory to remember a number of the previous steps taken (they
will be designated as tabu) and will choose other steps in order to exploit new
parts of the solution space by taking advantage of history. It is important to
note that the same step does not have to be between the same two solutions.
If solution A from the TSP example back in Fig. 3 is a result of exchanging
the number in the succession cities 1 and 2 are visited and the next step is to
solution C, where cities 2 and 5 are exchanged in the sequence, then the step
where cities 1 and 2 are exchanged will not bring the situation back to the
solution prior to A. But by remembering some information about the previous
steps, TS can make sure that the procedure does not alternate between the same
two solutions, and, if implemented properly, assures that no cycle between the

638 M. HINDSBERGER, R.V.V. VIDAL

In Fig. 5 a pseudocode of TS is shown. The notation N(x, k) is used, since
the neighbourhood in iteration k is restricted by the tabu solutions at that time.

procedure Tabu Search
begin

choose initial solution, x E S
x* := x
C* := C(x)
k := 0
clwose V ~ N(x, k)
y* := min{C(y) I y E V}
while not stop do

X:= y*
if C(x) :S C* then

x* := x
C* := C(x*)

endif
k := k + 1
update N(x, k)
choose V ~ N(x, k)
y* := min{C(y) I y E V}

end
end

Figure 5. Pseudo-code of a Tabu Search procedure

A TS procedure is often stochastic, i.e. it will return different solutions to
the same problem. That is so if not the entire neighbourhood of each solution
is searched, corresponding to the situation V = N(x, k) in the Steepest Descent
strategy, where the best possible solution is chosen, in which case the proce
dure is deterministic, given the same initial solution is used each time. But, as
mentioned in the TSP example, the number of neighbours can be so huge that
calculating the cost of all of them will be impracticable. Instead, a smaller part
of the entire neighbourhood should be searched. Which part of the neighbour
hood is to be searched can either be chosen using some specific rules or random
selection - making the algorithm deterministic or stochastic, respectively.

2.4. The traveling salesman problem - part 2

It is quite easy to implement TS, if you already have implemented a Steepest
Descent method. The procedure for calculating C(x) is unchanged and the one

Tabu Search - a guided tour 639

The new, and the hardest part, is the implementation of memory. An im
plementation of TS always includes a short-term memory of the steps taken
most recently. This, also called recency memory, is used for an intensification
strategy searching for local minima, while the procedure is still able to overcome
those. In addition, a longer term memory can be implemented, remembering
the number of times each step has been taken. This is usually referred to as
frequency memory and is used as a diversification strategy to prevent the same
steps from being chosen over and over again, as shown in the example below.

EXAMPLE 2.2 (THE TRAVELING SALESMAN PROBLEM - CONTINUED) How
TS, and especially the memory procedure can be implemented is best seen by
returning to the previous TSP example. The solution space was the set of per
mutations of 5 numbers, and a neighbour to a solution was the exchange of two
cities in the succession the cities were visited in. A common implementation of
memory when using a neighbourhood definition as the one from Example 2.1 is
by using an n x n matrix. In this example n = 5 for reasons that should become
clear later on.

Iteration 10

Memory: Recency

2 3 4 s

2

3

4

s

t- 3

1 t'··.·:

2 1

2

!:ill 1

3 f!ii

Frequency

Current solution:

Objective value: 16

Best Objective value: 15

Neighbourhood:

2

t.~

Swap Obj. Value

2~S 12

2-4 17

3-5 18

T

Iteration 11

Memory: Recency

2 3 4 s

2

3

4

s

2

1 ~'·

2 1

3

Frequency

Current solution:

3 ~

Objective value: 12

Best Objective value: 12

Neighbourhood:

3

b~

Swap Obj. Value

1 - 3 IS

2-4 IS

3-4 16

640 M. HINDSBERGER, R.V.V. VIDAL

In Fig: 6 the values assigned to some of the data structures of the TS algo
rithm during two iterations are shown. The values will be explained below.

