
Control and Cybernetics

vol. 29 (2000) No. 3

Tabu Search for target-radar assignment

by

Magnus Hindsberger and Rene Victor Valqui Vidal

Department of Mathematical Modelling (IMM)
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark

E-mail: mh@imm.dtu.dk ; vvv@imm.dtu.dk

Abstract: In this paper the problem of assigning air-defense
illumination radars to enemy targets is presented. A Tabu Search
metaheuristic solution is described and the results achieved are com
pared to those of other heuristic approaches. Implementation and
experimental aspects are discussed. It is argued that Tabu Search
could be used in near realtime decision making systems.

Keywords: combinatorial optimization, metaheuristics, Tabu
Search, assignment.

1. Introduction

In case of an enemy air raid an air defense system should engage enemy fight
ers, helicopters etc. with the available missiles so that the most threatening
and valuable enemy targets are engaged first. Since the air picture is changing
constantly, the assignment of the missiles to the wanted targets must be con
tinuously updated. Unfortunately, the updating is non-trivial because even for
relative small problems, the missiles, the controlling radars, and the targets can
be combined in a huge number of ways during a time period.

In addition, the optimal solution does not necessarily have to include all the
targets and the targets included must be assigned during specific time windows
as they enter or exit the effective range of the system.

The complex nature of this assignment problem and the fact that a solution
must be found within a strict time span in order to keep the assignment up-to
date with the air picture, makes it a very interesting combinatorial optimization
problem.

Such a problem is approached using heuristic principles (see Silver et al.,
1980) due to its complexity that makes any global approach unsuitable. More
over, metaheuristic approaches such as Local Search, Tabu Search, Simulated

702 M. HINDSBERGER, R.V.V. VIDAL

(see further Glover and Laguna, 1993, Vidal, 1993, and Pirlot, 1992). Note that
the approach used in this paper was tried for research purpose only. The algo
rithm adopted by the Danish airforce is, although also heuristic, very different
from the one presented here.

In Section 2, an outline of the system in study is presented. In Section 3,
the target-radar assignment problem is formulated and modelled. A two-step
heuristic approach is described in Section 4, while Section 5 presents the first
step based on Tabu Search, and Section 6 presents the second step based on
Steepest Ascent. Section 7 presents our numerical results obtained in a series
of experiments. Section 8 presents improvements in the developed procedure.
Section 9 gives some results of experimentations on the problem of quality vs.
time usage. Finally, the last section presents our final conclusions.

2. The DEHAWK system

DEHAWK is a modification program of the Danish HAWK air-defense missile
units (for details, see Cullen and Foss, 1998). This paper will discuss a simplified
DEHAWK system looking only at two types of units: the illumination radars
(denoted HIPIR's, High-Power Illumination Radar) and the HAWK missiles.
Note that the names HAWK and DEHAWK are used interchangeably and both
refer to the updated system.

A DEHAWK battery will usually have two HIPIR's, while a batalion will
control up to four batteries and thus 8 HIPIR's.

The HAWK system is classified as a medium range air defence system. If a
target is to be engaged by a HAWK missile, the target has to be illuminated
by one of the HIPIR radars. This means that the HIPIR starts tracking the
target by continuously keeping it the target of the radar emission. Some of the
emission is reflected from the target and is picked up by the HAWK missile,
which uses it to keep the guidance towards the target. The process is sketched
in Fig. 1.

In general, air defense units are made up of firing units, which will be denoted
FU's. A FU is the smallest unit which can independently engage a target.
Since the guidance method limits a HAWK squadron to only have two HAWK
engagements running at the same time (i.e. one for each HIPIR), the HIPIR's
can be seen as the FU's.

An engagement will denote the t ime sequence of assigning a single target,
firing at it, until it has been determined whether or not the target was hit.
The time period where it is possible for one of the FU's to engage the target is
denoted the engagement area.

The attacking side sending the air raid will be known as the orange side,
while the defending side, using the HAWK system, is the blue side.

When engaging, you have a certain probability of shooting down the target

Tabu Search for target-radar assignment 703

HAWK missile

Figure 1. The HAWK guidance system

present paper be denoted Pkill. At the time the engagement ends, a successful
outcome will mean a benefit for the blue side. This benefit, denoted the military
value in this paper, must be specified by the user. It usually depends upon the
threat it constitutes to the blue at the specific time.

3. Problem formulation

The target-radar assignment problem can be formulated as: In a specific time
period, called the planning period, to decide which targets to be engaged, at
which time, and which HIPIR to be used for controlling the missiles flight. The
length of the planning period can vary, but it is usually chosen to be between 2
and 5 minutes.

The assignment has to be updated continuously according to changes in the
target course and speed. Therefore, the procedure for solving the described
problem must calculate a new assignment plan every time the search radar has
finished a rotation. During a single rotation the information about all targets in
the airspace is updated. Since a rotation only takes about 3 seconds, the time
span, within which the assignment plan should be calculated, is very strict.

For the sake of simplicity the missile launcher assignment part has been
omitted. In addition, the functions for calculating Pkill, the missile flighttimes,
and the military values for targets have been simplified.

In order to evaluate whether a procedure can be accepted, some criteria must
be specified. Some of the criteria are strong, meaning that they should always
be fulfilled.

