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A bstract : This paper presents the multiobjective tabu search 
method, TAMOCO. Being an adaptation of the well-known tabu 
search, it can be used to generate approximations to the non-domi­
nated solutions of multiobjective combinatorial optimization prob­
lems. TAMOCO works with a set of current solutions which, through 
manipulation of weights, are optimized towards the non-dominated 
frontier while at the same time seek to disperse over the frontier. The 
general procedure and some extensions to it are presented, as well 
as suggestions of usage in interactive procedures. A computational 
experiment is also presented. 
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Introduction 

The general multiobjective combinatorial optimization (MOCO) problem can 
be stated as follows: 

"maximize" f(x) 

subject to x E S 

where Sis a discrete, finite set of feasible solutions to the problem (the decision 
space) and f is then-dimensional objective function to be "maximized", f(x) = 
{Jl(x), f 2(x), ... , r(x)}, f: S--. Rn. 

The term maximization is traditionally written within quotation marks since 
there generally does not exist any single solution, which can simultaneously 
provide the optimal value on all objectives. Instead, one may seek to generate a 
set of non-dominated solutions, where each solution is not worse than the other 
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optimal set of non-dominated solutions to t he MOCO problem is found, when 
all other solutions in S are dominated by a solution in the set. 

While many single objective combinatorial optimization problems are impos­
sible to solve to optimality in polynomial time, even more MOCO problems will 
be so. For instance, simple single objective problems like the shortest path 
problem and the assignment problem are NP-complete in a corresponding mul­
tiobjective formulation (see Serafini, 1987, and also Garey and Johnson, 1979), 
even with only two objectives. 

This suggests that, in general, we will have to settle for approximations to the 
non-dominated set. Methods for constructing such approximations have been 
developed for a selection of particular problems (see, e.g., a survey by Ulungu 
and Teghem, 1994) using a variety of techniques. Adaptations of general appli­
cable heuristics, or metaheuristics, to multiple objectives have been suggested 
within the scope of simulated annealing (Serafini, 1992, Ulungu, Teghem and 
Fortemps, 1995, and Czyzak and Jaszkiewicz, 1996, 1997) and of genet ic algo­
rithms (Schaffer, 1985, Horn and Nafpliotis, 1993, Fonseca and Fleming, 1993 
and 1995, Horn, Nafpliotis and Goldberg, 1994, and Srinivas and Deb, 1995). 
Also tabu search (Gandibleux, Mezdaoui and Preville, 1997) and hybrid meth­
ods (Ben Abdelaziz, Chaouachi and Krichen, 1999) have been suggested. In the 
opinion of Ulungu and Teghem (1994) "the adaptation of these metaheuristics 
to a multiobjective environment is certainly one of the more promising research 
directions" . See also Borges (1998) and Hansen (1998) for more on metaheuris­
tics for multiobjective combinatorial optimization. 

This paper is organized as follows. After introducing some basic notations 
and general applicable methods in Section 1, we present the basic multiobjec­
tive tabu search procedure TAMOCO in Section 2, followed by some useful 
extensions in Section 3. Section 4 gives a few general comments about using 
tabu search in the multiobjective context and Section 5 suggests ways of us­
ing TAMOCO in some families of interactive methods. Section 6 contains a 
computational example and the paper closes with some final remarks. 

1. Notation and general methods 

1.1. Non-dominance 

For the sake of shorter notation, we will often refer to an objective function 
vector as a point z. The image of solution x1 is z1 = f(xl), and could also 
be represented as {z},z~, .. . zl} = {jl(x1),j2(x1), ... r(x1)}.l Throughout 
this paper, objectives' indices are written in superscript. Let us also define 
dominance and superiority: 

I We not only assume that on each objective "more is better" but also that a solution 
can be evaluated by a combination of marginal attr ibutes, although this viewpoint has been 
r!;anntorl fnr mnro t. h~n t.wn mi ll PnniR rlll.t.inP' hR~k t n Aristotle who wrote in MetavhJisica that 
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The point z1 dominates the point z2 if and only if z1 ~ z2 and 
z1 'I z2 (i.e. if zf ~ z~ for all the objectives k and zf > z~ for at 
least one objective k).2 If a point is not dominated by any other 
point, it is called a non-dominated point. 