The first part is the memory matrix. Its upper triangular part is the recency
memory. For iteration 10 it can be seen that the steps, which are tabu during
this iteration, are: Exchanging cities 1 and 2 is tabu for the next 3 iterations,
exchanging 2 and 5 is tabu for the next 2 iterations, etc. The frequency memory
is stored in the lower triangular matrix. For iteration 10 it can be seen that
cities 1 and 2 have been exchanged once, cities 1 and 4 twice, etc. for the total
of 9 exchanges (since the current iteration number is 10).

The current solution, corresponding to solution A of Fig. 3, is stored as de
scribed in Example 2. 1, with city 0 left out, since it cannot be exchanged with
the others. The objective function value of this solution is 16, but as it can be
noted, a better solution, with a value of 15, has been found earlier (this solution
is stored too, but is not pictured here) .

A neighbourhood of three neighbours has been generated. Neighbour 1 is ex
changing cities 2 and 5 resulting in an objective function value of 12. The T
denotes that a given step is tabu, as it can be seen in the recency memory. The
other two neighbours are swapping city 2 with 4 and city 3 with 5 resulting in
an objective value of 17, respectively 18.

Which of the neighbours should be chosen? If a step is tabu, it cannot be cho
sen unless a special condition, called an aspiration criterion, is satisfied. Some
common criteria will be discussed below. The number of iterations a step is
tabu, which will be denoted the t abulength, can be constant, like above, where a
step is tabu fo r three iterations. Another option is to let the time vary between
two bounds, either randomly or systematically. The latter dynamic form will
normally prevent the algorithm from cycling between the same solutions.

The most common aspiration criterion is to accept a tabu step if it results
in a better solution than the best found until then. Another case where a tabu
step has to be chosen, is when all the steps in the neighbourhood are tabu. Then,
the step with the oldest tabu-restriction should be chosen. Other useful criteria
can be found in Glover, Taillard, and de Werra (1993), and Glover and Laguna
{1993).

Because of the aspiration criterion mentioned it is chosen to swap city 2
and 5 resulting in solution C from Fig. 3. In iteration 11 the data structures
have been updated as shown. Note that only two steps are tabu now, since
a tabu step was chosen last. But since none of the solutions in the neigh
bourhood are tabu this time, there will be three tabu steps again from itera
tion 12.

Frequency memory is usually not as strict as the recency memory. If imple
mented at all it is normally only used when no solutions are found with a better
objective function value than the current best. To the objective function values
of the neigbours a penalty, depending upon the frequency of the steps until now,
are added. For instance, the penalty in this example could correspond to the

Tabu Search - a guided tour 641

are then 15, 16, and 19, since swapping 3 and 4 has been done three times until
now. The neighbour with the smallest adjusted value should be chosen, since it
most probably will take the algorithm to the least explored part of the solution
space.

The stopping criterion can be to continue for a fixed number of iterations or
until no change of x* or c* has occurred for a fixed number of iterations.

Because of the memory TS will in general result in very good solutions for
most problems. It may be a bit more complicated to implement than Simulated
Annealing (Pirlot and Vidal, 1996), but it is still quite easy if procedures for
neighbourhood generation and calculation of objective cost either exist or can
easily be written. The possible ways to improve the quality of the solutions
and/or the computation time will be discussed below.

3. Improvements and extensions

In Glover, Taillard and de Werra (1993) the authors describe several possible
improvements of TS. The refinements are divided into three groups: tactical,
technical, and computational. A tactical improvement addresses the actual
implementation of the problem while technical improvements are general pro
cedures for getting the best results. Computational improvements concern the
means to get the best performance on your computer for a specific implemen
tation of the algorithm.

3.1. Tactical improvements

"Good" neighbourhood

Most important, like in any other LS-based heuristics, is that the defined neigh
bourhood must be "good". When designing your neighbourhood, the use of
chunking, that is grouping of basic units of information, as described by Wood
ruff (1998), might be useful.

In general, one wants the solution space, S, to provide some kind of global
convexity of the cost function C(x) (see Hu, Klee and Larman, 1989), which
should be also as smooth as possible, i.e. moving to a neighbourhood solution
should result in an as small change in C(x) as possible.