For this problem the strong criteria are:

• Speed: The procedure must return a solution within the 3-second time

704 M. HINDSBERGER, R.V.V. VIDAL

• Maximizing: The expected value of the objective function should be within
5% of the global optimum.

In this case the speed criterion is actually implemented as a constraint. A
set of weak criteria can be defined too. They describe the desirable but not
demanded properties of the procedure. The following weak criteria have been
defined for this problem:

• Range: The number of targets t hat come within their own firing range of
a blue target before being engaged, should be minimized.

• Robustness: The algorithm should, when run in real-time, not change
the recommended solution for every new 3-second run unless targets are
maneuvering or new targets appear.

The first of the weak criteria can possibly be chained to the strong criterion
of maximization of the objective value by a suitable definition of the objective
function. The robustness criterion is included because the users of the system
would loose confidence in a system that for every 3-second period makes changes
in its recommended assignment plan.

For the sake of comprehensiveness a mathematical model of the problem,
though not complete, is formulated below.

In the model the following indices are used:
i = 1, 2, ... , n denotes a target from the list of targets.
j = 1, 2, ... , m denotes the HIPIR used to illuminate the target.
k = 1, 2, ... , o denotes the specific missile used for an engagement.

The decision variables to be determined are:

tijk E lR denotes the time where the firebutton is pressed for missile k to engage
target i controlled by HIPIR j.

Xijk E {0, 1} is equal to 1 iff the engagement including target i, HIPIR j, and
missile k is included in the assignment plan for the planned period.

The following functions are used in the model:

mv(tijk) calculates the military value of target i if engaged by missile kat the
time tijk·

P k(tijk) calculates the Pkill of target i if engaged by missile k at tijk.
f(tijk) returns the time of the intercept of target i using missile k launched

at tijk and controlled by HIPIR j.

In addition, the following parameters are defined:

eng_startij is the first t ime when the firebutton can be pressed to engage tar-
get i - i.e. i enters the intercept area of HIPIR j.

eng_endij denotes the time when target i exits the intercept area of HIPIR j.
r _ hipir1 is the time when HIPIR j are ready for the first engagement.
Llk is the reaction time between the instance when the decision to shoot is

taken and when the firebutton can be pressed due to the radar lock-on

Tabu Search for target-radar assignment 705

Lev is the time between the instance when a target is hit and when it has
been evaluated whether it was shot down. If not - it probably should be
reengaged.

For every target, Pkill is the probability of shooting it down at a certain
time and the military value is the benefit of the kill if made. The total expected
benefit of an assignment plan can be calculated as follows :

maximize 'I:,(Pk(tijk) · mv(tijk))Xijk
ijk

Restrictions should ensure:

(1)

1. that the targets are engaged within valid intercept areas and that the
reaction time will not let a target get out of range before the actual launch.

2. that a single HIPIR is not used in more that one engagement simultane
ously.

3. that one target is only assigned once in the assignment plan.
Note that in this implementation a target is only engaged with a single

missile. For some very dangerous targets it might be better to assign several
HIPIR's to them in order to engage the targets with multiple missiles. See
Hinds berger (1998-I) for a more comprehensive description on the military value,
the pkill function, engagement area, etc.

The number of HIPIR's, corresponding to the index m, can be up to 8
and it is not unlikely to expect more than 30 targets (index n), of which all
should come within the engagement area of a HIPIR during the planning period.
Many of the combinations are prohibited in the cases where some targets cannot
be engaged within their valid engagement areas, that is not known before the
specific combinations have been checked. So, the number of combinations in the
problem is huge, taking into account that the time limit is 3 seconds.

4. A heuristic approach

The target-radar assignment problem is a non-standard non-linear mixed integer
problem and due to its complexity is even for small dimensions rather difficult
to solve using an exact approach.

The complexity of the problem led to a two-steps heuristic for solving the
problem. In the first step the assignment of targets to the HIPIR's is made.
That is , it is decided which target should be illuminated by which HIPIR, and
the succession in which each HIPIR should illuminate the targets . The second
step optimizes the start time of the engagements assigned to a HIPIR, making
the engagements start at the most desirable time. Throughout this paper the
engagement start time denotes the time, when the firebutton is pushed in order
to launch a missile for an engagement.

For the first step, which is the integer part of the problem, it was decided to
solve it using general search heuristics, or more specifically the neighbourhood-

706 M. HINDSBERGER, R.V.V. VIDAL

order to get an insight into the problem, the simplest of these heuristics -
the Steepest Ascent (greedy) heuristic was implemented. From this, one can
get useful information about the behaviour of the problem and some objective
function values, which one can compare with the results of the more advanced
heuristics.

Of the more advanced neighbourhood-based heuristics, Multistart Ascent,
Simulated Annealing and Tabu Search were tried, and since all could be based on
the neighbourhood function already written for the Steepest Ascent algorithm,
implementations were quickly done.

For the second step only a continuous version of the Steepest Ascent heuristic
was implemented.

The implementation of the two steps including the neighbourhood structures
used and Tabu Search memory implementation is described below.

