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A bst ract : This paper examines the use of hashing in the multi­
objective tabu search, TAMOCO. The hashing method was sug­
gested by Woodruff and Zemel (1993) as a method of avoiding return 
to the already examined solutions in the standard single-objective 
tabu search. While the traditional tabu list is capable of insuring 
this, it can normally only be used for cycles of a moderate length. 
The hashing method, however, can efficiently avoid cycles over a 
much larger number of iterations and must be considered a natural 
component in the tabu search tool-box. We report from two exper­
iments on practical models where the hashing component has been 
included into the TAMOCO-procedure; with two different outcomes. 
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Introduction 

As noted by Woodruff and Zemel (1993), the tabu-list of tabu search often serves 
two purposes, and we quote from their paper: 

(1) Avoidance of cycling - In order to escape a local minimum, the search 
must be prevented from ''falling back" to a recently visited solution. Unless 
randomness is used in move selection, it is easy to see that if a solution 
can be revisited, the algorithm may cycle infinitely. 

(2) Trajectory - By making certain move attributes tabu, an attribute list 
often prevents the "reversal" of moves. This results in exclusion of many 
solutions that have not yet been visited. In many instances this is desirable 
because it forces the search to explore new regions of X but the aspiration 
criterion precludes the avoidance of any excellent solutions. (X being the 
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The above distinction is useful because the necessary length of the tabu 
list in order to accommodate these two consideration might be quite different. 
The resulting length of the tabu list is therefore a trade-off between these two 
consideration - and the third consideration that we in general want a short 
tabu-list in order to have a fast and aggressive search. 

Woodruff and Zemel suggest to isolate the problem of cycling and deal with 
it by keeping a very long list of solutions which have been visited in the search, 
possibly storing all solutions. A return to an already visited solution is then 
regarded as tabu. It is easy to see that if we avoid the return to the already 
visited solutions, no cycling can occur. 

Because the solutions for efficiency reasons must normally be coded using a 
non-bijective hashing function, collisions can occur when two different solutions 
are mapped into the same hashing function value. Therefore, it makes sense 
to apply aspiration criteria on the neighbors which are labeled as tabu by the 
hashing method. For a deeper discussion of hashing functions, the probability 
of collisions, etc., the reader is referred to Woodruff and Zemel (1993). 

Note, however, that unless the neighborhood function in itself induces tra­
jectories in the search space, the hashing method, used alone as a local search 
procedure, can not do any better than preventing the return to the already vis­
ited solutions. This may cause the search to "pseudo-cycle" the neighborhood of 
a local optima and lead to a very low diversity in the search and a poor perfor­
mance. It may therefore be advantageous to use combinations of the standard 
tabu-search and the hashing component. 

This combination is attempted in this paper on a multiobjective combina­
torial optimization problem. The aim here is to generate an approximation to 
the non-dominated set of a practical decision problem already examined in the 
literature. 

After this short introduction to the hashing method, Section 1 will briefly 
outline the most basic parts of the multiobjective tabu search, TAMOCO. Sec­
tion 2 describes the two test problems. Section 3 describes the specific usage 
of the hashing method, the chosen method of measurement and presents the 
computational result of the two test problems. Final remarks conclude on the 
experiments and give directions for further investigations. 

I. Multiobjective tabu search 

The general multiobjective combinatorial optimization (MOCO) problem is of­
ten stated as: 

"maximize" f ( x) 
subject to x E S 

where S is a discrete, finite set of feasible solutions to the problem and f is the 
K-dimensional objective function to be "maximized", f(x) = {jl(x), j2(x), ... 
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The term maximization is written in quotation marks since there generally 
does not exist any single solution, which simultaneously provides the optimal 
value on all K objectives. Instead, we may seek to generate the set of efficient 
(or Pareto optimal) solutions to the MOCO problem, where each solution is 
not worse than any other solution of S on all objectives and better on at least 
one objective. The image of the efficient set in the objective space is called 
the non-dominated set, and it is in fact often this set that we are interested 
in generating an approximation to. Unfortunately, locating just one efficient 
or non-dominated solution is very often an NP-hard task (see Serafini, 1987) 
and we may in practice have to settle for an approximation to a non-dominated 
solution or to the non-dominated set. 

Methods for constructing such approximations have been devised for a se­
lection of particular problems (see e.g. a survey by Ulungu and Teghem, 1994) 
using a variety of techniques. Adaptations of general applicable heuristics (meta­
heuristics) to MOCO have also been suggested within the scope of simulated 
annealing (Serafini, 1992, Fortemps, Teghem and Ulungu, 1994, and Czyzak and 
Jaszkiewicz, 1996, 1998), of genetic algorithms (Schaffer, 1985, Horn and Nafpli­
otis, 1993, Fonseca and Fleming, 1993 and 1995, Horn, Nafpliotis and Goldberg, 
1994, and Srinivas and Deb, 1995) and tabu search (Gandibleux, Mezdaoui and 
Preville, 1996, and Hansen, 1998). 