In Figs. 7 and 8 we have mapped S for the one dimensional case so that
neighbour solutions are assumed to be next to each other when moving along
the x-axis. So, the two figures might show the same solution space, but with
a different neighbourhood definition. An LS-based heuristic will be rimch more
efficient when using the neighbourhood definition as in Fig. 7, since it would

642 M. HINDSBERGER, R.V.V. VIDAL

Topology S

Figure 7. An almost smooth global convex topology of S

Topology S

Figure 8. A non-smooth and not global convex topology of S

Strategic oscillation

One tactical technique is the so-called Strategic Oscillation (see Glover, Taillard,
and de Werra, 1993; and Glover, Kelly, and Laguna, 1995). In this technique
you allow infeasible solutions and add a funct ion to the objective function, which
varies between encouraging and discouraging infeasible solutions. This is done
by adding a variable penalty for infeasibility to C(x). A sine function is often
used for this. Generally it can be sketched as:

Tabu Search - a guided tour 643

where C'(x)t is the modified objective function value and the function penalty(t) ,
which is the penalty in iteration t, is modified by infeasibility_measure(x) that
describes the degree of infeasibility (if any) of solution x.

There are several reasons for using Strategic Oscillation. Firstly, if the solu
tion space is "non-convex" as in Fig. 8, Strategic Oscillation makes it possible
for the algorithm to cross large regions of infeasibility in the search for the op
timal solution. It also changes the direction of the search, thus increasing the
diversity due to the changing emphasis of the different problem parts given by
the definition of the infeasibility measure.

3.2. Technical improvements

The technical improvements do not directly address the problems to be solved.
Selecting how many and which neighbours to be evaluated, the tabu list size,
etc. are considered technical improvements.

As described in Section 2.2, the number of neighbourhood solutions to be
evaluated in each iteration is important. By evaluating all neighbourhood so
lutions you most usually end up with a high-quality solution, but the quality
of the solution may not compensate for the increase in computation time. So
only if the time of evaluating a single solution is very short or the number of
neighbour solutions is small you will choose to evaluate all neighbours.

The quality of the results of TS is also, like in all other metaheuristics, much
dependent upon the chosen parameter values. Analyses like that in Ryan (1995)
can help you find good values, but generally the optimal values of the tabu
length and the penalty to apply for diversification must be found by parameter
analysis .

In general, a highly contoured cost surface, like the one in Fig.8, requires a
very long tabu list to overcome the local minima. Clearing all tabu restrictions
when a new better value of x* is found in order to allow unhindered search from
this new solution and varying the tabu list size using some transition probabili
ties are other technical refinements and represent the path of intensification and
diversification.

Intensification is the focusing on and exploitation of the promising areas of
the solution space. If you find a solution with a better objective function value
than before, you know that you have never visited that solution. Therefore,
the most efficient search from that point will be using a pure Steepest Descent
procedure, which TS performs when no tabu list is defined. So, clearing the
tabu list at this point (and afterwards adding elements to the list as usual) will
generally improve performance as in Hindsberger and Vidal (2000). Diversifi
cation, on the other hand, concerns the exploration of new parts of solution
space. The frequency memory helps enforcing the exploration of new areas by
penalizing frequently visited solutions or moves made. By using a long tabu
list, i.e. the recency memory, the algorithm can escape local minima and thus

644 M. HINDSBERGER, R.V.V. VIDAL

efficient exploitation of promising areas by hindering the choice of neighbours
for intensification purposes.

Reactive Tabu Search

Reactive Tabu Search (Battiti and Tecchiolli, 1994) is a way of improving both
intensification and diversification by making the TS algorithm self-tuning. In
Reactive TS you keep track of the number of repetitions (or repeated moves)
and increase the size of the tabu list when the percentage of repeated moves
grows too high, and decrease it again, when the number of repeated moves has
fallen to a lower level. Thus, you get a long tabu list when you need to escape
local minima and a small one when you want to close fast on other minima
using "unhindered" local search. Fig. 9 shows an example of how the tabu list
size can be adjusted as the number of repetitions grows or falls .