Solution x1 is superior to solution x2 if the point f(xl) dom­
inates the point j(x2). Solution XI is inferior to solution x2 if 
the point j(x2) dominates the point f(xl). If the point f(xl) is 
non-dominated, then XI is non-inferior. 
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The set of all non-inferior solutions is sometimes referred to as the Pareto 
optimal set or the efficient set. The set of all non-dominated points is referred 
to as the non-dominated set. 

Also, we use the >.-vector space A, defined as: A = {A E ~n I >.k E [0; 1) 1\ 

I::~I ).i = 1}. 
A point z is then supported if and only if there exists a weight-vector >. E A 

so that the scalar value zT >. is the maximum value of f(x f >. over all x in S. 
While supported points always are non-dominated, the set of non-dominated 
points consists of both supported and non-supported points. 

1.2. Scaling, metric and measure 

Range equalization factors are used to equalize the ranges of the objectives, see 
Steuer (1986, section 8.4.2), and can be calculated as: 

k 1 [~ 1 ] 
7r = Rangek ~ Rangei 

where Rangek is the range width of objective k, given a set of points. The last 
factor, which can be omitted, is a normalization factor ensuring that 1r E A. 

The >.-weighted Tchebycheff metric defines a distance between two points zo 
and z1 as: 

llzo- ziii.x = max {>.kiz~- zfi} 
k=l..n 

and an augmented >.-weighted Tchebycheff metric can be defined as: 
n 

lllzo- ZIIII.x = llzo- zdi.\ + P L >.kiz~- zfi 
k=I 

where p is a (often very small) positive augmentation factor. 
When measuring the distance from a given point zo to a set of points Z* = 

(zi, z2 , ... , zm) we can use the minimum value of an achievement scalarizing 
function (Wierzbicki, 1986) over the points of Z*: 

s*(z,Z*,>.)= .min {max{Ak(z~-zf)}} 
.,=l..m k=l..n 

2 Strictly speaking, this is the definition of a weak domination. Solution x strongly domi­
nates solution 11 if and only if z1 > zz (i.e. if z~ > z~ for all objectives k) , see Steuer (1986). 
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This measure can be seen as the A-weighted Tchebycheff distance from the 
point zo to its projection on the set z·, and is intended for usage when zo is 
non-dominated with respect to all points in Z*. 

1.3. Quad tree 

"Quad tree" is an important data structure for working with multi-dimensional 
functions. Originated by Finkel and Bentley (1974), it has found many applica­
tions in e.g. databases and image processing. It allows for indexing in multiple 
dimensions and the general idea is to store all points as nodes in a tree structure, 
so that the point of each node (as well as all the points under the node) holds 
a certain relation to the point of the parent node on all dimensions ( combina­
tions of "smaller than" and "not smaller than" on each dimension). Although 
the name Quad tree stems from the first formulation in two dimensions, the 
principle is easily generalized. 

Quad tree was first applied to multiobjective optimization by Habenicht 
(1982), but as a domination-free quad tree (i.e. a quad tree of points where 
no point dominates any other point) and with computationally very efficient 
methods to determine whether a given new point is dominated by points in the 
tree and to retrieve points in the tree, which it dominates. 

Sun and Steuer (1996) have presented a method to find the point in a quad 
tree that is closest to a given new point according to a A-weighted Tchebycheff 
metric. Since such a method exists, we will in the following not be intimi­
dated from using distances based on a A-weighted Tchebycheff metric or using 
achievement scalarization functions based on this metric. 

2. The basic TAMOCO procedure 

Tabu search is an optimization procedure which repeatedly moves from a current 
solution to the best in a list of neighboring solutions while seeking to avoid being 
trapped in local optima by keeping a tabu-list of forbidden moves. Tabu search 
in its current form was first suggested by Glover (1989, 1990) and has since then 
received much success in combinatorial optimization for its fast and aggressive 
search and very often excellent solution quality. Besides the fundamental tabu­
list, many generally applicable extensions have been suggested in the literature. 
Excellent introductory material can be fo nd in Glover and Laguna (1995 and 
1997) and Glover, Taillard and de Werra (1993). 

