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Abstract: The evolutionary approach called Scatter Search, and 
its generalized form called Path Relinking, have proved unusually ef­
fective for solving a diverse array of optimization problems from both 
classical and real world settings. Scatter Search and Path Relink­
ing differ from other evolutionary procedures, such as genetic algo­
rithms, by providing unifying principles for joining solutions based 
on generalized path constructions (in both Euclidean and neigh­
borhood spaces) and by utilizing strategic designs where other ap­
proaches resort to randomization. Scatter Search and Path Relink­
ing are also intimately related to the Tabu Search metaheuristic, 
and derive additional advantages by making use of adaptive mem­
ory and associated memory-exploiting mechanisms that are capable 
of being adapted to particular contexts. We describe the features of 
Scatter Search and Path Relinking that set them apart from other 
evolutionary approaches, and that offer opportunities for creating 
increasingly more versatile and effective methods in the future. 

Keywords: metaheuristics, evolutionary methods, optimization, 
tabu search. 

1. Introduction 

Scatter Search (SS) and its generalization called Path Relinking (PR) are novel 
instances of evolutionary methods, because they violate the premise that evo­
lutionary approaches must be based on randomization (see, e.g., Fogel, 1998) 
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- though they likewise are compatible with randomized implementations. SS 
and PR are also novel, in comparison to the well known Genetic Algorithm 
(GA) class of evolutionary methods, by being founded on strategies that only 
piecemeal came to be proposed as augmentations to GAs more than a decade 
after their debut in Scatter Search. (Today, the methods called "Hybrid GAs" 
typically derive their main features from a subset of the SS/PR strategies, as 
will be seen subsequently.) But, of greater significance, Scatter Search and 
Path Relinking embody principles and strategies that are still not emulated by 
other evolutionary methods, and that prove advantageous for solving a variety 
of complex optimization problems. 

Recent applications of t hese methods (and of selected component strategies 
within these methods) that have proved highly successful are shown in Table 1, 
which expands upon and updates an earlier table of Glover (1999). 

Application Reference 
Vehicle Routing Rochat and Taillard (1995); 

Taillard (1996); Rego (1999); 
Atan and Secomandi (1999) 

Arc Routing Greistorfer (1999) 
Quadratic Assignment Cung et a!. (1996, 1977) 
Financial Product Design Consiglio and Zenios (1996) 
Neural Network Training Kelly, Rangaswamy and Xu (1996) 
Job Shop Scheduling Yamada and Nakano (1996); 

Jain and Meeran (1998a) 
Flow Shop Scheduling Yamada and Reeves (1998, 1999) , 

Jain and Meeran (1998b) 
Crew Scheduling Louren~o , Paixao and Portugal (1998) 
Graph Drawing Laguna and Martf (1999) 
Linear Ordering Laguna, Martf and Campos (1999) 
Unconstrained Optimization Fleurent et a!. (1996) 

Laguna and Martf (2000a) 
Bit Representation Rana and Whitley (1997) 
Multi-objective Assignment Laguna, Louren~o and Martf (2000) 
Optimizing Simulation Glover, Kelly and Laguna (1996) 
Tree Problems Canuto, Resende and Ribeiro (1999) 

Xu, Chiu and Glover (2000) 
Mixed Integer Programming Glover, L0kketangen and Woodruff (1999) 

Table 1. Illustrative applications of Scatter Search and Path Relinking strategies 

Improved benchmarks for solving a variety of classical problems have resulted 
from these applications, along with new advances for solving a significant range 
of practical business problems, particularly those accompanied by uncertainty 
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In common with other evolutionary methods, Scatter Search and Path Re­
linking operate with a population of solutions, rather than with a single solution 
at a time, and employ procedures for combining these solutions to create new 
ones. (The meaning of "combining", and the motivation for carrying it out, has 
a rather special origin and character in the SS/PR setting, however.) One of the 
most distinguishing features of this constellation of approaches is its intimate 
association with the Tabu Search (TS) metaheuristic, and hence its adoption of 
the principle that search can benefit by incorporating special forms of adaptive 
memory, along with procedures particularly designed for exploiting that mem­
ory. In fact, Scatter Search and Tabu Search share common origins, and initially 
SS was simply considered one of the component processes available within the 
TS framework. However, most of the TS literature and the preponderance of TS 
implementations disregarded this component, with the result that the merits of 
Scatter Search did not come to be recognized until quite recently, when a few 
studies began to look at it as an independent method in the context of evo­
lutionary procedures. (The word "independent" is relative, because nearly all 
SS implementations incorporate some of the adaptive memory designs of Tabu 
Search. Since the TS methodology is better known, we focus in the article on 
the elements of SS and PR that can be separated from others processes that 
have a connection to Tabu Search.) 

To set the stage for understanding Scatter Search and Path Relinking, and 
their connections to Tabu Search, we begin by tracing a bit of history of their 
developments. The following sections, including later discussions of more recent 
advances, draw on Glover (1997, 1999) and Glover, Laguna and Martf (2000). 

2. Historical background 

2.1. Combining decision rules 

One of the main aspects of SS and PR consists of the manner in which they com­
bine solutions, and undertake to exploit these combinations. As a foundation 
for seeing the rationale behind these processes, it is useful to examine a related 
earlier development involving solution strategies based on combining decision 
rules. This development was launched in the context of scheduling methods to 
obtain improved local decision rules for job shop scheduling problems (Glover, 
1963). The idea was to generate new rules by creating numerically weighted 
combinations of existing rules, suitably restructured so that their evaluations 
embodied a common metric. 

The approach was motivated by the supposition that information about the 
relative desirability of alternative choices is captured in different forms by dif­
ferent rules, and that this information can be exploited more effectively when 
integrated by means of a combination mechanism than when treated by the 
standard strategy of selecting different rules one at a time, in isolation from 
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of stopping upon reaching a local optimum, and instead continued to vary the 
parameters that determined the combined rules, as a basis for producing addi­
tional trial solutions. (This latter strategy is also one of those that became a 
fundamental part of Tabu Search, see, e.g., Glover and Laguna, 1997.) 

The decision rules created from such combination strategies produced better 
empirical outcomes than standard applications of local decision rules, and also 
proved superior to a "probabilistic learning approach" (Crowston, et al. , 1963) 
that selected different rules probabilistically at different junctures , but without 
the integration effect provided by generating combined rules. 

The next step on the road to the SS/PR framework was to take the idea of 
creating combinations of elements to produce advantageous new instances by 
applying it to the domain of systems of constraints. 

2.2. Combining constraints 

Soon after the successful introduction of solution strategies based on combining 
decision rules, associated procedures were introduced for combining constraints. 
These, likewise, employed a mechanism of generating weighted combinations, in 
this case by making use of nonnegative weights to create valid new constraint 
inequalities, called surrogate constraints (Glover, 1965). The approach isolated 
subsets of constraints that were gauged to be most critical, relative to trial 
solutions based on the surrogate constraints, and produced new weights that 
reflected the degree to which the component constraints were satisfied or vio­
lated. The combined constraints found particular application in the domains of 
integer and nonlinear programming. 