. 40,------------------------------------.

35

30

25

20

15

10

- Tabulist size
· · • · Repetitions in %

5 • . I
O+-----..,......---+'-----"-'-r---...._-,------"->-r~

0 500 1000 1500 2000 2500 3000

Iterations

Figure 9. The tabulist size vs. the number of repetitions

Aspiration criteria

The concept of aspiration criteria was described in Example 2.2. In general, if
more aspiration criteria are implemented, rules of choice should be defined in
order to prioritize them, in case more than one criterion is met simultaneously.
Some criteria should only be valid in certain cases, e.g. if the percentage of
new solutions visited is too small. More on aspiration criteria can be found in
Glover, Taillard, and de Werra (1993), and Glover and Laguna (1993).

3.3. Computational improvements

As comnutational improvement parallelization of the algorithm counts. Simi-

Tabu Search - a guided tour 645

memory matrix implementation of Fig. 6. Instead of storing the number of iter
ations a move is tabu and decreasing this number at each iteration until zero it
would be better to store the number of the iteration when the move is no longer
tabu and then have an iteration counter. Refreshing of the matrix is no longer
needed since· you can test whether the value in the matrix is higher than the
current iteration number to see if it is tabu.

The tabu list of TS serves, as noted by Woodruff and Zemel (1993), two
purposes. We quote:

• Avoidance of cycling - In order to escape a local minimum, the search
must be prevented from ''falling back" to a recently visited solution. Unless
randomness is used in move selection, it is easy to see that if a solution
can be revisited, the algorithm may cycle infinitely.

• Trajectory - By making certain move attributes tabu, an attribute list
often prevents the "reversal" of moves. This results in exclusion of many
solutions that have not yet been visited. In many instances this is desirable
because it forces the search to explore new regions of S but the aspiration
criterion precludes the avoidance of any excellent solutions.

The distinction above is necessary since the optimal length of the tabu list in
order to accommodate these two considerations may be quite different. There
fore, the actual length of the tabu list is a tradeoff between the two considera
tions above and the fact that a short tabu list makes the search faster and more
aggressive.

Woodruff and Zemel (1993) suggest to deal with the problem of cycling by
storing a very long list of solutions visited (possibly all of them). A return to
an already visited solution is then regarded as tabu, thereby preventing any
cycling. In order to store the solutions efficiently you will normally have to
code the solutions using a non-bijective hashing function as described in the
reference.

3.4. Extensions of TS

Combined approaches

For several applications hybrid approaches containing elements of both the
neighbourhood based and the recombining based approaches have proved more
successful than using either of them alone.

A pseudocode of the recombining based algorithms like Genetic Algorithms
(Goldberg, 1989) looks like this:

1. Construct a set of trial solutions (parent generation)
2. Select the best (from objective function value, diversification aspects, etc.)
3. Mate and combine pairs of solutions into new ones (offspring generation)
4. Modify randomly
5. Make offspring generation the new parent generation and go to 2 until

646 M. HINDSBERGER, R.V.V. VIDAL

The main difference is that the recombining based algorithms work with a
set of solutions and combine those into new solutions while the local search
methods only work with a single solution trying to improve it using small steps.

First attempts of making hybrids were the applications of the LS improve
ment procedures to Genetic Algorithms, with newly created solutions improved
using such techniques. By doing this , the intensification aspect of Genetic Al
gorithms was improved considerably. This was in effect an advanced form of a
multistart LS algorithm (see Glover, Kelly, and Laguna, 1995).

A simple hybrid could look like:

1. Construct a set of trial solutions (parent generation)
2. Apply Local Search improvement heuristic on each solution
3. Select the best of the improved solutions (from objective function value,

· diversification aspects, etc.)
4. Mate and combine pairs of solut ions into new ones (offspring generation)
5. Modify randomly
6. Make offspring generation the new parent generation and go to 2 until

stopping criterion is met.
Laporte, Potvin, and Quilleret (1996) describe such an implementation for the

Clustered Traveling Salesman Problem, where TS was used as the LS heuristic.

