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Abstract: The main purpose of this paper is to provide an 
overview of the ideas behind Tabu Search - one of the most popu­
lar metaheuristic appoaches. For the sake of concreteness a simple 
example of the traveling salesman problem will be used in the discus­
sion to illustrate the process of designing a Tabu Search algorithm. 
In addition, some extensions will be presented . Finally, applications 
will also be provided as well as references to more specialized publi­
cations. 
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1. Introduction 

Tabu Search (TS) was one of the first metaheuristic techniques - for an overview 
of the methods see Osman and Kelly (1996) - developed to solve combinatorial 
optimization problems. These problems can be formulated as follows : 

Consider a finite config'Uration space (space of configurations or solution 
space) S = {.T I x = (x1,x2, ... ,xm)}, where miscalled the dimension of 
the space, and a cost j'Unction C(.T) : S --+ IR which assigns a real number to 
each configuration, to be specific in a minimization problem, we want to find a 
configuration .T* E S, so that Vx E S, C(x*) ::; C(x). Maximization problems 
are treated analogously. 

Interest in metaheuristics is intense because few important combinatorial op­
timization problems can be solved exactly in a reasonable computer time. Most 
of these problems arising in practice are NP-complete: all known techniques for 
obtaining an exact solution require an exponentially increasing number of steps 
as the problem becomes larger. Therefore , emphasis has been directed toward 
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Graphically, a simple instance of this problem can be visualized as trying 
to find the lowest point in a complex and highly contoured landscape. An 
optimization algorithm can thus be viewed as an explorer wandering through 
valleys and across hilltops searching for the lowest point. The location where 
the explorer is, can be likened to the current solution x, and the height of this 
location - to the value of the evaluation function, C(x). Regarded from the 
point of view of the purpose of the analogy, the neighbourhood N(x) can be 
defined as the locations found by walking one meter to either the North, South, 
East, or West. 

Staying in the explorer analogy, two LS strategies will be introduced below: 
1. the explorer picks randomly one of the four neighbourhood locations, eval­

uates the height, and if the height is lower than the one in his current 
position, he walks there and continues from this new location picking one 
of the new neighbours randomly. Otherwise he remains at his old loca­
tion choosing a neighbour from the neighbourhood again. If he has not 
changed location for a number of iterations, he is possibly trapped in one 
of the local extremes (which might be the global one), and the procedure 
is stopped. This kind of strategy is often called Greedy. 

2. the explorer evaluates the height of each of the four neighbours. He walks 
to the best (i.e. lowest) of them and continues from there, as long as it 
is located lower than the position he came from. Otherwise he is in one 
of the local extremes, and the procedure is stopped. This strategy, which 
was also sketched in the previous section, is called Steepest Descent (or in 
case of maximizing, Steepest Ascent). 

As it can be noted, the explorer in an LS procedure only accepts downhill 
moves. This severely decreases the probability of finding the global optimal 
solution as seen in Fig. 2. The explorer is standing at point A, with in this 

B 

D E 

Figure 2. The "landscape" of an unknown function, and an LS operation ex-
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example only two neighbours, B and C. He will pick one of them randomly and 
evaluate its height or he will evaluate both B and C. But he will never choose 
C as the next current solution, since it is located higher than A. Instead, he 
will walk downhill toward B and eventually reach the local minimum point D 
and thus never come to the global minimum in E. Obviously, by rerunning the 
procedure several times with different start locations, the chance of finding the 
optimum, or at least a better solution, is improved considerably. Using LS in 
this way will be described later. 

Being fast, the LS strategies are very useful, since they also are both simple 
and generally applicable, as long as an adequate topology defining the neigh­
bourhood and an evaluation function can be constructed for the problem. 

2.2. The traveling salesman problem- part 1 

Three things are of importance when implementing local search based methods. 
The definition of the neighbourhood, N(x ), the objective function, C(x), to eval­
uate the neighbours, and the stopping criterion. How they can be implemented 
is shown in Example 2.1 below. 

EXAMPLE 2.1 (THE TRAVELING SALESMAN PROBLEM) The Traveling Sales­
man Problem, TSP, involves the design of a minimum cost path for a salesman, 
which has to visit a number of cities. Each city must be visited exactly once and 
the path has to end in the same city it started from. 

