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Abstract: We propose a chaotic neurodynamical searching 
method for the Quadratic Assignment Problems (QAPs). First, we 
construct a neural network whose behavior is the same as that of 
the conventional tabu search. Using the dynamics of the tabu search 
neural network, we realize the exponential tabu search, whose tabu 
effect decreases exponentially with time, and we show the effective­
ness of this type of exponential tabu search. Next, we extend this 
novel tabu search to a chaotic version. This chaotic method includes 
both effects of the chaotic dynamical search and the exponential tabu 
search, and exhibits better performance than the conventional and 
exponential tabu searches. Last, we propose an automatic parameter 
tuning method and show that the proposed method exhibits high 
performance even on large QAPs. 
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1. Introduction 

There are many combinatorial optimization problems in various fields. Although 
there are many effective methods for solving them, it takes a huge amount of 
computational time to obtain exactly optimum solutions for large problems. 
In particular, it is practically impossible to get globally optimum solutions to 
large NP-hard problems, for example, the Traveling Salesman Problem (TSP), 
the Quadratic Assignment Problem (QAP), and so on. Therefore, it is very 
important to develop heuristic methods for finding very good near optimum 
solutions in reasonable time. 

In those heuristic algorithms, existence of undesirable local minima, at which 
gradient search algorithms stop, can be a very serious problem. In order to 
avoid stopping of search, various diversification algorithms have been proposed. 
The simplest diversification approach is based on a stochastic escape from local 
minima. For example, simulated annealing is a very famous stochastic method 
(Kirkpatrick, Galatt and Vecchi, 1983, Wilhelm and Ward, 1987). Although this 
diversification mechanism is very simple, it does not have any memory effects. 

As one of deterministic approaches for avoiding trapping at undesirable local 
minima, tabu search has been developed and successfully applied to various com­
binatorial optimization problems (Glover, Taillard and de Werra, 1993, Glover 
and Laguna, 1997). In the case of tabu search, once the search dynamics gets 
trapped at undesirable local optimum, it escapes from there to other directions 
than those which have already been searched. This search mechanism may lead 
to better diversification than stochastic escaping, because the states which have 
already been visited become hard to be searched again. 

Another diversification approach, applying chaotic neurodynamics (Aihara, 
Takabe and Toyoda, 1990, Aihara, 1990), has also been studied and its ef­
fectiveness has been shown (Nozawa, 1992, Yamada and Aihara, 1997, Chen 
and Aihara, 1995, Hasegawa, Ikeguchi, Matozaki and Aihara, 1995, Ishii and 
Satoh, 1997). The chaotic dynamical search has been considered effective be­
cause the chaotic dynamics searches solutions only along a fractal attractor 
whose Lebesgue measure is usually 0. However, since the conventional chaotic 
methods (Nozawa, 1992, Yamada and Aihara, 1997, Chen and Aihara, 1995, 
Hasegawa, Ikeguchi, Matozaki and Aihara, 1995, Ishii and Satoh, 1997) are 
based on the Hopfield-Tank (1985) neural network approach, it is hard to apply 
them to large size problems. This is because the number of mutual connections 
becomes huge in the case of large problems and heavy calculation is required. 
Moreover, satisfying the constraints can be another difficult problem in the 
search for good solutions. Then, those conventional chaotic methods often offer 
non-feasible solutions. 

For more realistic applications of chaotic dynamics, we have already proposed 
a new approach (Hasegawa, Ikeguchi and Aihara, 1997), which combines chaotic 
dynamics and a heuristic method of the 2-opt algorithm that always produces 
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Tank neural network, it can be applied to much larger size of combinatorial 
optimization problems than the conventional chaotic neural network approach. 

From the viewpoint of the "tabu effect" that forbids backward moves, there 
is a possibility that the chaotic neural network model (Aihara, Takabe and Toy­
oda, 1990, Aihara, 1990), which has been utilized in chaotic dynamical search 
approaches, may also have a similar effect to the tabu search. The chaotic neu­
ron in the chaotic neural network model has the refractory effect, which is one 
of essential characteristics of real biological neurons; neurons become hard to 
fire just after previous firings. This refractory effect is similar to the tabu effect 
of the tabu search. The refractory effect inhibits firings of neurons which have 
recently fired. On the other hand, the tabu effect of the tabu search prohibits 
previously done moves. By using this inhibition of firings by the refractory ef­
fect, we can realize a kind of tabu effect. In other words, the tabu search can be 
realized with a neural network, in which neurons inhibited by refractory effects 
correspond to tabu moves. Furthermore, the chaotic neural network has also 
more complex dynamics than the tabu search, since such a "tabu effect" in the 
chaotic neural network takes an analogue value, that may lead to high perfor­
mance for combinatorial optimization problems. Based on the above concept, 
we have already proposed (Hasegawa, Ikeguchi and Aihara, 2000) such a chaotic 
search including tabu search, and showed its effectiveness by mainly comparing 
it with the robust taboo search (Taillard, 1991) and the stochastic searches for 
real world problems . 