A principal function of surrogate constraints, in common with the approaches 
for combining decision rules, was to provide ways to evaluate choices that could 
be used to generate and modify trial solutions. From this foundation, a variety 
of heuristic processes evolved that made use of surrogate constraints and their 
evaluations. Accordingly, t hese processes led to the complementary strategy of 
combining solutions, as a primal counterpart to the dual strategy of combining 
constraints, which became manifest in Scatter Search and its Path Relinking 
generalization. (The primal/dual distinction stems from the fact that surrogate 
constraint methods give rise to a mathematical duality theory associated with 
their role as relaxation methods for optimization , see Greenberg and P ierskalla, 
1970, 1973; Glover, 1965, 1975; Karwan and Rardin, 1976, 1979; Freville and 
Plateau, 1~86, 1993). 

3. Elements of Scatter Search and Path Relinking 

3.1. Scatter Search 

The Scatter Search process, building on the principles that underlie the surro-
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separately in the original vectors, and (2) take advantage of auxiliary heuris­
tic methods both for selecting the elements to be combined and for generating 
new vectors. 1 

Scatter Search operates on a set of solutions, the reference set, by combining 
these solutions to create new ones. When the main mechanism for combining 
solutions is such that a new solution is created from the linear combination of 
two other solutions, the reference set may evolve as illustrated in Fig. 1. This 
figure assumes that the original reference set of solutions consists of the circles 
labeled A, B and C. After a non-convex combination of reference solutions A 
and B, solution 1 is created. More precisely, a number of solutions in the line 
segment defined by A and Bare created; however, in this instance only solution 1 
is introduced into the reference set. (The criteria used to select solutions for 
membership in the reference set are discussed later.) In a similar way, convex 
and non-convex combinations of original and newly created reference solutions 
create points 2, 3 and 4. The resulting complete reference set shown in Fig. 1 
consists of 7 solutions (or elements). 

Figure 1. Two-dimensional reference set 

More precisely, Fig. 1 shows a precursor form of the resulting reference set. 
Scatter Search does not leave solutions in a raw form produced by its combi-

1 One group of researchers has argued that the coupling of heuristic improvement with 
solution combination strategies should be given an entirely new name, and accordingly has 
inaugurated the term memetic algorithms to designate such a coupling (see, e.g., Mos~ato, 
1no n . D - ..l ... l ! .a" ... -...: ..J C'l -----·· 1 nn.t . n .--1-- Y\T- ---- 11 -- .l ·n r ____ '1 nnr.-\ 
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nation mechanism, but subjects candidates for entry into the reference set to 
heuristic improvement, as we elaborate subsequently. 

Unlike a "population" in genetic algorithms, the reference set of solutions 
in Scatter Search is relatively small. In genetic algorithms, two solutions are 
randomly chosen from the population and a "crossover" or combination mech­
anism is applied to generate one or more offspring. A typical population size 
in a genetic algorithm consists of 100 elements, which are randomly sampled to 
create combinations. In contrast, Scatter Search chooses two or more elements 
of the reference set in a systematic way with the purpose of creating new so­
lutions. Since the number of two-element to five-element subsets of a reference 
set, for example, can be quite large, even a highly selective process for isolating 
preferred instances of these subsets as a basis for generating combined solutions 
can produce a significant number of combinations, and so there is a practical 
need for keeping the cardinality of the set small. Typically, the reference set in 
Scatter Search has 20 solutions or less. In one standard design, if the reference 
set consists of b solutions, the procedure examines approximately (3b - 7)b/2 
combinations of four different types. The basic type consists of combining two 
solutions; the next type combines three solutions, and so on. Note that ge­
netic algorithms need large populations to maintain a desired level of diversity 
(produced by the random sampling embedded in its search mechanisms), while 
scatter search systematically injects diversity to the reference set. 

Limiting the scope of the search to a selective group of combination types 
can be used as a mechanism for controlling the number of possible combinations 
in a given reference set. An effective means for doing this is to subdivide the 
reference set into "tiers" and to require t hat combined solutions must be based 
on including at least one (or a specified number) of the elements from selected 
tiers. 

3.2. Scatter Search template 

By reference to the preceding discussion, the Scatter Search approach may be 
sketched in its basic outline as follows : 

1. Generate a starting set of solution vectors to guarantee a critical level of 
diversity and apply heuristic processes designed for the problem as an at­
tempt for improving these solutions. Designate a subset of the best vectors 
to be reference solutions. (Subsequent iterations of this step, transferring 
from Step 4 below, incorporate advanced starting solutions and best solu­
tions from previous history as candidates for the reference solutions.) The 
notion of "best" in this step is not limited to a measure given exclusively 
by the evaluation of the objective function. In particular, a solution may 
be added to the reference set if the diversity of the set improves even when 
the objective value of the solution is inferior to other solutions competing 

0 J - J 1_ - -· - t: - ----- -- -- J.. 
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2. Create new solutions consisting of structured combinations of subsets of 
the current reference solutions. The structured combinations are: 

(a) chosen to produce points both inside and outside of the convex re-· 
gions spanned by the reference solutions. 

(b) modified to yield acceptable solutions. (For example, if a solution 
is obtained by a linear combination of two or more solutions, a 
generalized rounding process that yields integer values for integer­
constrained vector components may be applied. An acceptable solu­
tion may or may not be feasible with respect to other constraints in 
the problem.) 

3. Apply the heuristic processes used in. Step 1 to improve the solutions 
created in Step 2. These heuristic processes must be able to operate on 
infeasible solutions and may or may not yield feasible solutions. 

4. Extract a collection of the "best" improved solutions from Step 3 and 
add them to the reference set. The notion of "best" is once again broad; 
making the objective value one among several criteria for evaluating the 
merit of newly created points. Repeat Steps 2, 3 and 4 until the reference 
set does not change. Diversify the reference set, by re-starting from Step 1. 
Stop when reaching a specified iteration limit. 

The first notable feature in Scatter Search is that its structured combinations 
are designed with the goal of creating weighted centers of selected subregions. 
This adds non-convex combinations that project new centers into regions that 
are external to the original reference solutions (see, e.g., solution 3 in Fig. 1). 
The dispersion patterns created by such centers and their external projections 
have been found useful in several application areas. 

Another important feature relates to the strategies for selecting particular 
subsets of solutions to combine in Step 2. These strategies are typically designed 
to make use of a type of clustering to allow new solutions to be constructed 
"within clusters" and "across clusters". Finally, the method is organized to use 
ancillary improving mechanisms that are able to operate on infeasible solutions, 
removing the restriction that solutions must be feasible in order to be included 
in the reference set. 

The following principles summarize the foundations of the Scatter Search 
methodology: 

• Useful information about the form (or location) of optimal solutions is 
typically contained in a suitably diverse collection of elite solutions. 