The multiobjective tabu search, TAMOCO, as described by Hansen (2000) 
is a general framework for adapting tabu search (Glover, 1989, Glover and La­
guna, 1997) to multiple objectives. The general aim is to generate an approx­
imation to the entire non-dominated set, as opposed to e.g. the approach of 
Gandibleux, Mezdaoui and Preville (1996), which optimizes towards the ideal 
point. While the single-objective tabu search works with only one current so­
lution, TAMOCO works with a set of current solutions which are optimized 
towards the non-dominated frontier while at the same time seeking to diversify 
over this frontier. Each current solution maintains its own tabu-list and the 
current solutions take turns in applying one neighborhood move according to 
the tabu search metaheuristic. Whenever a solution is found which improves 
the set of potentially non-dominated solutions (ND-set), the ND-set is updated 
with the objective function values of this solution. In the end, the ND-set will 
contain the approximation to the non-dominated set. For a more detailed de­
scription on TAMOCO and its extension, the reader is referred to Hansen (2000) 
or Hansen (1998) and, for ·a deeper introduction to multiobjective optimization, 
to Steuer (1986). 

2. Problem formulation 

2.1. Experimental model 1: A budgeting problem 

Czyzak and Jaszkiewicz (1996) present the following MOCO problem: A com-
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of 50 potential building sites has been located and each site has been evaluated 
for its potential contribution on 3 criteria: short term profit, long term profit 
and negative environmental impact. Each site will require a given investment 
cost and the company posseses a limited budget for these investments. The 
problem is then to select a subset from the 50 potential sites which satisfies the 
budget constraint and optimizes the 3 objectives. This budgeting problem is 
equivalent to a multiobjective knapsack problem. Czyzak and Jaszkiewicz used 
the Pareto simulating annealing method to generate an approximation to the 
non-dominated set of solutions, one of which the company eventually selects (by 
using in this case the Light Beam Search as decision support system). 

A neighborhood function was established in the following way: From a feasi­
ble solution, remove randomly selected sites until there is free capital for includ­
ing the most expensive, non-selected site. Then randomly insert non-selected 
sites in the solution until there is no free capital for even the least expensive 
non-selected site. In the tabu search, sites which have been removed are declared 
tabu and cannot be inserted until they are no longer tabu. 

This same problem and neighborhood funct ion were used in Hansen (2000) 
and are used in the experiments of this paper as well. In order for the tabu­
search to locate a best neighborhood solution, the neighborhood is sampled at 
random. By varying the sample size, we vary the "steepness" attached to each 
move. 

2.2. Experimental model 2: A power network design problem 

Another MOCO problem appears in Matos and Ponce de Leao (1995). Here 
the design of a power network is considered, distributing electricity from a set 
of suppliers to a set of consumers via a network. The network consists of arcs 
which are already constructed or can be built prior to the time-period in which 
it will be first used. Each arc has a maximum capacity, a probability of failure 
and a resistance; the latter results in a voltage drop as well as a power loss 
(heat) . Furthermore, a radial constraint is imposed on the network design in 
each time period (meaning that no cycles may occur in the active arcs of the 
network), and a maximum voltage drop to the consumers must be respected. 
We consider a real, but relatively small case consisting of 21 arcs, 13 nodes and 
3 time periods. 

To handle uncertainty, t he consumption of each consumer as well as the pro­
duction of each producer is forecast as a fuzzy set for each time period in the 
planning horizon. This results in fuzzy flows in the network, and a new interpre­
tation must be given to some of the model constraints. In fact, the constraints 
involving fuzzy sets are replaced with two objectives describing robustness (the 
maximum possibility that no constraint will be violated) and severity (how bad 
is the constraint violation). Three other objectives are formulated, namely the 
investment costs (building of new arcs), the operation costs (due to power loss) 
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functions and it has been chosen to remove the fuzziness as a mean of compar­
ing the outcomes. Also, investment costs and operation costs are financially 
depreciated. Together with the two objectives expressing the fuzzy constraints, 
a solution is therefore evaluated using 5 scalar objectives. 

As a neighborhood function, the following approach is used. A feasible 
solution will present a spanning tree in each time period due to the radial 
constraint. In each of the time periods, all non-used arcs are considered to be 
inserted into the tree, inducing a cycle, which again is broken by removing one 
of the arcs in the cycle. Which arc to remove is determined using a priority 
rule, giving tabu arcs (of that time period) lower priority, and, in case of using 
also hashing tabu, giving even lower priority if the resulting solution has already 
been evaluated. The solution with highest priority is then evaluated and the best 
solution is kept. When all inserted arcs and all time-periods have been evaluated, 
a best neighbor is determined, the move is made and the combination of time­
period and inserted arc is made tabu so that the inserted arc cannot be removed 
in that time-period until it is no longer tabu. For more details on the specific 
model, the modeling of fuzzy sets and on the tabu search implementation, please 
refer to Matos and Ponce de Leiio (1995) and Hansen (1997). 