.In this paper, we discuss the effectiveness of the proposed algorithms with 
tabu effects. First, we realize the tabu search on a neural network with the 
refractory effect as a tabu effect. Inhibited states of neurons caused by refractory 
effects correspond to tabu moves. Using this tabu search neural network, we 
realize an exponential tabu search whose tabu effect decreases exponentially, and 
evaluate performance of this new tabu effect. Next, we extend this exponential 
tabu search to a chaotic version, by transforming the tabu search neural network 
to a chaotic neural network version (Aihara, Takabe and Toyoda, 1990, Aihara, 
1990). We investigate the effectiveness of the exponential tabu search and the 
chaotic search, and the relation between those tabu effects and performances. 
Moreover, we also propose an automatic parameter tuning method of our chaotic 
neural network, for realizing better performance and easy applications of our 
method to various problems. We will apply these methods to the QAPs, since 
conventional tabu searches have been shown to be very effective for them, and 
compare performance of our method with the stochastic methods and tabu 
searches. 

2. Quadratic Assignment Problems 

The QAP is one of the NP-hard combinatorial optimization problems (Lawler, 
1963, Pardalos, Rendl and Wolkowicz, 1994, Finke, Burkard and Rendl 1987). 
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permutation p which provides the minimum value of the objective function, 

n n 

F(p) = L L aijbp(i)p(i)• (1) 
i=l j=l 

where aii and bii are the (i,j)th elements of A and B, p(i) is the ith element of 
the permutation p, and n is the size of the problem. It should be noted that the 
maximum size of the QAP whose exact optimum solutions are known is only 25 
(Burkard, Karisch and Rendl, 2000). 

There are many real applications formulated by the QAP, such as backboard 
wirings, facility layouts, scheduling problems, and so on (Lawler, 1963, Pardalos, 
Rendl and Wolkowicz, 1994, Finke, Burkard and Rendl 1987) . Moreover, the 
QAP includes many other combinatorial optimization problems as special cases, 
for example the TSP. 

3. Tabu Search for QAPs 

In the conventional tabu searches for the QAP (Skorin-Kapov, 1990, Taillard, 
1991, Taillard, 1995), a simple pairwise exchange procedure has been utilized 
for updating a state of the permutation p. It is easy to decrease the objective 
function value F(p) by exchanging two elements yielding a positive gain. How­
ever, this simple decreasing strategy makes algorithms stop at undesirable local 
minima. Then, in the case of tabu search, if there are no improving moves, the 
move that degrades the objective function the least is chosen. In order to avoid 
returning to the local optimum just visited, reverse moves are forbidden. This 
is realized by storing those moves in a data structure called tabu list. This list 
contains 8 elements which define forbidden moves, where 8 is the tabu list size. 
Once a move was stored in the tabu list, it is forbidden for 8 iterations, and 
becomes available 8 iterations later. 

There are several types of tabu searches which are classified according to 
the construction of the tabu list. In our research, we construct a tabu list that 
prohibits moves which assign interchanged elements to the indices they had 
occupied in recent iterations. For example, if the el~ment i is assigned to the 
jth index, p(j) must be assigned to the q(i)th index for an actual exchange, 
where p(j) is the element of the jth index and q(i) is the index label at which 
i is located. In this case, both ( i, j) and (p(j), q( i)) pairs are memorized in the 
tabu list, in the sequence of (element label, index label). In the case of updating 
the permutation, if either of two assignments caused by the interchange is in the 
tabu list, this move is tabu. This tabu list is almost the same as Taillard's (1991), 
but the tabu move in Taillard's tabu search requires that both of assignments, 
ito j and p(j) to q(i), be in the tabu list . 