• When solutions are combined as a strategy for exploiting such information, 
it is important to provide mechanisms capable of constructing combina­
tions that extrapolate beyond the regions spanned by the solutions con­
sidered. Similarly, it is also important to incorporate heuristic processes 
to map combined solutions into new solutions. The purpose of these com-
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• Taking account of multiple solutions simultaneously, as a foundation for 
creating combinations, enhances the opportunity to exploit information 
contained in the union of elite solutions. 

It is to be noted that, in some contexts , high quality solutions are found 
more often near the boundaries of a feasible region than deep in the interior of 
the region. For problems that technically have no interior due to the presence of 
equality constraints, the indicated phenomenon nevertheless can occur relative 
to a subset of constraints that are inequalities, or relative to a space created 
by identifying and removing variables that may take the role of slack variables 
for certain equalities, thus transforming them into inequalities. Then, linear 
combinations may reasonably be biased to generate points that lie within a 
chosen proximity to the feasible boundary. 

The fact that the mechanisms within Scatter Search are not restricted to a 
single uniform design allows the exploration of strategic possibilities that may 
prove effective in a particular implementation. ·These observations and princi­
ples lead to the following template for implementing Scatter Search. (This same 
template also applies to implementing the combinations produced by Path Re­
linking, as described subsequently.) 

1. A Diversification Generation Method to generate a collection of diverse trial 
solutions, using an arbitrary trial solution (or seed solution) as an input. 

2. An Improvement Method to transform a trial solution into one or more 
enhanced trial solutions. (Neither the input nor the output solutions are 
required to be feasible, though the output solutions will more usually be 
expected to be so. If no improvement of the input trial solution results, the 
"enhanced" solution is considered to be the same as the input solution.) 

3. A Reference Set Update Method to build and maintain a reference set 
consisting of the b "best" solutions found (where the value of b is typically 
small, e.g., no more than 20), organized to provide efficient accessing by 
other parts of the method . Solutions gain membership to the reference set 
according to their quality or their diversity. 

4. A Subset Generation Method to operate on the reference set, to produce 
a subset of its solutions as a basis for creating combined solutions. 

5. A Solution Combination Method to transform a given subset of solutions 
produced by the Subset Generation Method into one or more combined 
solution vectors. 

Specific processes for carrying out these steps are described in Glover (1997). 
A numerical example illustrating the use of this template can be found in Glover, 
Laguna and Marti (2000) . 

4. Path Relinking 

Ff~~.tmP.s that have heen added to Scat ter Search. bv extension of its basic philos-
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the process of generating linear combinations of a set of reference solutions may 
be characterized as generating paths between and beyond these solutions, where 
solutions on such paths also serve as sources for generating additional paths. 
This leads to a broader conception of the meaning of creating combinations of 
solutions. By natural extension, such combinations may be conceived to arise by 
generating paths between and beyond selected solutions in neighborhood space, 
rather than in Euclidean space (Glover 1989, 1994a; Glover and Laguna, 1993). 

This conception is reinforced by the fact that a path between solutions in 
a neighborhood space will generally yield new solutions that share a significant 
subset of attributes contained in the parent solutions, in varying "mixes" ac­
cording to the path selected and the location on the path that determines the 
solution currently considered. The character of such paths is easily specified by 
reference to solution attributes that are added, dropped or otherwise modified 
by the moves executed in neighborhood space. Examples of such attributes 
include edges and nodes of a graph, sequence positions in a schedule, vectors 
contained in linear programming basic solutions, and values of variables and 
functions of variables. 

To generate the desired paths, it is only necessary to select moves that per­
form the following role: upon starting from an initiating solution, the moves 
must progressively introduce attributes contributed by a guiding solution (or 
reduce the distance between attributes of the initiating and guiding solutions) . 
The roles of the initiating and guiding solutions are interchangeable; each solu­
tion can also be induced to move simultaneously toward the other as a way of 
generating combinations. 

The incorporation of attributes from elite parents in partially or fully con­
structed solutions was foreshadowed by another aspect of Scatter Search, em­
bodied in an accompanying proposal to assign preferred values to subsets of 
consistent and strongly determined variables. The theme is to isolate assign­
ments that frequently or influentially occur in high quality solutions, and then 
to introduce compatible subsets of these assignments into other solutions that 
are generated or amended by heuristic procedures. (Such a process implicitly 
relies on a form of frequency-based memory to identify and exploit variables 
that qualify as consistent.) 

Multiparent path generation possibilities emerge in Path Relinking by con­
sidering the combined attributes provided by a set of guiding solutions, where 
these attributes are weighted to determine which moves are given higher pri­
ority. The generation of such paths in neighborhood space characteristically 
"relinks" previous points in ways not achieved in the previous search history, 
hence giving the approach its name. 

4.1. Initial steps 

First consider the creation of oaths that ioin two selected solutions x' and x" . 
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producing a solution sequence x' = x( l ),x(2), ... ,x(r) = x". To reduce the 
number of options to be considered, the solution x( i + 1) may be created from 
x( i) at each step by choosing a move that leaves a reduced number of moves 
remaining to reach x (or, more aggressively, the "fewest" number of moves). 
This policy, even if applied without exception, can permit a significant number of 
alternative choices for generating the next solution at each step. Consequently, 
additional criteria are relevant to creating the path, as indicated shortly . 

• 
• • 

· ----·--- x" 
x' --- • --

• • • 

Figure 2. Path Relinking: Original path shown by heavy line and one possible 
relinked path shown by dotted line 

It is possible, as in applying Scatter Search, that x' and x" were previously 
joined by a search trajectory produced by a heuristic method (or by a meta­
heuristic such as Tabu Search). In this event, the new trajectory created by 
Path Relinking is likely to be somewhat different than the one initially estab­
lished, representing a "more direct route" between the solutions. An illustration 
of this is given in Fig. 2. 

It may also be that x' and x" were not previously joined by a search path at 
all, but were generated on different search paths, which may have been produced 
either by a heuristic or by a previous relinking process. Such a situation is 
depicted in Fig. 3. · 

In this case, the path between x' and x" performs a relinking function by 
changing the connections that generated x' and x" originally. The relinking 
path of this diagram is shown as extending beyond the points x' and x". We 
discuss this type of construction subsequently under the heading of extrapolated 
relinking. 

To choose among the different paths that may be possible in going from x' 
to :r", let c(x) denote an objective function which is to be minimized. Select­
ing unattractive moves relative to c(x) , from the moves that are candidates to 
,..,n<>r<>t<> t.h<> n<>th "t P!>.rh stfm. will tP.ncl to nroduce a final series of strongly 
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Figure 3. Path Relinking: Previously generated paths shown by heavy lines; 
relinked path shown by dotted line. (Multiple additional points in the space are 
not shown.) 

moves at each step will tend to produce lower quality moves at the end. (The 
last move, however, will be improving, or leave c(x) unchanged, if x" is selected 
to be a local optimum.) Thus, choosing best, worst or average moves, provides 
options that produce contrasting effects in generating the indicated sequence. 
An aspiration criterion may be used as in Tabu Search to override choices in 
the last two cases if a sufficiently attractive solution is available. (In general, 
it appears reasonable to select best moves at each step, and then to allow the 
option of reinitiating the process in the opposite direction by interchanging x' 
and x".) 