Path Relinking and Scatter Search

Path Relinking and Scatter Search are both intimately related to Tabu Search.
Glov~r, Laguna, and Mart i (2000) present in a paper in this special issue the
fundamentals of these approaches.

4. Applications

A rather complete list of references related to applications of TS up to 1996
can be found in Soriano and Gendreau (1997) and Glover and Laguna (1997) .
Therefore, we will complete this paper by listing recent publications related
primarily to applications from 1997 till today. This is done in Table 1.

In addition, there is a new application area for TS that seems promising.
This is the global optimization of continuous functions. As far as we know the
paper by Hu (1992) was the first one dedicated to the adaptation of TS to
continuous optimization, though such a reference is not presented in the book
by Glover and Laguna (1997). In his paper Hu shows that TS with random
moves outperforms the Random Search method and Genetic Algorithms when
applied to minimum weight design problems of a three-bar truss, coil springs,
a Z-section, and a channel section. For this last case TS with random moves
saved 26.14% over other methods.

A recent paper by Siarry and Berthiau (1997) criticizes the paper of Hu
hPril.n~p thP ::~.l!!orithm orooosed is too far from the original TS. Therefore, they

Tabu Search - a guided tour 647

Subject Reference
Assignment Scholl and Voss (1997)

Hao, Dome, and Galinier (1998)
Chiang (1998)
Boumerdassi and Beylot (1999)

Bin packing Lodi, Martello, and Vigo (1999)
Digital filter design Fanni, Marchesi, Pilo, and Serri (1998)
Fault section estimation Fushuan and Chang (1997)
Fuzzy controller Denna, Mauri, and Zanaboni (1999)
Location Adenso-Diaz and Rodriguez (1997)

Kincaid, Laba, and Padula (1997)
Gendron, Potvin, and Soriano (1999)

Molecular recognition Westhead, Clark, and Murray (1997)
Murray, Baxter, and Frenkel (1999)

Pattern classification Fraughnaugh, Ryan, Zullo, and Cox (1998)
Fink and Voss (1999)

Production planning Hindi (1997)
Logendran and Puvanunt (1997)
Fink and Voss (1998)
Thcci and Rinaldi (1999)

Query optimization Ribeiro, Ribeiro, and Lanzelotte (1997)
Scheduling Mazzola and Schantz (1997)

Dhodhi and Ahmad (1997)
Lopez, Carter, and Gendreau (1998)
Colorni, Dorigo, and Maniezzo (1998)
Dodin, Elimam, and Rolland (1998)
Higgins (1998)
McMullen (1998)
Macchiaroli, Mole, and Riemma (1999)
Zhu and Padman (1999)

Structural design Bland (1998)
Transmission planning Zhou, Wang, Ding, Yan, and Li (1999)
Unit commitment Mantawy, Abdel-Magid, and Selim (1998)
Vehicle routing Badeau, Guertin, Gendreau,

Potvin, and Taillard (1997)
Augerat, Belenguer, Benavent,

Corberan, and Naddef (1998)
Gendreau, Guertin, Potvin, and Taillard (1999)

Table 1

easily be implemented. Tests are performed on classical functions for which
minima are known. The examples solved in the two above mentioned papers
are of restricted dimensionality, so that more work needs to be done to show the
suitability of TS to global optimization as it is the case of Simulated Annealing,

f" 1 ,. r• 1 t /1 nnn\

648 M. HINDSBERGER, R.V.V. VIDAL

Another new application area that deserves more research is the develop
ment of procedures to solve multi-objective combinatorial optimization prob
lems. Several articles in this special issue are dealing with this subject.

5. Conclusions

In this paper we have shown the main decisions to be taken when designing a
TS metaheuristic to cope with combinatorial optimization problems. In spite
of its simplicity, a look at t he available literature documents that TS is one
of the most popular metaheuristic approaches that has been applied to a wide
spectrum of problems varying from design, planning, scheduling to operational
problems that can be formulated as combinatorial optimization models. TS
is widely usable and it has become a must in any optimization tool-box as is
the case of linear programming, dynamic programming, maximum principles,
simulated annealing, evolutionary algorithms, etc.