In this case the problem has 6 cities numbered 0 through 5, where the sales­
man has to start from (and thus end in) city no. 0. 

A solution can be expressed as: 

where Sequence denotes the order in which the cities are visited. For instance, 
in the solution above, city 2 is visited as number 3 and city 4 as number 4, when 
the salesman departs from city 0 as illustrated in solution A in Fig. 3. 

Solution A Solution B Solution C 
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THE NEIGHBOURHOOD: A neighbourhood of the TSP can be defined in sev­
eral ways: 

• as moving one city in the sequence to another place in the sequence, e.g. 
city 1 is visited last instead of first and the other cities are thus visited 
one "step" earlier. 

• as an exchange of two cities in the succession they are visited, for instance 
the two marked with an asterisk *, resulting in the B solution of Fig. 3, 
where city 2 now is visited 4th and city 4 is visited 3rd. This kind of neigh­
bourhood is traditionally denoted 2-exchange in the literature, sometimes 
with the restriction of not exchanging two cities next to each other in the 
succession. 

In the following of the example the neighbourhood is the latter of the two 
mentioned with no restriction. 

Note that in this example the column for city 0 must be unchanged, since the 
city to start from is fixed. 

The solution space S is then given by the number of permutations of city 1 
through 5, resulting in 5! = 120 possible solutions. 

The number of neighbours to each solution is C(5, 2) = 10. For a larger num­
ber of cities, n, the number of neighbours to each solution would be astronomic, 
and the Steepest Descent strategy unusable. 

OBJECTIVE COST: If the cost of traveling between two cities is assumed to 
be proportional to the distance, the cost of each solution can be calculated from 
the distance chart below. · 

2 3 4 5 

0 12.0 2.0 3.5 3.5 4.0 

1 3.5 2:0 4.0 3.5 

2 4.0 2.0 3.5 

3 3.5 2.0 

4 2.0 
~ 

Figure 4. The distance between the cities in the TSP 

Assuming the current solution is A, the objective cost, C (A), of this solution 
is found as: 

C(A) = d(O, 1) + d(1, 3) + d(3, 2) + d(2, 4) + d(4, 5) + d(5, 1) = 16 

where d( 0, 1) denotes the distance between city 0 and city 1. Now, a random 
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calculated as: 

C(B) = d(O, 1) + d(1, 3) + d(3, 4) + d(4, 2) + d(2, 5) + d(5, 1) = 17 

Since C(B) > C(A) the move to B is rejected and the search from A is continued. 
Another random neighbour is picked from the neighbourhood, this time C from 
Fig. 3, by exchanging the number in the succession cities 2 and 5 are visited. 
By calculating the objective function as before, C( C) is found as: 

C(C) = d(O, 1) + d(1, 3) + d(3, 5) + d(5, 4) + d(4, 2) + d(2, 1) = 12 

Now a better solution is found and C can be assigned as the current solution. 
So in the next iteration the neighbourhood of this point is searched. 

STOPPING CRITERION: It is chosen to continue as above until 20 new neigh­
bours in a row have been rejected, since it is then assumed that a local minimum 
point has been reached. Other stopping criteria will be discussed in the next 
sections. 

Whether the Greedy or Steepest Descent strategies should be used depends 
upon the problem. A Greedy procedure requires only C(x) to be calculated once 
in each iteration, but has in general more iterations than Steepest Descent, since 
the latter will go faster to the "closest" minimum point. If the size of the de­
fined neighbourhood is big compared to the computation time of the evaluation 
function, a Greedy procedure would normally be most efficient. On the other 
hand Steepest Descent will generally do best with small neighbourhoods. The 
two strategies can be combined, searching a selected sub-neighbourhood, which 
in some cases will make the implementation more efficient. 

For both methods the computation time of the procedures finding neighbours 
and calculating C ( x) should be optimized, since these procedures will be called 
many times during a single run. 