The choice of one or more solutions x( i) to become reference points for 
launching a new search phase will preferably be made to depend not only on 
c(x(i)) but also on the values c(x) of those solutions x that can be reached by a 
move from x(i) . The process can additionally be varied to allow solutions to be 
evaluated other than those that yield x( i + 1) closer to x". Aspiration criteria 
again are relevant for deciding whether such solutions qualify as candidates for 
selection. 

To elaborate the process, let x* ( i) denote a neighbor of x( i) that yields a 
minimum c(x) value during an evaluation step, excluding x*(i) = x(i + 1). If 
the choice rules do not automatically eliminate the possibility x*(i) = x(h) for 
h < i , then a simple tabu restriction can be used to do this (see, e.g. , Glover 
and Laguna, 1997). Then, the method selects a solution x*(i) that yields a min­
imum value for c(x*(i)) as a new point to launch the search. If only a limited 
set of neighbors of x( i) are examined to identify x* ( i), then a superior least cost 
cn.J,,+l An rrf-i\ Ct;v-r•l ,, ,-l ;nn- rr l ~ ,.,,.1 rr ll YY\1'\,,. h n l"'n l rH...,t- n ..-1 ~~ .... t- ,...,.... ...1 D ..... ~l..r t- ..., ._ .......,... ! _. ... .. : ,.. ..... 
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becomes possible (though is not compulsory) upon encountering an x* ( i) that 
yields c(x*(i)) < min(c(x' ), c(x" ), c(x(p)), where x(p) is the minimum cost x(h) 
for all h < i. The procedure will continue if x(i), in contrast to x*(i) , yields a 
smaller c(x) value than x' and x", since x(i) effectively adopts the role of x'. 

4.2. Var iation and tunneling 

A variant of the Path Relinking approach starts with both endpoints x' and x" 
simultaneously producing two sequences x' = x'(l), ... ,x'(r) and x" = x"(l), ... 
. . . , x" ( s). The choices in t his case are designed to yield x' ( r) = x" ( s), for final 
values of rands. To progress toward this outcome when x'(r) = x"(s), either 
x' ( r) is selected to create x' ( r+ 1), as by the criterion of minimizing, reducing the 
number of moves remaining to reach x" ( s), or x' ( s) is chosen to create x" ( s + 1), 
as by the criterion of minimizing (reducing) the number of moves remaining to 
reach x'(r). From these options, the move is selected that produces the smallest 
c(x) value, thus also determining which of r or sis incremented on the next step . 
Basing the relinking process on more than one neighborhood also produces a 
useful variation. 

The Path Relinking approach benefits from a tunneling strategy that often 
encourages a different neighborhood structure to be used than in the standard 
search phase. For example, moves for Path Relinking may be periodically al­
lowed that normally would be excluded due to creating infeasibility. Such a 
practice is protected against the possibility of becoming "lost" in an infeasible 
region, since feasibility evidently must be recovered by the time x" is reached. 
The tunneling effect therefore offers a chance to reach solutions that might oth­
erwise be bypassed. In the variant that starts from both x' and x", at least one of 
x' ( r) and x" ( s) may be kept feasible. An example of tunneling is shown in Fig. 4. 

x" 
,//. 

' ,.,,, .................. _ .. ,/ 
', , - ... ' , ',e ,,' 

Figure 4. Feasible region consists of disconnected components. The path "tun- . 
"1 1 . __ ___ ! _ __ J.- - - --=- .r ........... :t..:l!+ .... 
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As in Tabu Search strategies for achieving intensification and diversification, 
it is appropriate to select the points x' and x" by reference to clusters of solutions 
that are created according to criteria of similarity or affinity. Choosing x' and x" 
from the same cluster then stimulates intensification, while choosing them from 
two "widely separated" clusters stimulates diversification. Alternately, parents 
can be chosen by "anti-clustering," where each parent is selected to be as far 
as possible from those previously chosen within the same "family" of parents. 
A separation criterion such as maximizing the minimum distance to previous 
points can be used, for example. 

4.3. Extrapolated relinking 

The Path Relinking approach goes beyond consideration of points "between" 
x' and x" in the same way that linear combinations extend beyond points that 
are expressed as convex combinations of two endpoints. In seeking a path that 
continues beyond x" (starting from the point x') we invoke a Tabu Search 
concept, referring to sets of attributes associated with the solutions generated, 
as a basis for choosing a move that "approximately" leaves the fewest moves 
remaining to reach x". Let A(x) denote the set of solution attributes associated 
with ("contained in") x, and let A-drop denote the set of solution attributes that 
are dropped by moves performed to reach the current solution x'(i), starting 
from x'. (Such attributes may be components of the x vectors themselves, or 
may be related to these components by appropriately defined mappings.) 

Define a to-attribute of a move to be an attribute of the solution produced by 
the move, but not an attribute of the solution that initiates the move. Similarly, 
define a from-attribute to be an attribute of the initiating solution but not of 
the new solution produced. Then, we seek a move at each step to maximize the 
number of to-attributes that belong to A(x")- A(x(i)), and subject to this to 
minimize the number that belong to A_d,·op- A(x"). Such a rule generally can 
be implemented very efficiently by appropriate data structures. 

Once x(r) = x" is reached, the process continues by modifying the choice 
rule as follows. The criterion now selects a move to maximize the number of 
its to-attributes not in A-drop minus the number of its to-attributes that are 
in A-drop, and subject to this to minimize the number of its from-attributes 
that belong to A(x"). The combination of these criteria establishes an effect 
analogous to that achieved by the standard algebraic formula for extending a 
line segment beyond an endpoint. (The secondary minimization criterion is 
probably less important in this determination.) The path then stops whenever 
no choice remains that permits the maximization criterion to be positive. The 
maximization goals of these two criteria are of course approximate, and can be 
relaxed. 

For neighborhoods that allow relatively unrestricted choices of moves, this 
approach yields a path extending beyond x" that introduces new attributes, 
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this condition. The ability to go beyond the limiting points x' and x" creates a 
form of diversification analogous to that provided by the original Scatter Search 
approach. At the same time the exterior points are influenced by the trajectory 
that links x' and x". 

4.4. Multiple parents 

New points can be generated from multiple parents as follows. Instead of moving 
from a point x' to (or through) a second point x", we replace x" by a collection 
of solutions X". Upon generating a point x(i), the options for determining 
a next point x( i + 1) are given by the union of the solutions in X", or more 
precisely, by the union A" of the attribute sets A( x), for x E X". A" takes 
the role of A(x) in the attribute-based approach previously described, with the 
added stipulation that each attribute is counted (weighted) in accordance with 
the number of times it appears in elements A(x) of the collection. Still more 
generally, we may assign a weight to A(x), which thus translates into a sum 

' ' ' ' ' ' ' ', " , , 

Figure 5. Neighborhood space paths with different attribute trade-offs. X = so­
lution selected to generate a relinked path. (A, B and C may also interchange 
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of weights over A" applicable to each attribute, creating an effect analogous 
to that of creating a weighted linear combination in Euclidean space. Parallel 
processing can be applied to operate on an entire collection of points x' E X' 
relative to a second collection x" E X" by this approach. Further considerations 
that build on these ideas are detailed in Glover (1994b), but they go beyond 
the scope of our present development. 