5. Step 1 - Assignment optimization

In Fig. 2 a pseudo-code of the classic Tabu Search program is shown. The
neighbourhood implementation is described below. The Time_opt procedure is
the second step carrying out the engagement time optimization and is covered
in Section 6.

begin
initialization
curr_x := make..iniLsolution
best....x := curr....x
besLobj := Time_opt(best....x)
unchanged := 0
k := 0
while (unchanged < max_ unchanged and k < max_total) do

Y := find_neighbourhood(curr....x)
(curr....x,curr_obj,tabu) := find_best(Time_opt(Y), tabu)
if besLobj < curr_obj then

best....x := curr....x
besLobj := curr_obj
unchanged := 0

else
unchanged:= unchanged+ 1

end if
k := k + 1

end
end

Tabu Search for target-radar assignment 707

The function, find_best, which evaluates the generated neighbours takes the
tabu memory as parameter, returning the best of the neighbours and the corre
sponding objective function value, C(x), depending on the current recency and
frequency memory. Then, the current solution is appropriately set and the tabu
memory is updated according to this choice. The best value obtained at this
point is updated if the value of C(x) of the new solution is an improvement .

A datastructure for storing the assignment of both the current solution and
the solutions of the generated neighbours is defined. The basis is the assignment
class, which contains all the information about a single assignment, identified
with the ID-number of the assigned target. An array of assignments is defined
for each HIPIR-radar, containing the assignments of that particular HIPIR. An
additional array is defined containing all the non-assigned targets. A sample
assignment plan is shown in Fig. 3. The system shown consists of four HIPIR's
and seven targets. Three of the targets (1, 2 and 5) are unassigned, while
target 3 has been assigned to HIPIR 1 and HIPIR 3 should engage target 4, 6
and 7 in this succession.

Unassigned HIPIR I HIPIR2 HIPIR3 HIPIR4

I Target I I Target 3 I Tatget4 I
I Target2 I I Target6 I
I Target5 I I Target7 I

Figure 3. The data-structures where a solution is stored

The initial assignment was chosen always to be the zero-assignment, i.e. the
assignment where all targets are unassigned, .and thus stored in the unassigned
array. The stochastic nature of the neighbour generating function, as shown
later, will make sure that every possible assignment plan can be reached from
this assignment. So, there was no reason to start with some or all of the targets
randomly assigned to the HIPIR's.

The search for a new assignment is done within the while-loop of Fig. 2. At
first a part of the neighbours to the current solution is found. This is done by
the neighbour generation function using the neighbourhood definition described
below.

5.1. The neighbour generating function

For the implementation it was decided to create a function, which generates

708 M. HINDSBERGER, R.V.V. VIDAL

can be user-specified, but has an upper limit depending upon the number of
HIPIR's and targets.

A neighbour is defined as the move of one target and not as an exchange of
targets. If n neighbours are to be generated, only the first one will be randomly
chosen, while the n - 1 next neighbours are defined by a succession, which will
be described later.

When picking the first neighbour a random HIPIR (with at least one target
assigned to it) to move from is selected. From the array of such HIPIR's a
random target to move is drawn. Note that all HIPIR's have an ID number,
where 0 denotes the array containing the unassigned targets. If moving from
HIPIR 0 (the array of unassigned targets) the HIPIR to move to is randomly
selected from among those with an ID higher than 0. Else the algorithm just
picks a random one of all the arrays to decide where to move. If the HIPIR
moving from is the same as the one moving to, the neighbours generated just
change in the succession in which HIPIR engages the targets. When the two
HIPIRs' ID numbers are different, the neighbours generated in this case are the
possible placements of the moving target in the succession of targets assigned
to the receiving HIPIR.

The following steps define the succession of the neighbours, once the first one
has been selected. The steps are taken until the wanted number of neighbours
has been generated. Because of the number of special cases, it might look
complicated, but the example below should help to clear out any confusion.

• The selected target is moved to the HIPIR with the next higher ID number,
starting over from 0, when the highest number has been reached. If the
target is moved from HIPIR 0 (unassigned), the unassigned number is
excluded.

• If it has been tried to move the target to all possible HIPIR's, the proce
dure switches to the next target (in the succession) of the HIPIR's moving
from. If the last target of that HIPIR has been reached, the HIPIR to
move from is switched to the next higher number, again starting over
from 0 if the highest ID number has been reached.

Note that each time the HIPIR's or target ID is changed, the number of
new neighbours, which can be created, will vary depending upon the current
solution.

EXAMPLE 5.1 (THE TABU SEARCH NEIGHBOURHOOD) Consider the situation
where the solution pictured in Fig. 3 is the current solution and 9 neighbours
are to be generated. The fi rst neighbour is chosen in the following way:

• One of the nonempty HIPIR arrays is chosen to move from - in this case
HIPIR 3.

• Of the three targets assigned to HIPIR 3, the second target is randomly
selected, i.e . the target with ID 6 is to be moved.

• Now a HIPIR to move to is chosen. In this case any would do, and

Tabu Search for target -radar assignment 709

This gives neighbour 1 pictured in Fig. 4. If the steps described above are
used to pick the next n - 1 neighbours , the neighbours numbered from 2 to 9 in
the figure are generated. In neighbour 1 taryet 6 is moved to HIPIR 2. Since
the army of HIPIR 2 is empty, this can only be don e in one way. So, when
generating neighbour 2, the target now has to be moved to the next HIPIR arra y,
which in this case is HIP IR 3 - the one moving from . Since there are more
targets assigned to HIPIR 3 than target 6, it can be put in other places in the
succession of engagements resulting in neighbours 2 and 3. When coming to the
array of unassigned targets , there is no defined succession of those targets. So
target 6 is just added to the array making neighbour 5.