2.3. Tabu Search 

TS can be seen as an improved version of the Steepest Descent strategy. TS 
utilizes flexible memory to remember a number of the previous steps taken (they 
will be designated as tabu) and will choose other steps in order to exploit new 
parts of the solution space by taking advantage of history. It is important to 
note that the same step does not have to be between the same two solutions. 
If solution A from the TSP example back in Fig. 3 is a result of exchanging 
the number in the succession cities 1 and 2 are visited and the next step is to 
solution C, where cities 2 and 5 are exchanged in the sequence, then the step 
where cities 1 and 2 are exchanged will not bring the situation back to the 
solution prior to A. But by remembering some information about the previous 
steps, TS can make sure that the procedure does not alternate between the same 
two solutions, and, if implemented properly, assures that no cycle between the 
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In Fig. 5 a pseudocode of TS is shown. The notation N(x, k) is used, since 
the neighbourhood in iteration k is restricted by the tabu solutions at that time. 

procedure Tabu Search 
begin 

choose initial solution, x E S 
x* := x 
C* := C(x) 
k := 0 
clwose V ~ N(x, k) 
y* := min{C(y) I y E V} 
while not stop do 

X:= y* 
if C(x) :S C* then 

x* := x 
C* := C(x*) 

endif 
k := k + 1 
update N(x, k) 
choose V ~ N(x, k) 
y* := min{C(y) I y E V} 

end 
end 

Figure 5. Pseudo-code of a Tabu Search procedure 

A TS procedure is often stochastic, i.e. it will return different solutions to 
the same problem. That is so if not the entire neighbourhood of each solution 
is searched, corresponding to the situation V = N(x, k) in the Steepest Descent 
strategy, where the best possible solution is chosen, in which case the proce­
dure is deterministic, given the same initial solution is used each time. But, as 
mentioned in the TSP example, the number of neighbours can be so huge that 
calculating the cost of all of them will be impracticable. Instead, a smaller part 
of the entire neighbourhood should be searched. Which part of the neighbour­
hood is to be searched can either be chosen using some specific rules or random 
selection - making the algorithm deterministic or stochastic, respectively. 

2.4. The traveling salesman problem - part 2 

It is quite easy to implement TS, if you already have implemented a Steepest 
Descent method. The procedure for calculating C( x) is unchanged and the one 
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The new, and the hardest part, is the implementation of memory. An im­
plementation of TS always includes a short-term memory of the steps taken 
most recently. This, also called recency memory, is used for an intensification 
strategy searching for local minima, while the procedure is still able to overcome 
those. In addition, a longer term memory can be implemented, remembering 
the number of times each step has been taken. This is usually referred to as 
frequency memory and is used as a diversification strategy to prevent the same 
steps from being chosen over and over again, as shown in the example below. 

EXAMPLE 2.2 (THE TRAVELING SALESMAN PROBLEM - CONTINUED) How 
TS, and especially the memory procedure can be implemented is best seen by 
returning to the previous TSP example. The solution space was the set of per­
mutations of 5 numbers, and a neighbour to a solution was the exchange of two 
cities in the succession the cities were visited in. A common implementation of 
memory when using a neighbourhood definition as the one from Example 2.1 is 
by using an n x n matrix. In this example n = 5 for reasons that should become 
clear later on. 

Iteration 10 

Memory: Recency 

2 3 4 s 

2 

3 

4 

s 
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2 1 

2 

!:ill 1 

3 f!ii 

Frequency 

Current solution: 

Objective value: 16 

Best Objective value: 15 

Neighbourhood: 

2 

t.~ 

Swap Obj. Value 
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2-4 17 

3-5 18 

T 

Iteration 11 

Memory: Recency 
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3 ~ 

Objective value: 12 

Best Objective value: 12 
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3-4 16 
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In Fig: 6 the values assigned to some of the data structures of the TS algo­
rithm during two iterations are shown. The values will be explained below. 

The first part is the memory matrix. Its upper triangular part is the recency 
memory. For iteration 10 it can be seen that the steps, which are tabu during 
this iteration, are: Exchanging cities 1 and 2 is tabu for the next 3 iterations, 
exchanging 2 and 5 is tabu for the next 2 iterations, etc. The frequency memory 
is stored in the lower triangular matrix. For iteration 10 it can be seen that 
cities 1 and 2 have been exchanged once, cities 1 and 4 twice, etc. for the total 
of 9 exchanges (since the current iteration number is 10). 