The multiobjective tabu search procedure, TAMOCO, works with a set of 
current solutions, which simultaneously are optimized towards the non-domi­
nated frontier. The points of the current solutions are sought to cover the whole 
frontier. Repeatedly for each solution, an optimization direction is made so 
that the point tends to move away from the other points while moving towards 
thP. non-dominated frontier. The solutions take turns in applying one move 
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We will in the following comment on Fig. 1, which in a Pascal-like fashion 
outlines the basic TAMOCO procedure. 

Procedure basic TAMOCO (maximization of all n objectives): 
1. for each solution x; in )( do set x; to a random feasible solution 

and set TL; = {} 
2. set ND = 0 and set count= 1 and set 1rk = 1/n for all objectives k 
3. repeat 
4. for each solution X; in )( do 
5. set A= Q 
6. for each solution Xj in )( vhere f(xj) is not dominated by f(x;) 

and f(x;) #- f(xj) do 
7. set w = g(d(f(x;), f(xj ), 1r)) 
8 for all objectives k vhere fk(x;) > fk(xi) do set >..k = Ak + 1rkw 
9. end 
10. if >.. = Q then set A to a randomly chosen vector from A 
11. normalize()..) 
12. find the solution y; vhich maximizes >.. · f(x;) vhere y; E N(x;) 

and A(x;, y;) \tTL; 
13. if TL; is full then remove oldest element from TL; 
14. add A(y;,x;) to TL; as the nevest element 
15. set X;= y; 
16. if f(y;) is not dominated by any point in ND then implement the 

point f(y;) into ND and update 1r 
17. if DRIFT-criterion is reached then set one randomly selected 

solution from )( equal to another randomly selected solution 
from )( 

18. set count = count + 1 
19. end 
20. until STOP-criterion is met 

Figure 1: The basic TAMOCO procedure 

In line 1, each current solution is set to a random feasible starting solution 
and its tabu-list (TL) is emptied. In line 2, the current set of non-dominated 
points (ND) is emptied, an iteration counter is reset and the range equalization 
factors ('rr) are set to a unit vector. We then begin the loop which contimiously 
lets each current solution make one move to a neighbor solution until some 
STOP-criterion is met. 

In lines 5-11, the weight vector (>.) for the point is determined. This vector 
belongs to A and will thus ensure optimization towards the non-dominated fron­
tier. We want to set the weights so that the point moves away from the other 
points, ideally having the points uniformly spread over the frontier. Therefore 
each element in the weight vector is set according to the proximity of other 
points for that objective. However, we only compare a point with those points 

- . J __ l_ _ J... ! ___ ---~LL -------L L. - ---L! .... l.. !J... ! ~ --- ..J ... __.. ! - ... L .-. ..J ~\.. ..... ...., 1 ,....,.. ....... 
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another point is, the more it should infl uence the weight vector. The closeness 
is measured by a distance function (d) based on some metric in the objective 
function space and using the range equalization weights. The influence is given 
by a decreasing, positive valued proximity function (g) on the distance. In prac­
tice, the proximity function g(d) = 1/d has shown to work well, as well as the 
Manhattan distance norm (used on the objectives scaled by the range equaliza­
tion factors, i.e. d(zi,Zj,7r) = L:>klzf- zjl summed over all objectives k) is a 
general suggestion yielding a slight focus on the resulting trade-off knee. 

In lines 12-15, the standard tabu search procedure is used to replace a current 
solution with the best feasible neighbor solution (generated by the neighborhood 
function N) which can be reached from the solution without violating the tabu­
list. How to establish a tabu-list is, as always, an open question; in general, 
the tabu element is some sort of attribute (A) on the from- and to-solutions 
in order to prevent backward moves. The best neighbor is determined by the 
scalar product between the weight vector and the vector objective function. 

In line 16, the new point is inserted into the ND-set if it is non-dominated 
with respect to this set. The points already in the ND-set, which thereby become 
dominated, if any, are removed. If we wish, we can also record here the solution 
itself. The range equalization factors are set according to the ranges of the 
points in the ND-set and may therefore need to be updated (obviously, they 
can only be calculated, if we have at least two points defining a positive range 
in each objective). Using the ranges of the points in the ND-set is a general 
suggestion in cases when no other knowledge of the ranges is available. 