Neighbour 1 Neighbour 2 Neighbour 3

Hli'IR3 HIPIR2 HIPIR3 HIPIR3 Hli'IR3 HIPIR3

I Target 4 I H Target 6

IL
/

~ Target 6

II v ~
I Target 4 J ~

I Target 7 I
I Target 7 I ~ ~ J Target 7 \ Target 6 I

Neighbour4 NeighbourS Neighbour 6

HIPIR3 HIPIR4 HIPIR3 Unassigned HIPIR 3 HIPIR I

I Target 4 I H Target6

II
I Target7 I

~ ~
II ~
~

""
~

~ / Target6 I

I Target) I
~

N Target 6

Neighbour? NeighbourS Neighbour9

HIPIR 3 HIPIR I HIPIR 3 HIPIR 2 HIPIR 3 HIPIR 3

I Target 4 I \ Ta'rget3 J

___, Target 6

~ ~ Target7

~ /
I Target4 I Target7 I

J Target 6 \ I Target4 I
I Target 7 I II I Target 6 I

Figure 4. Neighbours generated in Tabu Search

Before all 9 neighbours have been generated, target 6 has been moved to all
possible positions. So, the algorithm switches to the next target in the succession,
which is the next target - if any - assigned to the same HIPIR . In this example
it is target 7. So , for the neighbours 8 and 9 it is target 7 to be moved.

If even more neighbours were generated, target 7 would at a point have been

710 M. HINDSBERGER, R.V.V. VIDAL

be used for generating the next neighbours. In this example it is target 1 of the
unassigned array, since there are no more targets assigned to HIPIR 3 and no
one is assigned to HIPIR 4.

With this neighbourhood definition a neighbour is a small change to the
existing solution and it assures that all possible solutions can be reached from
any other solution, which are some of the basic properties a neighbourhood
should possess.

5.2. Implementing memory

As the tabu element either just the moving target or a combination of the
receiving HIPIR and the moving target can be used. Thus, for instance, if
target 6 just has been moved from HIPIR 3 to HIPIR 2, either the moving of
target 6 (no matter where-to) or the moving of target 6 (no matter from which
HIPIR) to HIPIR 2 is declared as tabu for the next tabulength iterations. In this
implementation the tabu length was fixed for the duration of a computation run.

Both of the above mentioned tabu structures have been implemented in order
to see any differences in performance. The frequency memory is implemented
too and has to fit the tabu structure used. So, in the first case the penalty
added to C(x) is a certain percentage of the number of times the target has
been moved, while in the other case- some percentage of the times the target
has been moved to that specific HIPIR. The percentage is user-specified in both
implementations.

EXAMPLE 5.2 (THE TABU SEARCH FREQUENCY MEMORY) The frequency
memory is used to diverge the search into new areas. In this case it is imple
mented as a penalty to the objective func tion. The penalty added to the objective
function is a user specified percentage of the number of times the move to the
investigated neighbour already has been taken. If 10% has been specified and the
number of times target 6 has been moved is 10, C(x) of the neighbour describing
this move will be lowered by 1. If target 6 had been moved 100 times, the penalty
would be 10 instead, making the less taken moves more interesting.

In addition to the frequency penalty, the tabu length, the number of neigh
bours generated, and the parameters of the stopping criterion (fixed time or
fixed number of iterations) are user-specified, making it possible and easy to
test the dependence of those parameters.

5.3. The objective funct ion

When the best of the neighbours is to be found, the change in the objective
function value C(x) that each neighbour results in, is calculated. C(x) was
defined as the sum of the military value of a target times the probability of

Tabu Search for target-radar assignment 711

time the missile hits (or misses) the target, you have to find the optimal time
for each engagement to start. This is done by the Time.opt procedure described
below, where the optimal time also will be defined.

6. Step 2 - Time optimization

In order to find the optimal start times of the engagements of a HIPIR, this
procedure is used. Using a nontrivial neighbourhood, it features the Steepest
Ascent method, since all possible neighbours are checked at each iteration. A
pseudo-code of the procedure can be seen in Fig. 5.

procedure Time optimization
check_if_possi ble
if no_of_targets = 1 then

update(assign)
else

begin
initialization
clJange := true
while change do

change:= false
for i := 1 to no_of_targets do

impl := move_forward_check(i)
imp2 := move_backward.check(i)
improvement := max(impl,imp2)
if improvement > 0 then

update(assign)
change:= true

end if
end

end
end

Figure 5. Pseudo-code of the time optimization procedure

When the procedure is called, it has to make sure it is possible within the
allowed planning time to engage all the assigned targets. The check.if.possible
procedure will do this as well as put the assignments in a tight succession,
which is the succession, where each engagement starts as soon as the previous
engagement is finished. This solution is the initial solution of the algorithm,
but since it is not necessarily the optimal time assignment, it has to be tested
whether some targets could be engaged at more appropriate times, improving

712 M. HINDSBERGER, R.V.V. VIDAL

6.1. Optimal time - critical line

The optimal time for an engagement refers normally to the time where an en
gagement should be started, in order to have the highest probability of shooting
down the target. An exception is, if a target has crossed the critical line before
it is hit by a missile fired at the optimal time using the definition above. In this
case the optimal time, instead, denotes t he engagement start time to be used,
so the target is hit as it reaches the critical line. This is done in order to make
the algorithm engage the targets before they cross the critical line, if possible,
which was one of the properties the algorithm should fulfil.