The current solution, corresponding to solution A of Fig. 3, is stored as de­
scribed in Example 2. 1, with city 0 left out, since it cannot be exchanged with 
the others. The objective function value of this solution is 16, but as it can be 
noted, a better solution, with a value of 15, has been found earlier (this solution 
is stored too, but is not pictured here) . 

A neighbourhood of three neighbours has been generated. Neighbour 1 is ex­
changing cities 2 and 5 resulting in an objective function value of 12. The T 
denotes that a given step is tabu, as it can be seen in the recency memory. The 
other two neighbours are swapping city 2 with 4 and city 3 with 5 resulting in 
an objective value of 17, respectively 18. 

Which of the neighbours should be chosen? If a step is tabu, it cannot be cho­
sen unless a special condition, called an aspiration criterion, is satisfied. Some 
common criteria will be discussed below. The number of iterations a step is 
tabu, which will be denoted the t abulength, can be constant, like above, where a 
step is tabu fo r three iterations. Another option is to let the time vary between 
two bounds, either randomly or systematically. The latter dynamic form will 
normally prevent the algorithm from cycling between the same solutions. 

The most common aspiration criterion is to accept a tabu step if it results 
in a better solution than the best found until then. Another case where a tabu 
step has to be chosen, is when all the steps in the neighbourhood are tabu. Then, 
the step with the oldest tabu-restriction should be chosen. Other useful criteria 
can be found in Glover, Taillard, and de Werra (1993), and Glover and Laguna 
{1993). 

Because of the aspiration criterion mentioned it is chosen to swap city 2 
and 5 resulting in solution C from Fig. 3. In iteration 11 the data structures 
have been updated as shown. Note that only two steps are tabu now, since 
a tabu step was chosen last. But since none of the solutions in the neigh­
bourhood are tabu this time, there will be three tabu steps again from itera­
tion 12. 

Frequency memory is usually not as strict as the recency memory. If imple­
mented at all it is normally only used when no solutions are found with a better 
objective function value than the current best. To the objective function values 
of the neigbours a penalty, depending upon the frequency of the steps until now, 
are added. For instance, the penalty in this example could correspond to the 
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are then 15, 16, and 19, since swapping 3 and 4 has been done three times until 
now. The neighbour with the smallest adjusted value should be chosen, since it 
most probably will take the algorithm to the least explored part of the solution 
space. 

The stopping criterion can be to continue for a fixed number of iterations or 
until no change of x* or c* has occurred for a fixed number of iterations. 

Because of the memory TS will in general result in very good solutions for 
most problems. It may be a bit more complicated to implement than Simulated 
Annealing (Pirlot and Vidal, 1996), but it is still quite easy if procedures for 
neighbourhood generation and calculation of objective cost either exist or can 
easily be written. The possible ways to improve the quality of the solutions 
and/or the computation time will be discussed below. 

3. Improvements and extensions 

In Glover, Taillard and de Werra (1993) the authors describe several possible 
improvements of TS. The refinements are divided into three groups: tactical, 
technical, and computational. A tactical improvement addresses the actual 
implementation of the problem while technical improvements are general pro­
cedures for getting the best results. Computational improvements concern the 
means to get the best performance on your computer for a specific implemen­
tation of the algorithm. 

3.1. Tactical improvements 

"Good" neighbourhood 

Most important, like in any other LS-based heuristics, is that the defined neigh­
bourhood must be "good". When designing your neighbourhood, the use of 
chunking, that is grouping of basic units of information, as described by Wood­
ruff (1998), might be useful. 

In general, one wants the solution space, S, to provide some kind of global 
convexity of the cost function C(x) (see Hu, Klee and Larman, 1989), which 
should be also as smooth as possible, i.e. moving to a neighbourhood solution 
should result in an as small change in C(x) as possible. 