This multiparent Path Relinking approach generates new elements by a pro­
cess that emulates the strategies of the original Scatter Search approach at a 
higher level of generalization. The reference to neighborhood spaces makes it 
possible to preserve desirable solution properties (such as complex feasibility 
conditions in scheduling and routing), without requiring artificial mechanisms 
to recover these properties in situations where they may otherwise become lost. 

Promising regions may be searched more thoroughly in Path Relinking by 
modifying the weights attached to attributes of guiding solutions, and by al­
tering the bias associated with solution quality and selected solution features. 
Fig. 5 depicts the type of variation that can result, where the point X represents 
an initiating solution and the points A, B, and C represent guiding solutions. 
For appropriate choices of the reference points (and neighborhoods for generat­
ing paths from them), principles such as those discussed in Glover and Laguna 
(1997) suggest that additional elite points are likely to be found in the regions 
traversed by the paths, upon launching new searches from high quality points 
on these paths. 

4.5. Constructive neighborhoods 

A natural variation of Path Relinking occurs by using constructive neighbor­
hoods for creating offspring from a collection of parent solutions. In this case the 
guiding solutions consist of subsets of elite solutions, as before, but the initiat­
ing solution begins as a partial (incomplete) solution or even as a null solution, 
where some of the components of the solutions, such as values for variables, 
are not yet assigned. The use of a constructive neighborhood permits such an 
initiating solution to "move toward" the guiding solutions, by a neighborhood 
path that progressively introduces elements contained in the guiding solutions, 
or that are evaluated as attractive based on the composition of the guiding so­
lutions. (See Alvarez-Valdes, et a!., 2000, for an example of this Path Relinking 
variant.) 

The evaluations can be conceived as produced by a process where the guiding 
solutions vote for attributes to be included in the initiating solution. It is 
possible, for example, that a certain partial configuration may be reached where 
none of the attributes of the guiding solutions can be incorporated within the 
existing solution, relative to a given constructive neighborhood. Then it is 
important to still be able to select a next constructive step, by relying upon 
the voting process for evaluating moves. This same consideration can arise in 

1 1 , , 
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Combinations created in this way are called structured combinations, and 
their generation rests upon three properties. 

Property 1 (representation property). Each guiding solution 
represents a vector of votes for particular decisions (e.g., the de­
cision of assigning a specific value to a particular variable). 

Property 2 (trial solution property). The votes prescribed by a 
guiding solution translate into a trial solution to the problem of in­
terest by a well-defined process (determined by the neighborhood 
structure). 

Property 3 (update property). If a decision is made according 
to the votes of a given vector, a clearly defined rule exists to update 
all voting vectors for the residual problem so that Properties 1 
and 2 continue to hold. 

Features of these properties in particular contexts may be clarified as follows. 
Elaboration of Property 1: Standard solution vectors for many 

problems can directly operate as voting vectors, or can be ex­
panded in a natural way to create such vectors. For instance, a 
solution vector for a job shop scheduling problem can be inter­
preted as a set of 0-1 votes for predecessor decisions in scheduling 
specific jobs on particular machines. 

Elaboration of Property 2: A set of "yes-no" votes for items 
to include in a knapsack, for instance, can be translated into a 
trial solution according to a designated sequence for processing 
the votes (such as determined by benefit-to-weight ratios), un­
til either the knapsack is full or all votes are considered. More 
general numerical votes for the same problem may additionally 
prescribe the sequence to be employed, as where knapsack items 
are rearranged so the votes occur in descending order. (The vot­
ing vectors are not required to represent feasible solutions to the 
problems considered, or even represent solutions in a customary 
sense at all. Thus, for example, the scheme can also operate to 
combine decision rules as in the approach for doing this described 
in Section 2.1.) 

Elaboration of Property 3: Upon assigning a specific value to 
a particular variable, all votes for assigning different values to this 
variable effectively become cancelled. Property 3 then implies that 
the remaining updated votes of each vector retain the ability to be 
translated into a trial solution for the residual problem in which 
the assignment has been made. 

Concrete illustrations of processes for generating structured combinations 
by reference to these properties are provided in Glover (1994b ). These same 
kinds of processes can be implemented by reference to destructive neighborhoods 
- that is, neighborhoods that allow the removal of less attractive elements. 
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"excessive assignment" (such as too many elements to satisfy cardinality or 
capacity restrictions). 

4.6. Vocabulary building 

Vocabulary building creates structured combinations not only by using the prim­
itive elements of customary neighborhoods, but also building and joining more 
complex assemblies of such elements. The process receives its name by analogy 
with the process of building words progressively into useful phrases, sentences 
and paragraphs, where valuable constructions at each level can be visualized 
as represented by "higher order words," just as natural languages generate new 
words to take the place of collections of words that embody useful concepts. 

The motive underlying vocabulary building is to take advantage of those con­
texts where certain partial configurations of solutions often occur as components 
of good complete solutions. A strategy of seeking "good partial configurations" 
- good vocabulary elements -'- can help to circumvent the combinatorial explo­
sion that potentially results by manipulating only the most primitive elements 
by themselves. The process also avoids the need to reinvent (or rediscover) the 
structure of a partial configuration as a basis for building a good complete so­
lution. (The same principle operates in mathematical analysis generally, where 
basic premises are organized to produce useful lemmas, which in turn facilitate 
the generation of more complex theorems.) 

Vocabulary building has an additional useful feature in some problem set­
tings by providing compound elements linked by special neighborhoods that 
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are more exploitable than the neighborhoods that operate on the primitive ele­
ments. For example, a vocabulary-building proposal of Glover (1992) discloses 
that certain subassemblies (partial "tours") for traveling salesman problems can 
be linked by exact algorithms to produce optimal unions of these components. 
Variants of this strategy have more recently been introduced by Aggarwal, Or­
lin and Tai (1997) as a proposal for modifying traditional genetic algorithms, 
and have also been applied to weighted clique problems by Balas and Niehaus 
(1998). A particularly interesting application occurs in the work of Louren<_;o, 
Paixao and Portugal (1998), who use such concepts to create "perfect children" 
for crew scheduling problems. 

In general, vocabulary building relies on destructive as well as constructive 
processes to generate desirable partial solutions, as in the early proposals for ex­
ploiting strongly determined and consistent variables - which essentially "break 
apart" good solutions to extract good component assignments, and then subject 
these assignments to heuristics to rebuild them into complete solutions. Con­
struction and destruction therefore operate hand in hand in these approaches. 
An illustration of vocabulary building is depicted in Fig. 6. 