6.2. Neighbourhood generation

When only one target is assigned to a HIPIR, it is easy. A precalculated table
contains the optimal start t ime of an engagement for each target-radar com
bination. So, this start time is used, unless it is later than the planning time
allows. In this case the target is engaged at the latest possible time, instead.

With more than one target assigned, t he neighbourhood generation becomes
more complicated, since the engagements can block each other, so one or more
of them cannot be engaged at the optimal time. Three points of time are
defined for each target. The earliest possible, EST, the optimal, OST, and
the latest possible engagement start t ime, LST. The first and the last of those
can change as the engagement start time of either the previous or the next
engagement is changed, but they will never cross the boundaries of the possible
intercept period. It should be noted that the optimal engagement start time
is not necessarily between the other two, as seen for the third engagement of
Fig. 6. In this figure engagements 2 and 3 block each other.

Engagement sequence · blocking occur

EST2 OST2 LST2
OST3 EST3 LST3

Figure 6. A sequence of engagements where a blocking occurs, since the EST of
the last engagement is later than the OST

When such a blocking occurs between two engagements, a boolean variable
will be set for use in the moves explained below.

The main part of the time_opt procedure is the for-loop , which for every as
signed target will calculate the change in C(x) for each of the possible, following

Tabu Search for target-radar assignment 713

Forward move: The engagement is moved forward (i.e. delayed), if the en
gagement is not blocked by the next and either the engagement start time
is earlier than the optimal of that target-radar combination or it is block
ing for the previous engagement to move forward.

Backward move: The engagement is moved backwards (i.e. started earlier),
if the engagement is not blocked by the previous and either the current
start time is later than the optimal of that target-radar combination or it
is blocking for the next engagement to move backward.

The most promising "move" can now be found, as the one with the greatest
positive change to C(x). Since all possible neighbours are tested, this is a
Steepest Ascent algorithm. So, until no improvement can be found for any of
the targets, the loop above is repeated .

This neighbourhood definition should both make a neighbour a small change
compared to the existing solution and ensure that all "optimal" solutions can be
reached within a finite number of iteration from any other solution. The notation
"optimal" is used, since not all possible time displacements are defined in this
implementation. But the ones defined should, with the assumption described
below, include the optimal solution.

The assumption that has been made is that the increase or decrease rate
of the benefit value of each target (i.e. the Pkill times the military value) is
constant between EST, OST, and LST, as shown in Fig. 7.

-r---------t--------+------t-- - ----time
EST OST LST

Figure 7. For the implementation it has been assumed that the increase or
decrease rates between the points are constant as shown in the graph

With the mentioned assumption the optimal solution is still contained in the
solution space. This can be seen in the following way. If no blockings occur, the
optimal solution is included, since all OST points are included. If a blocking
occurs as the one in Fig. 6, both of the start times are tried to be moved /:::;.T

forward as shown in Fig. 8. If the gain in benefit of engagement 2 is greater
than the loss of benefit of engagement 3, t::;.T should be as great as possible,
which is the greater of the intervals [EST2 , LS'T2] and [EST3, LST3]. If the

714 M. HINDSBERGER, R.V.V. VIDAL

be any of the two values. Since all the EST and LST points are included in
the solution space, the optimal solution will also be contained in it, because of
the assumption of constant increase/decrease rates.

-i---f------+-----+---+-----lime
ES12 LSTZ OST2

6T

----11---t-----!-----+---- +-----time
OSTJ ESTJ LSTJ

t:.T

Figure 8. The upper plot shows the benefit of engagement 2 of Fig. 6 while the
lower is the benefit of engagement 3

During the testing this procedure turned out to be very good in finding
the global optimal solution since only in rare occasions an assignment blocked
another one, which could have improved the solution.

After the time optimization the partial objective function value of the used
HIPIR is stored in memory and used by the find_best procedure to find the best
of the generated neighbours.

7. Experiments

The stochastic nature of the algorithms make them in general return different
solutions to the same problem. In order to find the expected value of C(x) of the
algorithms for a given scenario, an automated program was written. It ran the
algorithm a user-specified number of times with the same parameters, except
for the random number seed, calculating the sample mean value and variance

Tabu Search for target-radar assignment 715

The results shown in this paper are, unless otherwise stated, a sample mean
value of a 100 runs batch. All the computations were done on a Digital VAX
4000-60 workstation.

It was initially assumed that a 100 times improvement in the computation
time could be gained, if the algorithms were reprogrammed in C++ and run
on a modern workstation. Therefore, the algorithms were allowed to run for
300 seconds in the tests, and were still assumed to be within the time limit of
3 seconds. Whether or not this assumption holds is discussed in Section 9.

7 .1. Test scenarios

The algorithms were tested on various scenarios, which had a different number
of targets and HIPIR's. A scenario with two HIPIR's and seven targets will in
this paper be denoted as a 2-7 scenario, while a scenario with 8 HIPIR's and
13 targets is thus denoted an 8-13 scenario. The density of a scenario describes
the number of targets compared to the number of HIPIR's. A 2-13 scenario is
considered dense while an 8-7 scenario is sparse. The size of a scenario depends
both on the number of HIPIR's and the number of targets. A scenario will in
most cases be considered small, if it has less than ten targets or four HIPIR's.