3. Experimental results 

Experiments have been set up with the purpose of detecting whether or not the 
hashing <;omponent offers an improved performance of the TAMOCO implemen­
tatioh. for :e~ch of the two experimental models. All computational experiments 
have therefore been conducted both with and without the hashing component. 
Before presenting the experimental results, the implementation of the hashing 
component as well as the chosen method of evaluating an approximation are 
described. 

3.1. Implementation of the hashing component 

While the TAMOCO procedure works with a set of current solutions, each 
carrying their own tabu list, we will for the hashing tabu component use a 
shared list which is valid for all of the current solutions. This is natural since 
we do not want a current solution to move into a solution, which has been visited 
already by another current solution. 

In the examples of this paper we will consider a binary decision vector, x, 
with N elements, x = (x 1,x2 , .. . xN) EX= [0; 1]N, and we use the h1 hashing 
function: 

h1(x) = ho(x) mod [MAX/NT+ 1] 
N 

hn(x ) = r)' Z;XJ 
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Using 32-bit unsigned integers, the MAX/NT takes on the value 232 - 1. The 
values of Zi are selected at random from t he set {1, 2, 3, 4, 5, ... , MAX/NT}. 
The ho hashing function values are computed using long integers. 

For many neighborhood functions, with y being t he neighbor solution to x, 
ho(Y) is quickly calculated as: 

ho(y) = ho(x) + L.:>i- L::>i, 
iE/ iEO 

where I is t he set of incoming variables (indices, where Xi changes from 0 to 1) 
and 0 is the set of outgoing variables (changes from 1 to 0). The sets I and 0 
will with many neighborhood function be very small sets. If this is not the case, 
other hashing-functions should be considered. 

The h1 hashing function value of a new current solution is inserted into a 
binary tree. However, we limit the number of elements in the binary tree in 
order to limit the memory consumption and to reduce the effect of collision. 
This is efficiently implemented in a cyclic list by keeping a thread through the 
tree from the oldest to the newest element. Insertion of a new element with 
removal of the oldest element can then still be performed within the complexity 
of O(log(M)), where M is the number of elements in the tree. Finally, collisions 
will only result in temporary tabu. 

Woodruff and Zemel (1993) also emphasize the usage of aspiration criteria 
in the hashing tabu m&od. In the single-objective case, a natural aspiration 
criterion can be to accept a new best solution, even if tabu. Directly converting 
this to the multiobjective context is to allow new tabu solutions whenever they 
contribute to the non-dominated set. Since in practical MOCO problems this 
set can be very large, t his aspiration criterion is equally stronger. 

In our experiments we use M = 10000 as the maximum number of elements 
in the hashing tabu-list. Thus, if the hashing function values in the hashing 
list are uniformly distributed in the 32-bit domain, the probability of collision 
is less than 3 in a million when the hashing tabu-list is full. The aspiration 
criterion consists in allowing neighborhood solutions whenever they contribute 
to the non-dominated set. 

3.2. Evaluating an approximation 

For evaluating the performance of an approximation, A = { a1, a2, ... , an}, we 
compare the approximation with a fixed reference set, Z * = { z1, z2, ... , Zm}, 
where all ai and Zj are K-dimensional vectors in the objective space, K being 
the number of objectives. We will assume that each vector in the approximation 
is either equal to one of the vectors in the reference set or dominated by one of 
the vectors in the reference set. While many evaluation measures can be estab-



Experiments concerning hashing in the multiobjective tabu search method TAMOCO 795 

(Wierzbicki, 1986) in the following way (maximization on all objectives): 

S*(A,Z* ,.X) = 2_ :t min {max pk(zJ- af)}}. 
m t=l. .n k=l..K 

j=1 

This measure can be seen as the average of the -\-weighted Tchebycheff distances 
from each vector in the reference set to its projection on the set A. The -\-vector 
contains range equalization factors (Steuer, 1986) and is calculated as: 

k 1 [ ~ 1 ] -
1 k ( k . k .-\ = k L,; R I< , where Range = max zj) - .mm (zj ). 