5. Illustrative practical application 
- combining optimization and simulation 

A variety of applications of Scatter Search and Path Relinking have already 
been documented in Table 1 of Section 1. Here we describe an application that 
is especially important in practice. 

Many real world problems in optimizat ion are too complex to be given 
tractable mathematical formulat ions. Multiple nonlinearities, combinatorial re­
lationships and uncertainties often render challenging practical problems inac­
cessible to modeling except by resorting to simulation - an outcome that poses 
grave difficulties for classical optimization methods. In such situations, recourse 
is commonly made to itemizing a series of scenarios in the hope that at least 
one will give an acceptable solution. Consequently, a long standing goal in 
both the optimization and simulation communities has been to create a way 
to guide a series of simulations to produce high quality solutions, in the ab­
sence of tractable mathematical structures. Applications include the goals of 
finding: 

• the best configuration of machines for production scheduling 
• the best integration of manufacturing, inventory and distribution 
• the best layouts, links and capacities for network design 
• the best investment portfolio for financial planning 
• the best utilization of employees for workforce planning 
• the best location of facilities for commercial distribution 
• the best operating schedule for electrical power planning 
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• the best setting of tolerances in manufacturing design 
• the best set of treatment policies in waste management 

and many other objectives. 
The integration of the SS/PR framework with classical optimization has pro­

duced a practical software system, called OptQuest2 , that is capable of guiding 
a series of simulations to uncover optimal or near optimal solution scenarios. 
Within the brief span since it has come into existence, OptQuest has been used 
in several thousand real world applications that combine simulation and opti­
mization, and has also been used to determine optimal parameters for other 
computer based decision tools, to increase their effectiveness. (The optimiza­
tion engine of OptQuest is implemented as a library of callable functions, as 
described in Laguna and Marti, 2000b.) 

OptQuest is designed to search for optimal solutions to the following class 
of optimization problems: 

Max or Min · f(x) 

Subject to Ax :S b 
91 :S 9(x) :S 9u 
l:Sx:Su 

(Constraints) 
(Requirements) 
(Bounds) 

where x can be continuous or discrete with an arbitrary step size. 
The objective f(x) may be any mapping from a set of values x to a real 

value. The set of constraints must be linear and the coefficient matrix A and 
the right-hand-side values b must be known. The requirements are simple upper 
and/or lower bounds imposed on a function that can be linear or non-linear. 
The values of the bounds 91 and 9u must be known constants. All the variables 
must be bounded and some may be restricted to be discrete with an arbitrary 
step size. 

OptQuest is designed as a general-purpose optimizer that operates com­
pletely outside of the system being optimized, which is typically represented 
by a simulation. That is, OptQuest treats the simulation as a "black-box" to 
which it sends a set of inputs and from which it reads a set of outputs (Fig. 7). 
A potential disadvantage of this "black box" approach is that the optimization 
procedure is generic and does not use any problem-specific information. The 
great advantage, on the other hand, is that the same optimizer can be used for 
many different simulated systems. That is, the simulation can change and evolve 
to incorporate additional elements of a complex system, while the optimization 
routines remain the same. 

The optimization procedure uses the outputs from the simulation, which 
measures the merit of the inputs that were fed into the model, to decide upon 
a new set of input values. In other words, the application of the scatter search 
elements such as the Diversification and Combination Methods is based on 
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Output 

Figure 7. Optimizing a simulation with a "black box" approach 

both current and past evaluations of inputs. The procedure carries out a non­
monotonic search, where the successively generated inputs produce varying eval­
uations, not all of them improving, but which over time provide a highly efficient 
trajectory to the best solutions. The process continues until an appropriate ter­
mination criterion is satisfied (usually based on the user's preference for the 
amount of time to be devoted to the search). 

There are two situations that add another level of complexity to the process 
of optimizing a simulation: (a) when the inputs to the simulation must satisfy 
a set of linear constraints, and (b) when some output measures must be within 
specified bounds. That is, the optimization model has both constrains and 
requirements. The optimization procedure can guarantee feasibility of the inputs 
by mapping infeasible inputs into feasible ones. However, requirements result 
in a situation where the feasibility of x is not known prior to the completion of 
the simulation. This situation is depicted in Fig. 8. 

Figure 8. Evaluation with constraints and requirements 

Fig. 8 shows that when constraints are included in the optimization model, 
the evaluation process starts with the mapping x --+ x•. If the only constraints 
in the model are integrality restrictions, the mapping is achieved with a strategic 
rounding mechanism that transforms continuous values into allowable discrete 
values. If the constraints are linear, the mapping consists of formulating and 
solvin!! a linear programming problem that minimizes the distance between x 
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variables, then the linear programming formulation becomes a mixed-integer 
programming problem that must be solved accordingly. 

The mapped solution is simulated to obtain a set of performance measures. 
One of these measures is used as the objective function value f(x) and provides 
the means for the search to distinguish good from bad solutions. Other measures 
g(x) associated with the performance of the system are used to define a set 
of requirements. A requirement is expressed as a bound on the value of a 
performance measure g(x). Thus, a requirement may be defined as an upper or 
a lower bound on an output of the simulator. Instead of discarding requirement­
infeasible solutions, Opt Quest handles them with a composite function p(x) that 
penalizes the requirement violations. The penalty is proportional to the degree 
of the violation and is not static throughout the search. OptQuest assumes that 
the user is interested in finding a requirement-feasible solution if one exists. 
Therefore, requirement-infeasible solutions are penalized more heavily when no 
requirement-feasible solution has been found during the search than when one 
is already available. 

To illustrate the evaluation process in this context, consider an investment 
problem for which x represents the allocation of funds to a set of investment 
instruments. The objective is to maximize the expected return. Assume that a 
Monte Carlo simulation is performed to estimate the expected return f(x) for 
a given fund allocation. Restrictions on the fund allocations, which establish 
relationships among the variables, are handled within the linear programming 
formulation that maps infeasible solutions into feasible ones. Thus, a restric­
tion of the type "the combined investment in instruments 2 and 3 should not 
exceed the total investment in instrument 7," results in the linear constraint 
x2 + x3 ~ x7 . On the other hand, a restriction that limits the variability of 
the returns (as measured by the standard deviation) to be no more than a 
critical value c cannot be enforced in the input side of the Monte Carlo simu­
lator. Clearly, the simulation must be executed first in order to estimate the 
variability of the returns. Suppose that the standard deviation of the returns 
is represented by g( x), then the requirement in this illustrative situation is ex­
pressed as g(x) ~c. 