In all scenarios the HIPIR's were located in pairs and the targets incoming
were all jet fighters. The planning time was set to 200 seconds.

For none of the scenarios the global optimal value of C(x) is known for sure.
So, the mean values obtained will be compared with the best value of C(x)
found for that particular scenario, which should be very close to, if nDt the
global optimum. For the 2-13 and the 8-13 scenarios, which will be used most
widely, the best values found were 247:73 and 482.67, respectively, and the
"optimal" value will in this paper, when mentioned, refer to one of these values.

7.2. Tabu Search results

As described in Section 5, two versions of Tabu Search were implemented with
the tabu definition being the difference. The one denoted TS-simple uses the
"simple" tabu definition with only having the moving target as the tabu ele
ment, while the other, TS-advanced, uses the more advanced definition hav
ing the tabu element as a combination of the moving target and the receiving
HIPIR.

For the first experiments the stopping criterion was to stop after uc un
changed iterations. Initial testing showed that uc = 80 gave the best results
compared to the time used for most scenarios. The testing is described in more
detail in Hindsberger (1998-I) . Experiments to assess the influence on the two
algorithms from the number of neighbours generated and the length of the tabu
list (i.e. the tabulength) were made then, keeping the frequency penalty and the

716 M. HINDSBERGER, R.V.V. VIDAL

When using the simple tabu definition a 10% frequency penalty was used,
since only 13 tabu elements exist, being the 13 targets. This value was a guess
but from the earlier results achieved by the other methods, neighbours often
differed less than 0.5 in their values of C(x), so the 10% penalty should be
sufficient to diverge the search to other areas, while still being small enough not
to disrupt the basic search with "noise".

When using the advanced definition the number of tabu elements was 8 x 13,
so the penalty was for this definition increased to 100% for similar reasons as
above.

With all other parametres fixed, the frequency penalty was varied, to see if
the values used until now were actually optimal. While TS-simple turned out
to do better using a penalty of 15% rather than the previously used 10%, the
100% penalty used by TS-advanced looked optimal. The results when using TS
simple on the 8-13 scenario can be read from the graph in Fig. 9. The dashed
line is the best fit by a polynomial of degree 2.

474,----,------.----.----.-------,-------,

!!l471

~
:E
0

470

469

468

' '

467 oL-----'-2o----'4o ____ so:':---~ao=-----:-,oo:-:----::,2o

penalty in%

Figure 9. The dependence on the penalty-% forTS-simple using the 8-13 scenario

Table 2 shows the best values of the tabulength (denoted T), the num
ber of neighbours generated at each iteration (NB), and the frequency penalty
(% penalty) for the two different versions of TS used on the 2-13 and the 8-13

Tabu Search for target-radar assignment 717

Scenario ID mean s. dev. max min %best

2-13 1 227.14 8.78 247.56 205.42 8.31
2 229.01 9.04 247.73 208.83 7.56

8-13
3 473.62 6.86 482.67 449.89 1.87
4 472.77 6.91 482.03 438.58 2.05

Table 1. Statistics on some of the best TS runs. The ID numbers refer to the
parameter values shown in Table 2 below

ID Scenario method NB T % penalty
1 2-13 TS-simple 16 8 15
2 2-13 TS-advanced 16 12 100
3 8-13 TS-simple 34 4 15
4 8-13 TS-advanced 34 12 100

Table 2. Table showing the parameters used in Table 1. NB denotes the number
of neighbours generated, T denotes the tabu list length and the % penalty, the
penalty to the frequency memory

Looking at the Tables 1 and 2 one can see that the actual performance of TS
simple is similar to that of TS-advanced. The optimal numbers of neighbours to
be generated might look high, but experiments showed that with a lower number
of neighbours generated - where more iterations can be performed instead -
the algorithms come out with inferior solutions.

7.3. Comparison with other methods

A total of 5 different algorithms were implemented: A Local Search algorithm
(LS-Single), performing one search, the same algorithm performing searches for
the time available (LS-Multi), a Simulated Annealing algorithm (SA), as well as
TS-Simple, and TS-Advanced. For a thorough presentation of these approaches
see Hindsberger (1998-I). For a fair comparison of the algorithms, they were
run for a fixed 300 CPU-seconds period (of which LS-Single only used a few
seconds). The algorithms were tried using both the 2-13 and the 8-13 scenarios
as before, in order to see any dependence of the scenario density. Note that the
results in this section are based on 50 runs of each and not the 100 as used by
the test program earlier in this section.