In the following, the above tabu search is implemented in a neural network. 
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4. Tabu search neural network and exponential tabu search 

In the case of assigning an element i to some index j, there are n x n ways for 
selecting i and j, where n is the size of the problem. This means that n x n 
kinds of vectors could appear in the tabu list. In order to define all of these 
pairs, n x n neurons are prepared. Tabu effects are realized by these neurons. If 
a neuron has a large refractory effect, the corresponding move is tabu. Namely, 
this neural network behaves as follows: if the ( i, j)th neuron fires, the element i 
is assigned to the jth index and p(j) to q(i), namely the elements i and p(j) are 
exchanged. In this case, in order to realize the tabu search, both assignments, of 
ito j and p(j) to q(i) , should be forbidden. Then, not only the (i,j)th neuron 
but also the (p(j), q(i)) th neuron are designed to rest for s iterations after the 
firing of the ( i, j) th neuron, where s is the tabu list size. This tabu effect is 
realized by the refractory effect. For finding lower objective function values, 
the gain with a corresponding firing is applied to each neuron. Then, the tabu 
search can be realized by neural dynamics described by the following equations: 

s -1 

/ij(t + 1) = -a L k~xp(j)q(i)(t- d), 
d=O 

s-1 

(ij(t + 1) =-a L k~Xij(t- d), 
d=O 

(2) 

(3) 

(4) 

where {3 is the scaling parameter for the gain effect; kr is the decay parameter 
of the tabu effect; a is the scaling parameter of the tabu effect; Llij ( t) is the 
gain of the objective function value and Llij(t) = Do(t) - Dij(t); Do(t) is the 
present value of the objective function F(p) at time t and Dij(t) is the value 
of F(p') which is the objective function value of p' that is made by exchanging 
elements i and p(j) of pat timet which is produced by firing of this (i,j)th 
neuron; Xij(t) is the output of the (i,j)th neuron at timet; ~ij(t),/ij(t) and 
(ij ( t) are internal states of the ( i, j) th neuron at time t corresponding to the 
gain effect, the tabu effect of the assignment of p(j) to q(i), and that of ito j, 
respectively. If { ~ij ( t + 1) + /ij ( t + 1) + (ij ( t + 1)} is the largest among all the 
neurons, the ( i, j)th neuron fires and the element i is assigned to the jth index 
and p(j) to q(i), and xi1(t + 1) and Xp(j)q(i)(t + 1) are set to 1 for memorizing 
both assignments. Outputs of all other neurons Xkl(t + 1) are set to 0. In fact, 
{~ij(t + 1) + /ij(t + 1) + (;j(t + 1)} is equal to {~p(j)q(i)(t + 1) + /p(j)q(i)(t + 1) 
+ (p(j)q(i)(t + 1)}, so there are two maximum firing neurons. However, firing of 
these two neurons means the same, because the outputs of both neurons are set 
to 1 and both assignments are done, if either neuron fires. 

With this neural network, the same behavior as that of the conventional 
tabu search can be perfectly reproduced by setting a ..__. oo, kr = 1 and the 
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makes forbidden these assignments of ito j and p(j) to q(i) which have already 
been assigned in the last s iterations, because neurons corresponding to those 
assignments cannot fire by the tabu effect with infinite strength (a -t oo) in 
Eqs. (3) and (4). 

On the other hand, it is also possible to decrease the tabu effect exponentially 
with 0 < kr < 1 and finite a, this situation being called exponential tabu search. 
In this tabu search, we use s = t. Then, the dynamics of Eqs. (2)-( 4) can be 
reduced as follows: 

~ii(t + 1) = ;3/:l.;i(t), 

"Yij(t + 1) = kr(p(j)q(i)(t)- axp(j)q(i)( t ), 

(ij(t + 1) = kr(ij(t)- aX;j(t). 

(5) 

(6) 

(7) 

In Table 1, results of the exponential tabu search (EX-TS) realized by the 
above tabu search neural network model are compared with the conventional 
tabu searches; (i) the ordinary tabu search (TS), which fixes the tabu list size 
and (ii) the random tabu search (RA-TS), which dynamically changes the tabu 
list size. Results are shown by percentages of average gaps between obtained 
solutions and the best known solutions for each problem. Each run is cut at 
lOOn iterations, where n is the problem size. Since it has already been reported 
that a good tabu list size is between 0.9n and l.ln, the tabu list sizes was set 
at n for the ordinary tabu search. For the random tabu search, tabu list sizes 
are set between ±10%. Parameter values for the exponential tabu search are 
set as follows: kr = 0.99, a = 1 and j3 = 5. Differences of the objective function 
value Aij(t) in Eq. (2) are normalized by aMbM, where aM,= maxij{aij} and 
b M = max;j { b;j}. In order to find better solutions by these methods, the 
following aspiration function is introduced for all the above methods: if the move 
leads to the best solution which could never be found in previous iterations, the 
move is executed even if the move is tabu. 