Note that the constraint-mapping mechanism within OptQuest does not 
handle nonlinear constraints. However, nonlinear constraints can be modeled 
as requirements and incorporated in the penalty function p(x). For example, 
suppose that an optimization model includes the following nonlinear constraint: 

Then, the simulator calculates the left-hand side of the nonlinear constraint and 
communicates the result as one of the outputs. OptQuest uses this output and 
compares it to the right-hand side value of 120 to determine the feasibility of 
the current solution. If the solution is not feasible a penalty term is added to 



674 F. GLOVER, M. LAGUNA, R. MARTi 

6. Implications for future developments 

The focus and emphasis of the Scatter Search and Path Relinking approaches 
have a number of specific implications for the goal of designing improved op­
timization procedures. To understand these implications, it is useful to con­
sider certain contrasts between ·the highly exploitable meaning of "solution 
combination" provided by Path Relinking and the rather amorphous concept 
of "crossover" used in genetic algorithms. Originally, GAs were founded on 
precise notions of crossover, using definitions based on binary strings and moti­
vated by analogies with genetics. Although there are still many GA researchers 
who favor the types of crossover models originally proposed with genetic algo­
rithms - since these give rise to the theorems that have helped to popularize 
GAs - there are also many who have largely abandoned these ideas and who 
have sought, on a case-by-case basis, to replace them with something different. 
The well-defined earlier notions of crossover have not been abandoned without 
a price. The literature is rife with examples where a new problem (or a new 
variant of an old one) has compelled the search for an appropriate "crossover" 
to begin anew. 3 

As a result of this lack of an organizing principle, many less-than-suitable 
modes of combination have been produced, some eventually replacing others, 
without a clear basis for taking advantage of context - in contrast to the strong 
context-exploiting emphasis embodied in the concept of search neighborhoods. 

"Genetic crossover" features Contrasting Path Relinking features 
Contains no integrated framework Embodies a unifying 

"path combination" principle 
Each new "crossover" is separate, Each implementation of path relinking 

with no guidance for the next derives from a common foundation 
No basis exists to Context inheres in 

systematically exploit context neighborhood structures 
and is directly exploitable by them 

Advances are piecemeal, without Advances in neighborhood search 
clear sources of potential for transfer foster advances in path relinking 

(and reciprocally) 
There is no design plan that is A cohesive framework exists for 

subject to analysis or improvement developing progressively 
improved methods 

Table 2. Comparison between GA and PR features 

3The disadvantage of lacking a clear and unified model for combining solutions has had its 
compensations for academic researchers, since each new application creates an opportunity to 
nnhli~h ... nnt.h Pr fnrm of c.rossover! The resultin2: abundance of papers has done nothing to 
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The difficulty of devising a unifying basis for understanding or exploiting context 
in GAs was inherited from its original theme, which had the goal of making GAs 
context free. 

A few of the more conspicuous features of "genetic crossover" and Path 
Relinking that embody such contrasts appear in Table 2. 

The differences identified in Table 2 have important consequences for re­
search to yield improved methods. Specific areas of research for developing 
improved solution strategies that emerge directly from the Path Relinking ori­
entation are catalogued in Table 3. 

Research areas providing opportunities for improved methods 
1. Connections and complementarities between neighborhoods 

for search methods and neighborhoods for path relinking 
2. Rules for generating paths to different depths and thresholds of quality 
3. Strategies for generating multiple paths between and beyond 

reference solutions (with parallel processing applications) 
4. Path interpolations and extrapolations that are effective 

for intensification and diversification goals 
5. Strategies for clustering and anti-clustering, 

to generate candidate sets of solutions to be combined 
6. Rules for multi-parent compositions 
7. Isolating and assembling solution components 

by means of constructive linking and vocabulary building 

Table 3. Research opportunities 

These research opportunities carry with them an emphasis on producing 
systematic and strategically designed rules, rather than following the policy of 
relegating decisions to random choices, as often is fashionable in evolutionary 
methods. The strategic orientation underlying Path Relinking is motivated by 
connections with the Tabu Search setting where the Path Relinking ideas were 
first proposed, and invites the use of adaptive memory structures in determining 
the strategies produced. The learning approach called target analysis (Glover 
and Laguna, 1997) gives a particularly useful basis for pursuing such research. 

7. Intensification and diversification 

A significant feature that distinguishes Scatter Search and Path Relinking from 
other evolutionary approaches is the fact that intensification and diversification 
processes are not conceived to be embedded solely within the mechanisms for 
combining solutions, or within supplementary "mutation" strategies based on 
randomly varying offspring to produce new solutions.4 

4 Within the last few years, some researchers in the evolutionary computat ion field have 
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Evidently, except where hybrids are being created with Tabu Search, alter­
native evolutionary computation approaches do not undertake to control search 
paths by adaptive memory strategies such as those based on measures of recency, 
frequency and influence. 

The initial connections between Scatter Search and strategies involving these 
types of measures have already been noted in reference to exploiting consistent 
and strongly determined variables. Such strategies naturally fall in the category 
of intensification strategies, in the sense that they undertake to take advantage 
of features associated with good solutions. They are predicated on highly ex­
plicit analysis of the frequencies with which attributes belong to high quality 
solutions, supplemented by considerations such as clustering the solutions to 
give increased meaning to the frequencies. This stands in notable contrast to 
the philosophy of other mainstream evolutionary procedures, where the rele­
vance of attribute membership in solutions is left to be "discovered" chiefly by 
the device of shuffling and combining solutions. 

An approach called strategic oscillation introduced with the original Scatter 
Search proposal is important for linking intensification and diversification. The 
basic idea of this approach is to identify critical regions of search, and to induce 
the search pattern to visit these regions to various depths within their bound­
aries , by a variable pattern that approaches and retreats from the boundaries 
in oscillating waves. Examples of such regions and their associated boundaries 
are indicated in the following table. 

Regions Boundary 
Feasible and infeasible Determined by constraints 
Partial constructions and (sometimes) A complete construction 

"excessive" constructions (tree, clique, tour, etc .) 
U nderfilled or overfilled schedules Satisfied schedules (all or an 

appropriate set of jobs assigned) 
Local optima and suboptima Solutions with 

no immediate improvement 
Elite solution clusters Zones between clusters 

(or partitioned spaces) (or between partitions) 
Alternative neighborhoods Transitions among move types 

Table 4. Applications of strategic oscillation 

A number of variations of the regions and associated boundaries are evi­
dent , such as replacing the feasible/infeasible dichotomy by a focus on selected 

strategies for achieving intensification and diversification, instead of relying on randomization 
to achieve less purposeful forms of variation. However, some of the latest literature still 
disallows this type of approach as a legitimate feature of evolutionary computation . For 
ov o ~n l o l<'Nrol (1QQJ<\ O~VO t. h~t. t.hP m~.in f1i"ri nJinf'' of f'VO JntiOnil.rV r.OmDntatiOn all inVOlVe 
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critical constraints to define varying domains of "partial infeasibility.;, In each 
case, the strategic oscillation approach operates by moving through one region 
to approach the boundary, and then either crosses the boundary or reverses di­
rection to move back into the region just traversed (in the case of a "one-sided" 
oscillation). 

Often there are advantages to crossing boundaries to descend for varying 
depths within different regions and then doubling back to return again to the 
boundary. For example, in a number of discrete optimization problems the 
solutions that are most readily accessible from the feasible and infeasible re­
gions differ ~ and, quite significantly the types of moves and choice criteria for 
traversing feasible and infeasible regions also differ. The ability to exploit these 
differences by rules that are specific to the regions traversed and the direction 
of movement within these regions (e.g., toward or away from their boundaries) 
provides an enriched set of options for carrying out the search. Similar char­
acteristics are found in processes that build solutions by constructive processes 
and then dismantle them by destructive processes. In many settings, classical 
heuristics have been restricted to constructive processes for generating solu­
tions and in these cases strategic oscillation entails the creation of additional 
destructive moves to complement the constructive moves. 