In line 17, we replace one randomly selected solution by another randomly 
selected solution whenever a DRIFT-criterion is satisfied, which for instance can 
be after a fixed number of increments on the count-variable. This is done in 
order to assure a drift in the movement of the points over the non-dominated 
frontier, thus exploring the whole frontier, and helps in locating non-supported 
non-dominated points. The next section will show better the ways of ensur­
ing this drift and at the same time dynamically adjust the number of current 
solutions in X. 

Finally, in line 18, the iteration counter is incremented by 1, and we are 
ready to continue with the next of the current solutions. 

3. Extensions to TAMOCO 

3. 1. Ensuring a drift and adjusting the number of current solutions 

What is likely to happen in the basic TAMOCO is that each of the current 
solutions converges to its own region in the objective space, explores it carefully 
using the tabu search metaheuristic, but does not deviate much from the center 
of its region. While this can be advantageously exploited in some interactive 
methods, it is in general a bad behavior, since we wish to approximate the 
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to drift over this frontier, thereby changing the centers of their regions. This 
can be done as suggested in the basic TAMOCO, but it can be more desirable 
to connect it with an adjustment in the number of current solutions. 

Setting the number of current solutions in the basic TAMOCO can be dif­
ficult. There should be as many as needed for a reasonable covering of the 
non-dominated frontier . Too many current solutions on the other hand will 
give an overlap resulting in too high interference among solutions and an un­
controlled oscillation of the points. Besides, it will demand many computations 
when determining the weights in lines 6- 9 just like it will slow down the con­
vergence of the points on their path towards the non-dominated frontier. These 
considerations depend on the shape of the non-dominated frontier and of the 
neighborhood function used. Either way, it can be difficult to predict in advance, 
and we therefore suggest a dynamic scheme for adjusting this size. 

The underlying idea is that the more the search domains of the current 
solutions overlap, the more often will they dominate each other. Therefore we 
will in line 17 calculate the domination degree of solution Xi as a count of the 
number of other current solutions, which dominate it.3 •4 When the DRIFT­
criterion is met, we calculate the average of the domination degrees (ADD) of 
the current solutions and upon this decide whether to 1) increase the number 
of current solutions, 2) decrease the number of current solutions or 3) leave the 
number of current solutions unchanged. 

If we increase the number of current solutions, we do so by duplicating 
solutions with the lowest domination degree. If we decrease the number of 
current solutions, we delete solutions with high domination degree. If we want 
to keep the number of current solutions constant, we both duplicate and delete 
solutions according to the highest/lowest domination degree. In all cases, the 
replaced point will move from "more dominated" to "less dominated" areas on 
the frontier. 

The decision as to what to do can for instance be made using a target interval 
on ADD. In this implementation, we increase when ADD is lower than 0.03 and 
decrease when ADD is higher than 0.06, and otherwise leave the number of 
current solutions unchanged. The actual values of such an interval depend on 
the neighborhood function used. 

The number of current solutions that should be replaced is another design 
parameter. We suggest doing so with a percentage of the number of current 
solutions, e.g. 2%, but always for at least one solution. Upon changing the 
number of current solutions, we may want to use a higher percentage in order 
to have a faster convergence of the number of current solutions to "what the 

3 This is not unlike Fonseca and Fleming (1993) who used the same measure (called the 
rank) as the fitness function (~ objective function) for a genetic algorithm. It is unlikely 
that their approach can be taken much further in our context, since the vast majority of the 
current solutions will be non-dominated by other current solutions (be of rank 1) . 

4 In practice, we may choose to use a moving average over a number of iterations to describe 
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frontier can bear using the given neighborhood function". This can be done by 
e.g. increasing the number of current solutions by 10% when increasing, and 
decreasing the number of current solutions by 5% when decreasing. 