We have identified the field of continuous global optimization as one area
where more research and experimental work ought to be done to be able to
demonstrate the suitability of TS compared with other approaches. Another
area deserving more research is the multi-objective optimization of combinato
rial problems.

The design of a successful metaheuristic approach is a rather complex deci
sion problem that demands problem insight , creativity, knowledge of different
approaches (TS is one of them), experimentation, strategy and learning, and
many times serendipity. The papers by Borges and Vidal (2000) and Hinds
berger and Vidal (2000), in this special issue, are two applications where these
ideas have been implemented, with satisfying results.

References

ADENSO-DIAZ, B. and RODRIGUEZ, F. (1997) A simple search heuristic for the
MCLP: application to the location of ambulance bases in a rural region.
Location Science, 5, 1.

AUGERAT, P., BELENGUER, J.M., BENAVENT, E., CoRBERAN, A. and NAD
DEF, D. (1998) Separating capacity constraints in the CVRP using tabu
search. European Journal of Operational Research, 106, 2-3.

BADEAU, P., GuERTIN, F., GENDREAU, M., POTVIN, J.-Y. and TAILLARD, E.
(1997) A parallel tabu search heuristic for the vehicle routing problem with
time windows. Transportation Research Part C: Emerging Technologies,
5, 2.

BATTITI, R. and TECCHIOLLI, G. (1994) The Reactive Tabu Search. ORSA
Journal on Computing, 6, 2.

BLAND, J .A. (1998) A memory-based technique for optimal structural design.
-- -

Tabu Search - a guided tour 649

BORGES, P.C. and VIDAL , R .V.V. (2000) Fixed channel assignment in cellular
mobile telecommunication systems. Control and Cybernetics, this issue.

BOUMERDASSI, S. and BEYLOT, A.-L. (1999) Adaptive channel allocation for
wireless PCN. Mobile Networks and Applications, 4, 2.

CHIANG, W.-C. (1998) The application of a tabu search metaheuristic to the
assembly line balancing problem. Annals of Operations Research - Pa
perbound Edition, 77.

COLORNI, A., DORIGO, M. and MANIEZZO, V. (1998) Metaheuristics for
High School Timetabling. Computational Optimization and Applications,
9, 3.

DENNA, M., MAURI, G. and ZANABONI , A.M. (1999) Learning fuzzy rules
with tabu search - an application to control. IEEE Transactions on Fuzzy
Systems, 7, 3.

DHODHI, M.K. and AHMAD, I. (1997) Task tree scheduling onto linear arrays
using tabu search. fEE Proceedings - Computers and Digital Techniques,
144, 5.

DODIN , B., ELIMAM, A.A. and ROLLAND , E. (1998) Tabu search in audit
scheduling. European Journal of Operational Resea1·ch, 106, 2-3.

PANNI, A. , MARCHESI, M., PILO, F. a nd SERRI, A. (1998) Tabu Search meta
heuristic for designing digital filters. COMPEL - The International Jour
nal for Computation and Mathematics in Electrical and Electronic Engi
neering, 17, 6.

FINK, A. and Voss, S . (1998) Generic application of tabu search methods to
manufacturing problems. Proceedings of the IEEE International Confer
ence on Systems , Man and Cybernetics , 3.

FINK, A. and Voss, S. (1999) Applications of modern heuristic search methods
to pattern sequencing problems. Computers f3 Operations Research, 26, 1.

FRAUGHNAUGH, K., RYAN, J. , ZULLO, H. and Cox, L.A. (1998) Heuristics
for efficient classification. Annals of Operations Research, 78.

FUSHUAN, W. and CHANG, C.S. (1997) A tabu search approach to fault section
estimation in power systems. Electric Power Systems Research, 40, 1.