Problem size TS RA-TS EX-TS 
tai20a . 20 0.872 0.794 0.730 
tai35a 35 1.309 1.256 1.180 
tai50a 50 1.672 1.585 1.442 
tai60a 60 1.671 1.675 1.540 

Table 1. Results of the conventional ordinary tabu search (TS), the random tabu 
search whose tabu list size is randomly changed (RA-TS) and the exponential 
tabu search (EX-TS) which decreases the tabu effect exponentially. Each result 
is shown by the percentage of the gap between the average of obtained solutions 
and the best known solution of each problem. Each run is cut at lOOn iterations, 
wlwrP n is t.he si:~:e of the oroblem. T he best result and the second best result 
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From Table 1, it can be clearly seen that the exponential tabu effect is more 
effective than conventional tabu searches. In contrast to the conventional tabu 
searches which completely forbid moves memorized in the tabu list, this novel 
tabu search reduces the tabu effect gradually. Even though the random tabu 
search changes the size of the tabu list dynamically, it also completely forbids 
tabu moves, namely, it does not lead to gradual decrease. It can be seen from 
Table 1 that, although the random tabu search is better than the ordinary 
tabu search, the exponential tabu search is even better than the former. Then, 
gradual decrease of the memory effect (tabu effect) in the exponential tabu 
search may be effective for various combinatorial optimization problems. 

5. Novel chaotic search including tabu effect 

The tabu search neural network model (Eqs. (2)- (7)) has a similar architecture 
as the chaotic neural network model of Aihara, Takabe and Toyoda (1990). 
Both of them include refractoriness (tabu effect) with a temporal summation. 
However, there is a significant difference in the output function. The output 
of neurons X;j(t) of the tabu search neural network is defined exactly to be 
0 or 1 due to detection of the maximum in all neurons. On the other hand, 
the chaotic neural network usually adopts an analog sigmoidal function. In 
the case of a single neuron model, chaotic behavior cannot be observed, if the 
output function is the step function whose outputs are only 0 or 1 (Aihara, 
Takabe and Toyoda, 1990, Aihara, 1990). Such an output function leads only 
to periodic dynamics or convergence to a fixed point. Although the tabu search 
neural network has a similar architecture to the chaotic neural network, the 
output of neurons X;j(t) does not take continuous values but only 0 or 1. Then, 
it is expected that the chaotic dynamics may be produced by introducing a 
continuous sigmoidal output function for the tabu search neural network. Here, 
the firing of a neuron is defined by the condition that X;j(t + 1) > !, where 

Xij(t+1) = f{~ij(t+1)+7Jij(t+1)+'Yij(t+1)+(ij(t+1)}, f(y) = 1/(1+e-Yf'), 
and a similar role of detecting the maximum firing neuron is implemented by 
mutual connections with the internal state 'T}ij(t) (Aihara, Takabe and Toyoda, 
1990). 

Then, the novel method, which includes both the tabu effect and the chaotic 
dynamics, is realized by the following equations: 

~ij(t + 1) = (JD.;j(t), 
n n 

1]ij(t + 1) = -W L L Xkt(t) + w, 
k=ll=l, {k~ivlyfj) 

s-1 

(8) 

(9) 

"(;;(t + 1) =-a), k;~{Xp(j)q(i)(t- d)+ Zp(j)q(i)(t- d)}+(}, (10) 
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s-1 

(ij(t + 1) = -Q L k~{Xij(t - d)+ Z;j(t- d)}+(), (11) 
d=O 

X;j(t + 1) = f{~ij(t + 1) + 'f/ij(t + 1) + "fij(t + 1) + (ij(t + 1)}, (12) 

where W is the connection weight . If x;i(t+ 1) > ~,the (i,j)th neuron fires and 
the element i is assigned to the j th index, and p(j) to q(i), respectively. Because 
the tabu list consists of both assignments of (i,j) and (p(j) , q(i)), Zp(j)q(i)(t) 

should be prepared for memorizing the assignment of (p(j) ,q(i)) which does 
not correspond to the label of a firing neuron. In the case of updating the 
(i,j)th neuron, Zij(t + 1) is reset to 0. For memorizing the assignment of p(j) 
to q( i) until the updating of the (p(j ), q( i) )th neuron, the output of the ( i, j) 
th neuron Xij(t + 1) is added to Zp(j)q(i ) (t + 1), if the (p(j),q(i))th neuron is 
already updated on this iteration t, otherwise X;j(t + 1) is added to Zp(j)q(i)(t). 