In Figs. 7 and 8 we have mapped S for the one dimensional case so that 
neighbour solutions are assumed to be next to each other when moving along 
the x-axis. So, the two figures might show the same solution space, but with 
a different neighbourhood definition. An LS-based heuristic will be rimch more 
efficient when using the neighbourhood definition as in Fig. 7, since it would 
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Topology S 

Figure 7. An almost smooth global convex topology of S 

Topology S 

Figure 8. A non-smooth and not global convex topology of S 

Strategic oscillation 

One tactical technique is the so-called Strategic Oscillation (see Glover, Taillard, 
and de Werra, 1993; and Glover, Kelly, and Laguna, 1995). In this technique 
you allow infeasible solutions and add a funct ion to the objective function, which 
varies between encouraging and discouraging infeasible solutions. This is done 
by adding a variable penalty for infeasibility to C(x). A sine function is often 
used for this. Generally it can be sketched as: 
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where C'(x)t is the modified objective function value and the function penalty(t) , 
which is the penalty in iteration t, is modified by infeasibility_measure(x) that 
describes the degree of infeasibility (if any) of solution x. 

There are several reasons for using Strategic Oscillation. Firstly, if the solu­
tion space is "non-convex" as in Fig. 8, Strategic Oscillation makes it possible 
for the algorithm to cross large regions of infeasibility in the search for the op­
timal solution. It also changes the direction of the search, thus increasing the 
diversity due to the changing emphasis of the different problem parts given by 
the definition of the infeasibility measure. 

3.2. Technical improvements 

The technical improvements do not directly address the problems to be solved. 
Selecting how many and which neighbours to be evaluated, the tabu list size, 
etc. are considered technical improvements. 

As described in Section 2.2, the number of neighbourhood solutions to be 
evaluated in each iteration is important. By evaluating all neighbourhood so­
lutions you most usually end up with a high-quality solution, but the quality 
of the solution may not compensate for the increase in computation time. So 
only if the time of evaluating a single solution is very short or the number of 
neighbour solutions is small you will choose to evaluate all neighbours. 

The quality of the results of TS is also, like in all other metaheuristics, much 
dependent upon the chosen parameter values. Analyses like that in Ryan (1995) 
can help you find good values, but generally the optimal values of the tabu 
length and the penalty to apply for diversification must be found by parameter 
analysis . 

In general, a highly contoured cost surface, like the one in Fig.8, requires a 
very long tabu list to overcome the local minima. Clearing all tabu restrictions 
when a new better value of x* is found in order to allow unhindered search from 
this new solution and varying the tabu list size using some transition probabili­
ties are other technical refinements and represent the path of intensification and 
diversification. 

Intensification is the focusing on and exploitation of the promising areas of 
the solution space. If you find a solution with a better objective function value 
than before, you know that you have never visited that solution. Therefore, 
the most efficient search from that point will be using a pure Steepest Descent 
procedure, which TS performs when no tabu list is defined. So, clearing the 
tabu list at this point (and afterwards adding elements to the list as usual) will 
generally improve performance as in Hindsberger and Vidal (2000). Diversifi­
cation, on the other hand, concerns the exploration of new parts of solution 
space. The frequency memory helps enforcing the exploration of new areas by 
penalizing frequently visited solutions or moves made. By using a long tabu 
list, i.e. the recency memory, the algorithm can escape local minima and thus 
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efficient exploitation of promising areas by hindering the choice of neighbours 
for intensification purposes. 

Reactive Tabu Search 

Reactive Tabu Search (Battiti and Tecchiolli, 1994) is a way of improving both 
intensification and diversification by making the TS algorithm self-tuning. In 
Reactive TS you keep track of the number of repetitions (or repeated moves) 
and increase the size of the tabu list when the percentage of repeated moves 
grows too high, and decrease it again, when the number of repeated moves has 
fallen to a lower level. Thus, you get a long tabu list when you need to escape 
local minima and a small one when you want to close fast on other minima 
using "unhindered" local search. Fig. 9 shows an example of how the tabu list 
size can be adjusted as the number of repetitions grows or falls . 

. 40,------------------------------------. 

35 

30 

25 

20 

15 

10 

- Tabulist size 
· · • · Repetitions in % 

5 • . I 
O+-----..,......---+'-----"-'-r---...._-,------"->-r~ 

0 500 1000 1500 2000 2500 3000 

Iterations 

Figure 9. The tabulist size vs. the number of repetitions 

Aspiration criteria 

The concept of aspiration criteria was described in Example 2.2. In general, if 
more aspiration criteria are implemented, rules of choice should be defined in 
order to prioritize them, in case more than one criterion is met simultaneously. 
Some criteria should only be valid in certain cases, e.g. if the percentage of 
new solutions visited is too small. More on aspiration criteria can be found in 
Glover, Taillard, and de Werra (1993), and Glover and Laguna (1993). 