GENDREAU, M., GUERTIN, F., POTVIN, J.-Y. and TAILLARD, E. (1999) Par
a llel tabu search for real-time vehicle routing a nd dispatching. Transporta
tion Science, 33, 4.

GENDRON, B., POTVIN, J .-Y. and SORIANO, P. (1999) Tabu search with exact
neighbor evaluation for multicommodity location with balancing require
ments. INFOR Journal, 37 (0), 3.

GLOVER, F. (1986) Future paths for integer programming and links to artificial
intelligence. Computers and Operational Research, 5.

GLOVER, F., KELLY, J.P. and LAGUNA, M. (1995) Genetic algorithms and
tabu search: Hybrids for optimization. Computers and Operations Re
search, 22, 1.

GLOVER, F. and LAGU NA, M. (1993) Tabu Search. In: C.R. Reeves, ed., Modem

650 M. HINDSBERGER, R.V.V. VIDAL

GLOVER, F. and LAGUNA, M. (1997) Tabu Search. Kluwer Academic Publish
ers, Boston.

GLOVER, F., LAGUNA, M. and MARTI, R. (2000) Fundamentals of scatter
search and path relinking. Control and Cybernetics, this issue.

GLOVER, F., TAILLARD, E. and DE WERRA, D. (1993) A user's guide to tabu
search. Annals of Operations Research, 41.

GOLDBERG, D.E. (1989) Genetic Algorithms in Search, Optimization and Ma
chine Learning. Addison-Wesley.

HANSEN, P . (1986) The steepest ascent mildest descent heuristic for combina
torial programming. In: Congress on Numerical Methods in Combinatorial
Optimization, Capri , Italy .

HAO, J.-K., DORNE, R. and G ALINIER, P . (1998) Tabu search for frequency
assignment in mobile radio networks. Journal of Heuristics, 4, 1.

HERTZ, A ., TAILLARD, E. and DE WERRA, D. (1997) Tabu Search. In: E. Aarts
and J.K. Lenstra, eds., Local search in combinatorial optimization. Wiley.

HIGGINS, A. (1998) Scheduling of railway track maintenance activities and
crews. Journal of the Operational Research Society, 49, 10.

HINDI, K.S. (1997) Tabu search and applications in production planning. Mod
ern Heuristics for Decision Support, UNICOM Seminars.

HINDSBERGER, M. and VIDAL, R.V.V. (2000) Tabu search for target-radar
assignment. Control and Cybernetics, this issue.

Hu, M. (1992) Tabu search method with random moves for globally optimal
design. Methods in Engineering, 35.

Hu, T.C., KLEE, V. and LARMAN, D. (1989). Optimization of globally convex
functions. SIAM Journal of Control and Optimization , 27.

KINCAID, R., LABA, K.E. and PADULA, S.L. (1997) Quelling cabin noise in
turboprop aircraft via active control. Journal of Combinatorial Optimiza
tion, 1, 3.

LAPORTE, G., POTVIN , J .-Y. and QUILLERET, F. (1996) A tabu search heuris
tic using genetic diversification for the clustered traveling salesman prob
lem. Journal of Heuristics, 2.

LODI, A., MARTELLO, S. and VIGO, D. (1999) Approximation algorithms for
the oriented two-dimensional bin packing problem. European Journal of
Operational Research, 112, 1.

LOGENDRAN, R. and PUVAN UNT, V. (1997) Duplication of machines and sub
contracting of parts in the presence of alternative cell locations. Computers
f3 Industrial Engineering , 33, 1-2.

LOPEZ, L., CARTER, M.W. and GENDREAU, M. (1998) The hot strip mill pro
duction scheduling problem: A tabu search approach. European Journal
of Operational Research , 106, 2-3.

MAZZOLA, J .B. and SCHANTZ, R.H. Multiple-facility loading under capacity
based economies of scope. Naval Research Logistics, 44, 3.

MACCHIAROLI, R., MOLE, S. and RIEMMA, S. (1999) Modelling and optimiza
tion of industrial manufacturing processes subject to no-wait constraints.