Introduction of Zp(j)q(i)(t) is essential, since t he assignment of p(j) to q(i) will 
lead to its large accumulation at Zp(j)q(i)(t), and the corresponding assignment 
can be avoided. 

Moreover, there is a significant difference of the update rule with respect to 
the tabu search neural network (Eqs. (2)-(4)). This neural network for chaotic 
search should be asynchronously updated. The reason is that every fi ring in­
volves an exchange of elements of the permutation p except for the case that a 
neuron corresponds to an assignment of i to p(i), when we define the condition 
for firing by Xij ( t + 1) > ~. While more than one neuron has the chance to 
fire in a single iteration, more than one exchange of elements cannot be done 
simultaneously. Then, in this paper, asynchronous update is used for avoiding 
such situations. If we want to update this neural network synchronously, other 
definition of firing is required that produces only a single firing in each iteration, 
for avoiding simultaneous exchanges. For example, selection of the maximum 
activity as in the tabu search neural network in the previous section generates 
only a single firing in each iteration. However, by such firing rules, tabu effects 
cannot be correctly preserved in the above neural network. The tabu effect is 
realized by refractory effects which depress fi rings when the value of the output 
of neurons, Xij(t), becomes large in Eqs. (10) and (11). Even when the output of 
more than one neuron becomes large, firing of all of those neurons is depressed in 
the later iterations. Then, if we use the asynchronous update, every interchange 
corresponding to every firing can be done and tabu effects can work correctly. 
However, in the synchronous update, we have to select only one of those neurons 
with large outputs for an actual interchange. As a result, incorrect tabu effects 
would occur in other neurons except for the selected one for this exchange, 
since those neurons produce tabu effects even though moves corresponding to 
them have not been done. Moreover, there is also inconsistency with the case 
that no neurons have large outputs. Namely, no tabu effect may work, if there 
are no neurons which have large outputs. In Hasegawa, lkeguchi and Aihara 
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and discussed the effectiveness by comparing it with stochastic searches. The 
basic part of this method was not a tabu search and does not have a correct 
tabu effect. In this paper, we introduce the asynchronous update for correctly 
preserving tabu effects for the tabu search. 

By fixings -·1 = t, which corresponds to memorizing of whole previous 
outputs Xij(t) decaying with k,., Eqs. (10) and (11) can be reduced as follows: 

rii(t + 1) = k,.(p(j)q(iJ(t)- a{xp(i)q(iJ(t) + zp(i)q(iJ(t)} + R, 

(ij(t + 1) = k,.(ij(t)- a{Xij(t) + Z;j(t)} + R, 

where R = 8(1- k,.). 

(13) 

(14) 

Here, Eqs. (13) and (14) have almost the same formulation as in the original 
chaotic neural network model which produces chaotic dynamics (Aihara, Takabe 
and Toyoda, 1990). Accordingly, a chaotic search may be realized by this neural 
network model. Then, this novel search includes not only the tabu search but 
also the chaotic fluctuation, which is considered to be effective for combinatorial 
optimization (Hasegawa, Ikeguchi and Aihara, 1997). 