3.3. Computational improvements 

As comnutational improvement parallelization of the algorithm counts. Simi-
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memory matrix implementation of Fig. 6. Instead of storing the number of iter­
ations a move is tabu and decreasing this number at each iteration until zero it 
would be better to store the number of the iteration when the move is no longer 
tabu and then have an iteration counter. Refreshing of the matrix is no longer 
needed since· you can test whether the value in the matrix is higher than the 
current iteration number to see if it is tabu. 

The tabu list of TS serves, as noted by Woodruff and Zemel (1993), two 
purposes. We quote: 

• Avoidance of cycling - In order to escape a local minimum, the search 
must be prevented from ''falling back" to a recently visited solution. Unless 
randomness is used in move selection, it is easy to see that if a solution 
can be revisited, the algorithm may cycle infinitely. 

• Trajectory - By making certain move attributes tabu, an attribute list 
often prevents the "reversal" of moves. This results in exclusion of many 
solutions that have not yet been visited. In many instances this is desirable 
because it forces the search to explore new regions of S but the aspiration 
criterion precludes the avoidance of any excellent solutions. 

The distinction above is necessary since the optimal length of the tabu list in 
order to accommodate these two considerations may be quite different. There­
fore, the actual length of the tabu list is a tradeoff between the two considera­
tions above and the fact that a short tabu list makes the search faster and more 
aggressive. 

Woodruff and Zemel (1993) suggest to deal with the problem of cycling by 
storing a very long list of solutions visited (possibly all of them). A return to 
an already visited solution is then regarded as tabu, thereby preventing any 
cycling. In order to store the solutions efficiently you will normally have to 
code the solutions using a non-bijective hashing function as described in the 
reference. 

3.4. Extensions of TS 

Combined approaches 

For several applications hybrid approaches containing elements of both the 
neighbourhood based and the recombining based approaches have proved more 
successful than using either of them alone. 

A pseudocode of the recombining based algorithms like Genetic Algorithms 
(Goldberg, 1989) looks like this: 

1. Construct a set of trial solutions (parent generation) 
2. Select the best (from objective function value, diversification aspects, etc.) 
3. Mate and combine pairs of solutions into new ones (offspring generation) 
4. Modify randomly 
5. Make offspring generation the new parent generation and go to 2 until 
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The main difference is that the recombining based algorithms work with a 
set of solutions and combine those into new solutions while the local search 
methods only work with a single solution trying to improve it using small steps. 

First attempts of making hybrids were the applications of the LS improve­
ment procedures to Genetic Algorithms, with newly created solutions improved 
using such techniques. By doing this , the intensification aspect of Genetic Al­
gorithms was improved considerably. This was in effect an advanced form of a 
multistart LS algorithm (see Glover, Kelly, and Laguna, 1995). 

A simple hybrid could look like: 

1. Construct a set of trial solutions (parent generation) 
2. Apply Local Search improvement heuristic on each solution 
3. Select the best of the improved solutions (from objective function value, 

· diversification aspects, etc.) 
4. Mate and combine pairs of solut ions into new ones (offspring generation) 
5. Modify randomly 
6. Make offspring generation the new parent generation and go to 2 until 

stopping criterion is met. 
Laporte, Potvin, and Quilleret (1996) describe such an implementation for the 

Clustered Traveling Salesman Problem, where TS was used as the LS heuristic. 

Path Relinking and Scatter Search 

Path Relinking and Scatter Search are both intimately related to Tabu Search. 
Glov~r, Laguna, and Mart i (2000) present in a paper in this special issue the 
fundamentals of these approaches. 

4. Applications 

A rather complete list of references related to applications of TS up to 1996 
can be found in Soriano and Gendreau (1997) and Glover and Laguna (1997) . 
Therefore, we will complete this paper by listing recent publications related 
primarily to applications from 1997 till today. This is done in Table 1. 