Tabu Search - a guided tour 651

MANTAWY, A.H., ABDEL-MAGID, Y.L. and SELIM, S.Z. (1998) Unit com
mitment by tabu search . fEE Proceedings: Generation, Transmission and
Distribution, 145, 1.

McMULLEN, P.R. (1998) JIT sequencing for mixed-model assembly lines with
setups using Tabu Search. Production Planning and Control, 9, 5.

MURRAY, C.W., BAXTER, C.A. and FRENKEL, A.D. (1999) The sensitiv
ity of the results of molecular docking to induced fit effects: Application
to thrombin, thermolysin and neuraminidase. Journal of Computer-Aided
Molecular Design , 13, 6.

OSMAN, I.H. and KELLY , J .P. , eds. (1996) Metaheuristics: Theory and Appli
cations. Kluwer Academic Publishers.

PIRLOT, M. (1992) General local search heuristics in combinatorial optimiza
tion. B elgian Journal of Operations Research, Statistics, and Computer
Science, 32 (1,2).

PIRLOT, M. and VIDAL, R.V.V. (1996) Simulated annealing: A tutorial. In:
R.V.V. Vidal and Z. Nahorski, eds., Simulated Annealing Applied to Com
binatorial Optimization. Control and Cybernetics, 25 , 1.

RIBEIRO, C.C. , RIBEIRO , C .D . and LANZELOTTE, R.S.G. (1997) Query opti
mization in distributed relational databases. Journal of Heuristics , 3, 1.

RYAN , J. (1995) The depth and width of local minima in discrete solution
spaces. Discrete Applied Mathematics , 56.

SCHOLL, A. and Voss, S. (1997) Simple assembly line balancing - heuristic
approaches. Journal of Heuristics, 2, 3.

SIARRY, P. and BERTHIAU, G. (1997) Fitting of tabu search to optimize func
tions of continuous variables. International Journal for Numerical Methods
in Engineering, 40 .

SILVER, E.A., VIDAL, R.V.V. and DE WERRA, D. (1980) A tutorial on heuris
tic methods. European Journal of Operational Research, 5.

SORIANO, P . and GENDREAU, M. (1997) Fondements et applications des me
thodes de recherche avec tabous. Recherche Operationelle, 31, 2.

Tucci, M. and RINALDI, R. (1999) From theory to application: tabu search in
textile production scheduling. Production Planning and Control , 10, 4.

WESTHEAD, D .R., CLARK, D.E. and MURRAY, C.W. (1997) A comparison of
heuristic search algorithms for molecular docking. Journal of Computer
Aided Molecular Design, 11, 3.

WOODRUFF, D.L. and ZEMEL, E. (1993) Hashing vectors for tabu search. An
nals of Operations Research, 41.

WOODRUFF, D.L. (1998) Proposals for chunking and tabu search. European
Journal of Operational Research, 106.

ZHOU, 1., WANG, X., DING, X., YAN, Z. and LI , S. (1999) Application of
genetic algorithm/tabu search combination algorithm in distribution net
work structure planning. Power System Technology , 23, 9.

ZHU , D. and PADMAN, R . (1999) A meta-heuristic scheduling procedure for
resource-constrained projects with cash flows. Naval Research Logistics,

CALL FOR PAPERS ANNOUNCEMENT

The Fourteenth International Conference on
Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems

(lEA/ AIE-2001)

Budapest, Hungary, June 4- 7, 2001

Sponsored by the International Society of Applied Intelligence
and cooperated with major international organizations,

including ACM/SIGART, AAAI, INNS, lEE, CSCSI, JSAI,
ECRIM, HAS, and SWT .

Submit the required materials to Dr. Laszlo Monostori.

Authors can obtain further details of the call for papers
announcement either from the conference web page,

www.sztaki.hu/conferences/ieaaie2001

or from Dr. Laszlo Monostori,
Program Chair lEA/ AIE-2001,

Computer and Automation Research Inst.,
Hungarian Academy of Sciences,

Kende u. 13-17, H-111 Budapest, Hungary.

Fax +36 1 466 7503
E-mail ieaaie2001@sztaki.hu