The drift-criterion should be designed so that the new set of current solu­
tions has time to settle over the non-dominated frontier and to explore. This 
depends on the shape of the non-dominated frontier and the steps in the objec­
tive function value space, which the neighborhood function provides, and can 
typically be after a number of iterations proportional to the number of current 
solutions or a slower increasing function of this. 

For computational efficiency, however, we may initially want to over-ride 
the drift-criterion and control the growth in the number of current solutions so 
that these have time to spread away from their origin and constitute a "well­
spaced" distribution over the non-dominated frontier before we increase. In the 
case of a 2-dimensional non-dominated frontier (3 objectives), we can visualize 
this as an imitation of the geometry of the stem of a tree leading out to larger 
branches, then to smaller branches and farther out to twigs, thus contributing 
a new off-spring to the trend of nature inspired heuristics. 

Also for computationally efficiency, we will usually set a maximum limit on 
the number of current solutions, especially when dealing with many objectives. 

Concluding this we say that the replacement of current solutions ensures a 
drift of the current points over the non-dominated frontier. When a solution 
is removed, it leaves a "hole" in the non-dominated frontier to where other 
solutions will seek. Likewise will a duplicated solution "push" the solution 
being duplicated and the other solutions that are close to the two. 

3.2. Saturation and minimum levels 

In some cases it will be possible, for one or more objectives, to give minimum 
acceptance levels which must be met in order for a solution to be worth consid­
ering. Likewise, it may be possible to give saturation levels on some objectives 
indicating that whenever these levels are reached, for whatever reason, no fur­
ther optimization is needed. These levels may be known a priori or obtained 
after a study of the feasible possibilities.5 

While such levels can be coded into the objective functions, we also have the 
possibility of implementing them in the basic TAMOCO by adding 3 lines: 

9.1 for all objectives k where fk(x;) > maxk do set _xk = (1- c.l).Xk 

9.2 if Jk' (x;) <mink' for any objective k' then 

9.3 for all objectives k do set _xk = (l-,Bk).Xk+/3k7rkMax{O, (mink- fk(x;))} 

5 For instance, a client may say that : "I prefer to improve our quality but my CEO is dying 
for a net profit of 15%; less can do, but if it is reached, I am content" or with his knowledge 
of the problem, be able to state that: "we can keep a time-window of 2 hours on delivery; we 



Tabu search for multiobjective combinatorial optimization: TAMOCO 807 

where for each objective k, maxk and mink are the saturation level and the 
minimum level, respectively, and the o:k and {3k factors indicate the degree to 
which these levels should be pursued (all o:k and {3k values in [0; 1]). 

Normal settings are o: = {3 = l, and the procedure will then work as follows: 
If one or more of the minimum levels are not reached, the weights are set so that 
the optimization direction for the point is directly towards the nearest point in 
the range scaled objective space where all minimum levels are reached. Other­
wise, the basic weights are used except that we set the weight to 0 on objectives, 
for which the saturation level has already been reached, thus indicating that we 
need not a further optimization on these objectives. Whenever o:k and {3k are 
lower than 1, some linear combination with the original weights is used. 

As mentioned in the example, minimum levels can sometimes be used as 
a soft way of implementing restrictions, thus relaxing the problem. Also, the 
minimum and saturation levels need not be parallel to the objective axes but can 
be general expressions of the objectives. Lines 9.1-9.3 should then be modified 
correspondingly to work on the contour lines of these expressions. 

The idea of saturation and minimum levels is, at this point, not directly 
aimed for usage in interactive procedures (although they can be a natural part 
of these). Whether or not one wishes to record non-dominated solutions in the 
ND-set in line 16 when they do not meet the minimum or saturation levels, 
must depend on the intention behind each level and the problem being solved. 

3.3. STOP-criterion 

It has been said that "the wise knows when to stop" and indeed, for some prob­
lems, deciding when to stop can be difficult, because the TAMOCO procedure 
continues to improve the ND-set. Naturally, one may stop the procedure after 
a given number of iterations, after a given amount of CPU-time, after a given 
number of iterations without improving the ND-set, and so on. But before sug­
gesting a more advanced stopping criterion, we first take a look at what a good 
approximation to the non-dominated set is. 