Next , we evaluate the performance of the proposed chaotic search (Eqs. (8)­
(14)) , which is a modification of the tabu search and an extension to the chaotic 
neural network version. In Table 2, the results of the proposed chaotic search 
(CS) are compared with the conventional ordinary tabu search (TS), the random 
tabu search (RA-TS) which randomly changes the tabu list sizes, and the ex­
ponential tabu search (EX-TS) proposed in the previous section. These results 
show percentages of gaps between the averages of solutions obtained and the 
best known solutions. For fair comparison, we fix the number of exchanges of 
elements of the permutation p. In these experiments, the number of exchanges 
is fixed at lOOn for each run, where n is the problem size. The reason why we 
fix the number of exchanges is that computation of the objective function value 
is heavy on the QAPs. Even though we use a simplified method for this calcula­
tion (Taillard, 1995) , it still consumes the most of computational time on each 
method. In this experiment, two types of tabu effects are introduced, shorter 
ones and longer ones. For the ordinary tabu search, the tabu list size is set at n 
or 20n, for shorter or longer tabu effects, respectively. Although it has already 
been reported that a good tabu list size is between 0.9n and 1.1n, a larger tabu 
list size is also introduced in order to evaluate the performance of the tabu search 
on problems which may have very deep local minima. For avoiding traps in deep 
local minima, such a long tabu list size is required. The tabu list size of the 
random tabu search is set ±10% of n or 20n. For the exponential tabu search, 
k,. = 0.99 and k,. = 0.999 are introduced, for the shorter and longer tabu effects, 
respectively. For the novel chaotic search (Eqs. (8)- (14)), we use the following 
parameter values: /3 = 5, R = 0.02, W = 20, E = 0.01, k,. = 0.99 and a = 1. 

From the results of tabu searches in Table 2 it can be seen that the longer 
tabu effects are effective for problems introduced here. Namely, problems in-
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searches of TS, RA-TS and EX-TS, we see that the exponential tabu search is 
still best. The result suggests that this type of decay of the tabu effect should be 
effective for combinatorial optimization. The novel chaotic search method is a 
further extension of this exponential tabu search to the chaotic dynamic version. 
From Table 2 we can see that this novel chaotic search was most often the best. 
The chaotic dynamic search has been shown to be effective for combinatorial 
optimization by several researchers (Nozawa, 1992; Yamada and Aihara, 1997; 
Chen and Aihara, 1995; Hasegawa, Ikeguchi, Matozaki and Aihara, 1995; Ishii 
and Satoh, 1997; Hasegawa, Ikeguchi and Aihara, 1997) , and an effect of this 
chaotic search is also included in this novel search method. In fact, the proposed 
method exhibits high performance as shown in Table 2. 

Problem TS RA-TS EX-TS cs 
s=n s = 20n s = n ± 10% s = 20n ± 10% kr = 0.99 kr = 0.999 

tai20b 15.574 4.961 15.643 5.184 8.936 1.288 1.180 
tai35b 7.976 4.966 7.691 5.175 5.603 3.195 2.931 
tai50b 5.990 3.150 6.576 3.054 3.620 1.163 1.218 
tai60b 7.388 3.203 7.512 3.945 4.348 1. 723 0.927 

Table 2. Results of the conventional ordinary tabu search (TS), the random 
tabu search whose tabu list size is dynamically changed (RA-TS), the expo­
nential tabu search (EX-TS) which decrease tabu effects exponentially, and the 
novel chaotic search (CS) with tabu effects. The values are percentages of gaps 
between the average of obtained solutions and the best known solution for each 
problem. Each run is cut at lOOn exchanges of permutation, where n is the size 
of the problem. 

In order to explain the relation among these searching mechanisms, Table 3 
summarizes characteristics of these methods from the viewpoint of the tabu 
effect. The fifth column of this table shows actual dynamics of the internal 
state ((t) of a neuron in each method . In the case of the conventional ordinary 
tabu search, the tabu list size s is fixed and the infinite strength of tabu does not 
change for the period. In the random tabu search, the tabu list size is randomly 
changed, keeping the infinite strength of tabu. These two conventional tabu 
searches have only two values on tabu effects (ij(t), 0 or -oo. On the other hand, 
the exponential tabu search exponentially decreases the strength of this effect. 
Results in Tables 1 and 2 indicate that it is better to use this exponentially 
decreased tabu effect than the fixed and infinite strength tabu effect which has 
been utilized in conventional tabu searches. By extending the tabu search neural 
network to the chaotic version, chaotic fluctuation is also incorporated in the 
tabu effect. This chaotic dynamical method exhibits the best performance in 
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Iteration 