The parameters used are the same as the ones found to work best below
300 seconds in average computation time. For the two Tabu Search algorithms
they are the ones shown in Table 2. When now running for a fixed period,
the individual runs, which took longer without the time limit , should return
inferior solutions, while the ones finished before the 300 seconds might obtain
better results. As it can be seen later in Tables 3 and 4, the mean value of C(x)

718 M. HINDSBERGER, R.V.V. VIDAL

Method mean s. dev. max min %best
LS-single 195.46 20.12 241.63 155.02 21.10
LS-multi 230.40 6.45 245.44 218.87 7.00
SA 218.18 13.45 246.30 185.93 11.93
TS-simple 233.31 6.93 247.56 221.97 5.82
TS-advanced 235 .08 6.53 247.73 222 .14 5.11

Table 3. Descriptive statist ics of the different algorithms when applied to the
2-13 scenario

Method mean s. dev. max min %best
LS-single 453.84 16.09 478.52 419.00 5.97
LS-multi 473.51 3.89 482.62 464.21 1.90
SA 465.92 8. 72 480.00 440.10 3.47
TS-simple 475.21 4.56 482.67 459.66 1.55
TS-advanced 472.41 5.27 480.81 457.36 2.13

Table 4. Descriptive statist ics of the different algorithms when applied to the
8-13 scenario

~~----------------------------------~

0
240 - -

~ 220

200

180

160

- '--

140 .1..---~------~----~------~---------'
LSS LSM SA TSS TSA

Figure 10. Boxolot showing the performance of the different algorithms applied

Tabu Search for target-radar assignment 719

490

480

~~ 470

480 0
0

450

440 0

430

420

410

LSS LSM SA TSS TSA

Figure 11. Boxplot showing the performance of the different algorithms applied
to the 8-13 scenario with parameters as described in Table 2

Tables of the descriptive statistics of C(x) obtained using the different meth
ods are shown in Tables 3 and 4, while boxplots showing the distributions for
comparison can be found in Figs. 10 and 11. LSS and LSM denote the LS-Single
and LS-Multi methods, while TSS and TSA denote the TS-Simple respectively
TS-Advanced methods.

From the tables and figures it is concluded that TS-advanced is the best
suited algorithm of all since it is the best for dense scenarios and comparable
with every other in the more sparse scenarios. Both TS-simple and LS-multi
are very close in the results, though. SA as implemented is somewhat inferior,
especially for the dense scenarios. It looks as if the dense scenarios had a solu
tions space more ill-suited for the metaheuristics in general and SA in particular.
LS-single was, as expected, the worst and is far from the others in all aspects.

As the results show, none of the methods fulfils the property set up in Sec
tion 3 of having the mean value of C(x) to be within 5% of the optimal value
for all scenarios. TS-advanced almost makes it , though. In the next section
various improvements to help the TSA algorithm to fulfil this criterion will be
discussed.

8. Improving the Tabu Search algorithms

The five algorithms described above were all improved in different ways. Best

720 M. HINDSBERGER, R.V.V. VIDAL

8.1. No logfile generation

The TS-Advanced version was st ripped for every output command, except for
the showing of the final assignment plan. When solving the 2-13 scenario a
23.5 % improvement of the mean number of iterations performed was achieved,
increasing the sample mean of C(x) by about 0.6% as seen in Table 5. For the
8-13 scenario, the number of iterations performed within the time limit once
again was improved by 23.5%, while this meant less to the achieved mean value
of C(x), which only raised by 0.2%.

Scenario method C(x) iterations time_opt's

2-13
TSA normal 235.08 497.20 8669.40
TSA -out 236.56 614.06 10725.10

8-13
TSA normal 472.41 210.16 11805.64
TSA -out 473.31 267.86 15077.18

Table 5. The gain when writing no logfile (-out). The columns show the mean
values of the results

8.2. Tabu list clearance

As the Tabu Search algorithms were implemented, the tabu list would never be
cleared. When a new best solution were found, a tabu element might there
fore block an effective local search performed from this solution, and thus the
possibility of finding an even better solution at the next iteration could be
missed.

In order to solve this problem the TS-Advanced implementation was changed
so that the tabu list was cleared every time a better solution was found. This
turned out to make the search for opt ima more efficient. As it can be seen in
Table 6, C(x) was improved by 2.19% (resp. 0.44%) when compared to the
original algorithm on the 2-13 (resp. the 8-13) scenario.

Scenario method mean s. dev. max min %best
TSA 235.08 5.27 247.73 222.14 5.11

2-13 TSA cl 240.24 5.34 247.73 224.20 3.02
TSA cl-out 240.29 5.19 247.73 227.38 3.00
TSA 472.41 5.27 480.81 457.36 2.13

8-13 TSA cl 474.47 5.73 482 .62 461.33 1.70
TSA cl-out 475.89 3.73 479.81 438.11 1.40

Tabu Search for target-radar assignment 721

If the output logging were removed too, as earlier described, the results were
even better, though not that much.

For both scenarios this means that the wanted quality properties defined in
Section 3, which the algorithms should fulfil, now are achieved since the mean
values of C(x) are within 5% from the "optimal" value.

9. Quality vs. time usage

With this "final" algorithm (the TS-Advanced with modified military value
calculation) it was now tested how much the CPU-time used actually meant to
the quality of the result. As usual it was tested on both the 2-13 and the 8-13
scenario, but the military value-function of the algorithm was changed at this
point, to make the results more comparable with those of the actual airforce
algorithm. As a result of the change the C(x) values obtained were higher and
the standard deviation somewhat lower. Therefore, the results in this section
cannot be compared to those previously shown.

The results can be seen in Figs. 12 and 13. The horizontal lines represent
the objective value, respectively, 1% and 2% below the best achieved solution.

As shown a 100 times improvement in the computation time is not necessary
-a 10 times improvement (i.e. by allowing 30 sees.) still give results far better
than the 5% limit initially demanded.