From the perspective of intensification and diversification, greater diversifi­
cation is normally achieved by penetrating to greater depths beyond regional 
boundaries, while greater intensification is normally achieved by spending more 
time in the vicinity of such boundaries. However, the spatial image of remaining 
close to a boundary is misleading, because oscillations of small depths can cre­
ate significant changes. For example, even when only a few destructive moves 
are made to reverse a constructive process, the portions of the construction 
dismantled can have a significant influence on the solution structure and com­
position, and this influence can become magnified after a few oscillation cycles. 
The guidance of memory as used in Tabu Search allows the oscillations to avoid 
becoming mired in local optima or in a process that unproductively examines 
similar points in a common locale. 

An extreme application of strategic oscillation in the context of a construc­
tive approach is to employ destructive steps to completely dismantle the solu­
tion built by the constructive phase, which thus simply reduces the approach 
to a "restart" procedure. However, the use of memory to guide the successively 
restarted constructions produces significantly different outcomes than those pro­
duced by customary restarting procedures based on randomization. These out­
comes also contrast sharply with those produced by "randomized greedy" con­
struction schemes. The comparative advantages of memory-based strategies 
for rebuilding solutions are documented, for example, in Fleurent and Glover 
(1999). 

Intensification is often associated with shallow oscillations because in many 
settings the best solutions are found on or near the boundary. This is clearly true 
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true by definition where the boundary is established to segregate local optima 
from suboptimal solutions. In such cases the oscillation process is augmented by 
spending additional time in the proximity of the boundary, as by shifting from 
a simple neighborhood to a more complex neighborhood. For instance, simple 
"add/drop" or "increment/decrement" moves may be augmented by a series of 
"exchange" or "paired increment/decrement" moves upon reaching (or drawing 
close to) the boundary. Candidate list strategies are important when complex 
neighborhoods are used, in order to achieve proper tradeoffs between time spent 
looking for moves and the quality of the moves found. (Principal approaches of 
this type are described in Glover and Laguna, 1997.) 

7.1. Randomization and the intensification/diversification dichotomy 

The emphasis on systematic strategies in achieving intensification and diversi­
fication does not preclude the use of randomized selection schemes, which are 
often motivated by the fact that they require little thought or sophistication 
to apply. By the same token, deterministic rules that are constructed with no 
more reflection than devoted to creating a simple randomized rule can be quite 
risky, because they can easily embody oversights that will cause them to per­
form poorly. A randomized rule can then offer a safety net, by preventing a bad 
decision from being applied persistently and without exception. 

Yet a somewhat different perspective suggests that deterministic rules can 
offer important advantages in the longer run. A "foolish mistake" incorporated 
into a deterministic rule becomes highly visible by its consequences, whereas 
such a mistake in a randomized rule may be buried from view - obscured 
by the patternless fluctuations that surround it. Deterministic rules afford the 
opportunity to profit by mistakes and learn to do better. The character of 
randomized rules, that provides the chance to escape from repetitive folly, also 
inhibits the chance to identify more effective decisions. 

The concepts of intensification and diversification .are predicated on the view 
that intelligent variation and randomized variation are rarely the same.5 This 
clearly contrasts with the prevailing perspective in the literature of evolutionary 
methods although, perhaps surprisingly, the intensification and diversification 
terminology has been appearing with steadily increasing frequency in this liter­
ature. Nevertheless, a number of the fundamental strategies for achieving the 
goals of intensification and diversification in Scatter Search and Path Relinking 
applications have still escaped the purview of other evolutionary methods. 

5Intelligence can sometimes mean quickly doing something mildly clever, rather than slowly 
doing something profound. This can occur where the quality of a single move obtained by 
extended analysis is not enough to match t he quality of multiple moves obtained by more 
superficial analysis. Randomized moves, which are quick, sometimes gain a reputation for 
effectiveness because of this phenomenon. In such setting, a different perspective may re­
onlt lw inv<>~t:iD',.t. inP" rnmn,..r ,..hlv f,._~t mP.r.h;tnisms t hat reolace randomization with intelligent 
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Perhaps one of the factors that is slowing a more complete assimilation of 
these ideas is a confusion between the terminology of intensification and diver­
sification and the terminology of "exploitation versus exploration" popularized 
in association with genetic algorithms. The exploitation/exploration distinction 
comes from control theory, where exploitation refers to following a particular 
recipe (traditionally memory less) until it fails to be effective, and exploration 
then refers to instituting a series of random changes - typically via multi-armed 
bandit schemes - before reverting to the tactical recipe. The issue of exploita­
tion versus exploration concerns how often and under what circumstances the 
randomized departures are launched. 

By contrast, intensification and diversification are mutually reinforcing 
(rather than being mutually opposed), and can be implemented in conjunc­
tion as well as in alternation. In longer term strategies, intensification and 
diversification are both activated when simpler tactics lose their effectiveness. 
Characteristically, they are designed to profit from memory, rather than to rely 
solely on indirect "inheritance effects." 

8. Conclusion 

The preceding sections make it clear that there are a number of aspects of 
Scatter Search and its Path Relinking generalization that warrant further inves­
tigation. Additional implementation considerations, including associated inten­
sification and diversification processes, and the design of accompanying methods 
to improve solutions produced by combination strategies, may be found in the 
template for Scatter Search and Path Relinking in Glover (1997) and in the 
illustration of Scatter Search for a special class of nonlinear problems in Glover, 
Laguna and Marti (2000). 

A key observation deserves to be stressed. The literature often contrasts 
evolutionary methods - especially those based on combining solutions - with 
local search methods, as if these two types of approaches were fundamentally 
different. In addition, evolutionary procedures are conceived to be independent 
of any reliance on memory, except in the very limited sense where solutions 
forged from combinations of others carry the imprint of their parents. Yet as 
previously noted, the foundations of Scatter Search strongly overlap with those 
of Tabu Search and, in addition, Path Relinking was initiated as a strategy 
to be applied with the guidance of adaptive memory processes. By means of 
these connections, a wide range of strategic possibilities exist for implementing 
Scatter Search and Path Relinking. 

Very little computational investigation of these methods has been done by 
comparison to other evolutionary methods, and a great deal remains to be 
learned about the most effective implementations for various classes of prob­
lems. The highly promising outcomes of studies such as those cited in Section 1 
suggest that these approaches may offer a useful potential for applications in 
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The ability to use the SS/PR framework in conjunction with classical opti­
mization to deal with exceedingly general kinds of optimization problems that 
include uncertainty, as illustrated by the OptQuest system described in Sec­
tion 5, reinforces this supposition and underscores the relevance of such devel­
opments for handling real world problems. 
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