2 

0 - r-1 
·2 I 

Random kr = 1 Detecting _RR -4 I 
~ -8 

Tabu "'-+ 00 
Maximum ·8 

Search s: random F iring ·10 
random change 

· 12 

·14 

3000 3200 3400 3600 3800 4000 
Iteration 

J 

2 

1 

0 
Exponent ia l 0 < kr < 1 l\_____l\_ ~ ·1 V'Vl/VVVV 

Tabu cr : fi n ite -2 

Search s - 1 = t exponenlial decrease .J .. 
·5 
3000 3200 3400 3600 3800 4000 

neralion 

2 

0 

~~~ I 
·2 

C haotic 0 < kr < 1 
.. 

~ 
g -6 

Neural cr : finite -8 

Networks s - 1 = t · 10 

0 · 12 
-1 4 

3000 3200 3400 3600 3800 4000 
lletation 

Table 3. Relationships between the former tabu searches and the novel chaotic 
dynamical search using chaotic neural networks. 

6. Controlling and annealing 

Although the effectiveness of chaotic search for combinatorial optimization prob­
lems has been shown by many experimental results (Nozawa, 1992; Yamada and 
Aihara, 1997; Chen and Aihara, 1995; Hasegawa, Ikeguchi, Matozaki and Ai­
hara, 1995; Ishii and Satoh, 1997; Hasegawa, Ikeguchi and Aihara, 1997), the 
performance of these methods depends on parameter values of the chaotic neural 
networks. If we could select appropriate values of the parameters for efficient 
searches, higher performance might be realized as shown in previous studies. 
However, when we fail to find such suitable parameter values, these methods 
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on problems. Therefore we have to find, or at least try to set, the best parameter 
values manually, for each different problem, but this process is not easy when 
we want to solve many different problems. 

In order to overcome the above disadvantage of the proposed method, we 
propose a simple automatic parameter tuning method for our chaotic neural 
network. For robust applications to various problems, we have to consider dif­
ferences of the influences between problems, that is, the distribution of gain 
input fl.;j(t) in Eq. (8). Then, we consider controlling of the externally applied 
input term ~ij(t) which includes the gain effect fl.;j(t). 

In this paper, the mean and the variance of the input ~ij(t) are controlled to 
be the same even if various different problems are applied, which have different 
distribution for this input. Then, the dynamics of ~ij ( t) is redefined by intro­
ducing two variables, F,.(t) and (J(t), for controlling the mean and the variance 
of the input ~ij ( t) as follows: 

~ij(t + 1) = (J(t)(fl.;j(t)- F,.(t)). (15) 

We also control the connection weight Win Eq. (9) for obtaining an appropriate 
connection effect, with introduction of a new variable W(t). W(t) is controlled 
according to the variance of the input ~ij(t). Then, controlled variables in our 
algorithm are these three, Fr(t), (J(t), and W(t), and other parameter values 
are fixed. 

First, in order to reduce the differences of t he mean of the inputs, the variable 
Fr(t) is tuned according to this mean value of fl.;j(t), which is defined as tl(t). 
If the number of firing neurons in a single iteration, Nf (t), is small (i.e. NJ( t) < 
n/8), then F,.(t) is reduced with F,.(t+1) = Fr (t)+C(tl(t)-Fr(t)), for increasing 
the firing rate, where C is the controlling rate and fixed at 0.01 in this paper. 
Otherwise, Fr(t + 1) = (1- C)Fr(t). In fact, for making the mean of the inputs 
be the same for every problem, we should control this mean to be 0, by tuning 
Fr(t) to be tl(t). However, this is useless for selecting the positive gain moves, 
because many of negative gain moves become positive inputs with Eq. (15) (in 
most cases, Fr(t) < 0) , which would make it impossible for the neural network 
to select positive gain moves. Then, Fr(t) is reduced to 0 when the network 
firing rate is high enough for searching. 

Second, for controlling the variance of the inputs ~ij(t), the variable (J(t) is 
automatically tuned according to a standard range Sn(t). In this paper, we use 
the standard deviation of fl.ij(t) for t his standard range Sn(t). Then, (J(t) is 
controlled for realizing that standard deviation of actual input values, which is 
SnfJ(t), becomes B, where B is defined for deciding the strength of the effect of 
gradient dynamics. Namely, this control keeps the standard deviation of inputs 
to be B even if the proposed algorithm is applied to various problems. Then, 
control of (J(t) is done as follows: (J(t + 1) = (J(t) + C(B/Sn- (J(t)). 

Finally, for making appropriate connection effects and keeping effective firing 
rate. W(t) is controlled. Since t he gain effect and chaotic fluctuation are very 
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the gain effect or chaotic fluctuation. On the other hand, the connection effects 
are still required for keeping appropriate firing rates of the neural network. 
Although control of firing rates is included in tuning of Fr(t) as described above, 
it is better to make less change of the variable Fr(t) for selecting moves with 
better gains, and the connection effect should become the main effect for making 
an appropriate firing rate of the neural network. Then, W(t) is controlled 