Range ~<= 1 ange J=l..m J=l..m 

3.3. Experiments on the budgeting problem 

We use tabu lists of lengths 4 and 8 and sample sizes of 20 and 100, giving 4 cells 
in the experimental design, which are to be examined both with and without the 
hashing component. Each cell is composed of 10 replicates, giving a total of 80 
experiments. In each experiment, 2 million neighbors are generated; a sample 
size of 20 therefore means that 100,000 moves are made, whereas a sample size 
of 100 means that 20,000 moves are made. From the 80 resulting approximations 
to the non-dominated set, a reference set Z* is generated as all distinct points 
from the approximations, except for the points which are dominated by other 
points; or in other words, the best, dominant-free set. Table 1 shows the average 
of the S* values and other statistics from the 10 repetitions for each design of 
the experiment, using the reference set Z*. 

Without the hashing component With the hashing component 
Tabu-list length 4 4 8 8 4 4 8 8 
Sample size 20 100 20 100 20 100 20 100 
Repetitions 10 10 10 10 10 10 10 10 
Average 0.00031 0.00043 0.00024 0.00028 0.00032 0.00031 0.00027 0.00027 
Minimum 0.00026 0.00032 0.00017 0.00021 0.00026 0.00024 0.00021 0.00021 
Maximum 0.00034 0.00055 0.00027 0.00031 0.00041 0.00042 0.00034 0.00032 
95% confidence- 0.00029 0.00038 0.00022 0.00026 0.00028 0.00027 0.00024 0.00024 
interval for average 0.00033 0.00048 0.00026 0.00031 0.00035 0.00036 0.00030 0.00029 

Table 1. Statistics on the S* values from the budgeting problem 

We notice that the hashing component apparently does not present any real 
difference. We will assign this to the randomness attached to the neighborhood 
function, which allows the search to break cycles before they can become prob­
lematic. Only for a high sample size and a short tabu-list does the hashing 
component have a significant positive influence. However, better results are ob­
tained by increasing the length of the tabu-list than by introducing the hashing 
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3.4. Experiments on the power network design problem 

In this problem, tabu-list lengths of 5, 10 and 15 have been used, both with and 
without the hashing component. Each cell of the 6 designs is composed of 10 
replicates and in each of these 60 experiments, 40,000 neighborhood moves have 
been made. Again, the reference set z• is generated as the best dominant-free 
set of points. Table 2 shows the statistics. 

Without the hashing component With the hashing component 

Tabu-list length 5 10 15 5 10 15 
Repetitions 10 10 10 10 10 10 
Average 0.0024 0.0020 0.0022 0.0018 0.0017 0 .0017 
Minimum 0.0019 0.0014 0.0016 0.0013 0.0013 0.0015 
Maximum 0.0031 0.0025 0.0028 0.0021 0 .0020 0.0020 
95% confidence- 0.0022 0.0018 0.0019 0.0016 0 .0016 0.0016 
interval for average 0.0027 0 .0023 0.0025 0.0019 0 .0019 0.0018 

Table 2. Statistics on the S* values from the power network design problem 

Here, on the other hand, we clearly improve all results by including the 
hashing component, even in the tabu search implementations with rather long 
tabu-lists. With a short tabu-list, the hashing component becomes increasingly 
necessary, indicating that t he hashing component helps prevent cycles when the 
tabu list can not. 

Final remarks 

In knapsack problems, such as the budgeting problem of this paper, we will 
often be able to obtain very good results using yield per cost ratios and t his can 
also be used for making better neighborhood function for ascent based methods, 
such as tabu search. The neighborhood functions used in this paper were chosen 
in order to make direct comparison of the results with earlier experiments. Due 
to the randomness, which to a large extent already reduces cycling, it does not 
exploit the potential of the hashing component. In the network design problem, 
however, a positive effect is observed. 

In the single objective knapsack problems, the "real" problem is often to 
determine inclusion or not of a smaller subset of items, the so called core-items. 
This could be advantageously exploited in the hashing-mapping, reducing the 
number of actual collisions. The idea is not so futile in the multiobjective case, 
where the core-items will be different over the non-dominated frontier . 

In multiobjective optimization, in general, we wisl1 to search the objective 
space rather than the decision space. So, unless we wish to generate the effi­
cient set (as opposed to the non-dominated set), we are not directly interested 
in finding more than one solution having the same objective function vector. 
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ing mapping. However, one must be aware that different solutions having the 
same objective function vectors in most cases will be parts of different search 
paths. 

Finally, as a more general remark on the hashing method, it should be 
emphasized that while cycling is obviously undesired, revisiting a solution may 
not be, if it is entered with a different trajectory (which, to be precise, results in 
the selection of a different neighboring solution). Therefore, it may be possible 
to modify the hashing method to include both the solution and (parts of) the 
trajectory. This can in practice be implemented in many ways- for instance by 
including (the active parts of) the tabu list in the hashing function or by using 
a 1-step back-tracking mechanism. These ideas can be the subject of future 
research. 
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