In addition, there is a new application area for TS that seems promising. 
This is the global optimization of continuous functions. As far as we know the 
paper by Hu (1992) was the first one dedicated to the adaptation of TS to 
continuous optimization, though such a reference is not presented in the book 
by Glover and Laguna (1997). In his paper Hu shows that TS with random 
moves outperforms the Random Search method and Genetic Algorithms when 
applied to minimum weight design problems of a three-bar truss, coil springs, 
a Z-section, and a channel section. For this last case TS with random moves 
saved 26.14% over other methods. 

A recent paper by Siarry and Berthiau (1997) criticizes the paper of Hu 
hPril.n~p thP ::~.l!!orithm orooosed is too far from the original TS. Therefore, they 
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Subject Reference 
Assignment Scholl and Voss (1997) 

Hao, Dome, and Galinier (1998) 
Chiang (1998) 
Boumerdassi and Beylot (1999) 

Bin packing Lodi, Martello, and Vigo (1999) 
Digital filter design Fanni, Marchesi, Pilo, and Serri (1998) 
Fault section estimation Fushuan and Chang (1997) 
Fuzzy controller Denna, Mauri, and Zanaboni (1999) 
Location Adenso-Diaz and Rodriguez (1997) 

Kincaid, Laba, and Padula (1997) 
Gendron, Potvin, and Soriano (1999) 

Molecular recognition Westhead, Clark, and Murray (1997) 
Murray, Baxter, and Frenkel (1999) 

Pattern classification Fraughnaugh, Ryan, Zullo, and Cox (1998) 
Fink and Voss (1999) 

Production planning Hindi (1997) 
Logendran and Puvanunt (1997) 
Fink and Voss (1998) 
Thcci and Rinaldi (1999) 

Query optimization Ribeiro, Ribeiro, and Lanzelotte (1997) 
Scheduling Mazzola and Schantz (1997) 

Dhodhi and Ahmad (1997) 
Lopez, Carter, and Gendreau (1998) 
Colorni, Dorigo, and Maniezzo (1998) 
Dodin, Elimam, and Rolland (1998) 
Higgins (1998) 
McMullen (1998) 
Macchiaroli, Mole, and Riemma (1999) 
Zhu and Padman (1999) 

Structural design Bland (1998) 
Transmission planning Zhou, Wang, Ding, Yan, and Li (1999) 
Unit commitment Mantawy, Abdel-Magid, and Selim (1998) 
Vehicle routing Badeau, Guertin, Gendreau, 

Potvin, and Taillard (1997) 
Augerat, Belenguer, Benavent, 

Corberan, and Naddef (1998) 
Gendreau, Guertin, Potvin, and Taillard (1999) 

Table 1 

easily be implemented. Tests are performed on classical functions for which 
minima are known. The examples solved in the two above mentioned papers 
are of restricted dimensionality, so that more work needs to be done to show the 
suitability of TS to global optimization as it is the case of Simulated Annealing, 

f" 1 ,. r• 1 t /1 nnn\ 
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Another new application area that deserves more research is the develop­
ment of procedures to solve multi-objective combinatorial optimization prob­
lems. Several articles in this special issue are dealing with this subject. 

5. Conclusions 

In this paper we have shown the main decisions to be taken when designing a 
TS metaheuristic to cope with combinatorial optimization problems. In spite 
of its simplicity, a look at t he available literature documents that TS is one 
of the most popular metaheuristic approaches that has been applied to a wide 
spectrum of problems varying from design, planning, scheduling to operational 
problems that can be formulated as combinatorial optimization models. TS 
is widely usable and it has become a must in any optimization tool-box as is 
the case of linear programming, dynamic programming, maximum principles, 
simulated annealing, evolutionary algorithms, etc. 

We have identified the field of continuous global optimization as one area 
where more research and experimental work ought to be done to be able to 
demonstrate the suitability of TS compared with other approaches. Another 
area deserving more research is the multi-objective optimization of combinato­
rial problems. 

The design of a successful metaheuristic approach is a rather complex deci­
sion problem that demands problem insight , creativity, knowledge of different 
approaches (TS is one of them), experimentation, strategy and learning, and 
many times serendipity. The papers by Borges and Vidal (2000) and Hinds­
berger and Vidal (2000), in this special issue, are two applications where these 
ideas have been implemented, with satisfying results. 
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