according to the variance of the input which is Snf3(t) . Here, a parameter 
WB is defined for the basic strength of the connection effect. Then, W(t) is 
controlled to be WBSnf3(t). Namely, W(t+ 1) = W(t) + C(WBSnf3(t)- W(t)). 

In order to realize even better performance, we also introduce chaotic sim­
ulated annealing. The strength of the gradient dynamics is gradually strength­
ened, compared with chaotic fluctuation . In order to do this, we gradually 
increase the parameter B which is the target value of the standard deviation of 
the input, and make large the strength of the effect of the gain, f3(t). It should 
be noted that this annealing method is also good for exploring parameter values 
of B. Although we use the parameter tuning method, it does not always work 
perfectly. In the above method, the standard deviation of the input is controlled 
to be the same for various problems, by tuning the parameter f3(t) which is a 
weight of the input. However, since the distributions of gain values .6.ij ( t) differ 
significantly for various problems, adjusting only the standard deviation is not 
enough for each problem. Since parameter values change through the better 
performance ranges by this annealing, finding of better solutions becomes more 
easily. 

Results of the novel chaotic search with above improvements are shown in 
Table 4. In these experiments, the novel method is applied to larger problems. 
Although only a single parameter set was enough for the experiments in Table 2, 
it becomes difficult to keep high performance on larger problems, since the 
best parameter set is different from problem to problem. However, manual 
parameter finding is quite difficult when we want to solve various problems, 
because the chaotic neural network method proposed in this paper has many 

size TS RA-TS EX-TS CSPT 
tai60b 60 2.995 3.162 1.817 1.469 
tai64c 64 0.139 0.264 0.0965 0 .0275 
tai80b 80 3.251 4.208 1. 700 1.343 
tai100b 100 3.167 3.269 2. 349 1.362 
tai150b 150 1.932 1.929 1.495 1.365 
tai256c 256 0.411 0.444 0.331 0.299 

Table 4. Results of the conventional ordinary tabu search(TS), the random tabu 
search whose tabu list size dynamically changes (RA-TS) , the exponential tabu 
search (EX-TS) and the chaotic dynamical search with the automatic parameter 
tuning method (CSPT). Each run is cut at lOOn exchanges of permutation, 
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parameters. Then, we apply the automatic parameter tuning method for larger 
problems. From Table 4, t he effectiveness of the novel chaotic search can be 
seen. The second best was the exponential tabu search which also exhibits 
high performance. Namely, gradual decay of tabu effects, which is included 
in the exponential tabu search and the chaotic search, may be effective for 
combinatorial optimization. Moreover, by extending such tabu effects to chaotic 
version, the best performance could be realized. 

7. Conclusions 

In this paper, we propose a novel search method for solving QAP. Since our novel 
method is constructed by transforming the tabu search to a chaotic version, it 
has both effects of the chaotic search and the tabu search. The tabu effect 
utilized in the novel search decreases exponentially with time. First, we show 
the effectiveness of the exponential tabu search which utilizes such tabu effects. 
This was realized on a neural network model which also includes algorithms 
of the conventional tabu search. Then, we extended it to a chaotic version 
which has even better performance. Moreover, we also propose an automatic 
parameter tuning method for our novel search algorithm. By this method, the 
novel chaotic search c'an be easily applied to various problems without laborious 
manual parameter setting. 

This type of search is also applicable to other combinatorial optimization 
problems. We have already shown that the novel chaotic search is also effective 
for very large TSPs (Hasegawa, Ikeguchi and Aihara, 1998). Since the proposed 
chaotic search uses asynchronous update, it is more suitable for problems for 
which a gain of the objective function value can be easily calculated. Namely, 
for this novel chaotic searching method, the TSPs and other problems whose 
gaps can be easily calculated, are more suitable than the QAP. Even though 
the QAP is not specially fit for this novel algorithm, the method exhibits high 
performance because its searching ability is high enough. 

The proposed method has the tabu effects different from those of the con­
ventional tabu searches. The method utilizes the tabu effects·which are reduced 
exponentially. Our results show that this type of memory effect may be ef­
fective for combinatorial optimization problems. Moreover, the novel chaotic 
search also includes chaotic dynamics which has been shown to be effective for 
combinatorial optimization. Since the proposed chaotic search includes both 
effects of the chaotic dynamical search and the tabu search, high performance 
can be realized. 
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