219,--,.---,.---,.---.--,.---,.---.--,.---,.---,

218.5

218

217.5

! 217
j

~216.5

216

215.5

215

1%

214 '5oL__50.___100'---150'---200'-----:-250'-----:-300'---350'::--400'::----:-450'::---::-'500

CPU-seconds allowed to use

722 M. HINDSBERGER, R.V.V. VIDAL

479

478

fa477
3
\\!

B" 476

475

474

473L..__..___..___..___..__ _ _.__ _ _.___--'---'---'--__l
o w m ~ ~ ~ ~ ~ ~ ~ ~

CPU-seconds allowed to use

Figure 13. Time vs. quality for TSA used on the 8-13 scenario

10. Conclusions

Due to the complexity of the target-radar assignment problem, the neighbour
hood generation for both the implemented optimization parts was complicated
and thus time consuming, in view of numerous special cases. In addition, the
time to solve the problem was very limited. So, this was not the most usual
situation to use a metaheuristic approach, though for the same reasons it was
interesting to see the performance of the metaheuristic methods in this uncom
mon environment.

From the results it is concluded that TS-advanced is the best of the meta
heuristics implemented with TS-simple and LS-multi close behind. For SA too
little time was available to work properly, probably since cooling should happen
faster than it was effective for the solution space of the problem, especially with
that of high-density scenarios.

The results were compared to those of the officially chosen airforce algo
rithm. Unfortunately, due to differences in the defined strong and weak criteria
an actual comparison between the TS-advanced algorithm and the airforce al
gorithm was impossible. The problem was that the defined objective function,
which TS-advanced maximized the best, did not ensure that the targets - if
possible - were intercepted before they were able to fire back. And this spe
cific property is valued very high by the Danish Airforce. By adapting the time
optimization procedure of the chosen airforce algorithm, this problem could

Tabu Search for target-radar assignment 723

military value making it punish for crossing the critical line harder than now.
None of these changes have been tried, though. More on this topic can be found
in Hindsberger (1998-I).

Looking at the criteria defined back in Section 3, the following conclusions
can be made:

• Speed: As shown in Section 9 gaining just a 10 times improvement of
the computation time will still keep you well within the quality property
of 5%. Such a gain should be possible to achieve just by using modern
hardware. Implementing in assembler or C++ code would increase speed
even more. Assigning the missiles can be done afterwards and should cre
ate no troubles as long as you have sufficient missiles for all engagements.
If not, a restriction on the number of engagements should be added to the
optimization model presented in this paper. The overall speed of the algo
rithm should not be lowered significantly by adding the missile assignment
procedure.

• Maximizing: It was demanded that the expected value of the objective
function was within 5% from the global optimum. TS-advanced complied
with this property and had , when modified for using the modified mili
tary value calculation, a large margin to the 5% demanded for all tested
scenarios.

• Range: Whether the critical line was crossed by any targets before being
intercepted, was not researched that much. This was because it initially
was expected that a maximization of the defined objective function would
take care of this, too. As mentioned, it turned out not to be the case, and
this is something, which should be worked on in the future.

• Robustness: This property is not relevant when performing a single run,
since this is a static situation. None of the metaheuristics implemented
were ready to run in a dynamic system updating the assignment plan for
every 3-second period. Keeping the solution stable in such a system can
be achieved by using the previous solution as the initial for the next run.
This solution might need to be repaired at first in order to turn it into a
feasible solution. This is an area where further research can be done.

In general, the results were promising and better than expected. So, at
least, on this problem - though the problem was not that well suited - a
metaheuristic solution could be used with acceptable results. It might therefore
also be true for other problems with similar characteristics.

Acknowledgements. This paper is based on the first author's Master
Thesis, Hindsberger (1998-I), carried out under the supervision of the second
author. The work was further improved during the first author's employment
at the Danish Defence Research Establishment (DDRE). We are indebted to
the DDRE for their support to this research work. Also special thanks to Pedro
Borges, IMM, and the two anonymous referees for their constructive comments,

724 M. HINDSBERGER, R.V.V. VIDAL

References

CULLEN, T. and Foss, C. F ., eds. (1997) Janes Land-based Air Defence 1997-
98. Janes Information Group Ltd., London.

GLOVER, F. and LAGUNA, M. (1993) Tabu Search. In: C.R. Reeves, ed., Modern
Heuristic Techniques for Combinatorial Problems. Wiley & Sons Inc.

HINDSBERGER, M. (1998-I) The target-radar allocation problem. Master T hesis
98-09, IMM, Technical University of Denmark.

HINDSBERGER, M. (1998-II) Metaheuristics - an introduction. Research Re
port F-65/1998, Danish Defence Research Establishment, Copenhagen,
Denmark.

PIRLOT, M. (1992) General local search heuristics in combinatorial optimiza
tion: A tutorial. Belgian Journal of Operations Research, Statistics, and
Computer Science, 32, 7-67.

SILVER, E.A., VIDAL, R.V.V. and DE WERRA, D. (1980) A tutorial on heuris
tic methods. European Journal of Operations Research, 5, 153-162.

VIDAL, R.V.V., ed. (1993) Applied Simulated Annealing. Lecture Notes in Eco
nomics and Mathematical Systems , 396. Springer-Verlag.