In single-objective optimization, we may compare the best-found solution 
with the optimal solution. If the optimal solution is not known, we can compare 
with a bound on the optimal solution or with the best solution found so far by 
anyone. When measuring the quality of an approximation to the non-dominated 
set of aMOCO problem, a reasonable approach seems to be using a reference set. 
The reference set may consist either of the optimal non-dominated set (which, as 
explained in the introduction, is normally both difficult to find and very large) 
or an approximation to the optimal non-dominated set. The reference set may 
in the latter case contain a subset of the optimal non-dominated set (perhaps 
settling for some of the supported points) or be a pool of the non-dominated 
points obtained after many runs with a large number of iterations. 

Having a reference set, we could then count the number of points, which 
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two reasons. First, the ND-set may not represent the whole reference set, so, 
even if a relatively large number of points are located, this may not imply that 
the ND-set is a good approximation, and vice versa. Secondly, the number of 
located points will in most difficult or large problems be extremely low. 

A better measure is then based on an achievement scalarizing function. The 
average value over each point in the reference set, rj, of the function s* ( rj, ND­
set, A) seems to be a good way of measuring the ND-set, and is also used by 
Czyzak and Jaszkiewicz (1997). The A-vector used will normally be composed 
of the range equalization factors as based on the reference set. The points of 
the reference set are here seen as representatives for a final selection. Thus, 
the points of the reference set should be distributed accordingly.6 For more on 
measuring the quality of approximations to t he non-dominated set, please refer 
to Hansen and Jaszkiewicz (1998). 

Measuring with respect to a reference set is useful in cases of comparisons of 
methods, setting of parameters, etc., but it does not give us a stopping criterion. 
However, preliminary results indicate, as we should expect, that there is in 
practice an extremely high correlation between the above-mentioned measure of 
the ND-set with respect to a reference set and the average value to the ND-set 
of the new neighbors generated. The value of a new point Xi is then measured 
in line 16 by s*(xi, ND-set, 11') before Xi is implemented. Therefore, the average 
of these values can be used as basis for when the procedure should be stopped. 7 

3.4. Indifference thresholds 

In line 16 of the basic TAMOCO, all new non-dominated points are recorded in 
the ND-set. In many combinatorial problems, however, there exist so many non­
dominated points that this, for storage reason, is practically impossible to do. 

A general applicable but by no means perfect technique for handling this is 
only to insert new non-dominated points in t he ND-set in the following way: If 
the new point dominates one or more points in the ND-set, the point is inserted 
(with removal of other points securing non-increasing the current size of the 
set). Else we only insert t he point if the minimum difference with the other 
points in the ND-set exceeds a certain limit. 

This difference can here be a distance measure based on a level of indifference 
or can be the value of adding the new point to the ND-set, measured by an 
achievement scalarization function as described for the STOP-criterion.8 

Either way, the threshold limits can be set dynamically or by the users. 

6When used for comparison purposes, the reference set should contain points well dis­
tributed over the non-dominated frontier; perhaps through the usage of a group ·of well­
dispersed weight vectors (Steuer, 1986, Section 11.9). 

7In practice, one may use a moving average of the values over a larger number of iterations. 
Binstead of basing the achievement scalarization function on a weighted Tchebycheff met­

ric, it can be advantageous to base it on an augmented weighted Tchebycheff metric. The 
intimi,ht.inu nr:>rtir:>.l nrnhlPm nf rloinu this_ is that it. is r.omnntationallv more difficult to 
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Heuristic bounds for the maximum size of the resulting ND-set can in some 
cases be formulated (for inspiration, see e.g. Fonseca and Fleming, 1994, on a 
similar problem). Non-dominated points which in this way are not inserted in 
the ND-set can, for instance, whenever they fulfill a less restrictive difference 
criterion, be put on a list for later usage. When not inserted in the ND-set, 
they should still contribute with their values in respect to the STOP-criterion. 

3.5. Other general extensions 

A possibly efficient improvement of the basic TAMOCO is to repeat lines 12- 16 a 
certain number of times so as to make more moves for each calculation of weights. 
This is not simply an extension of the neighborhood because we can choose to 
let the number of repetitions depend on the performance of the neighborhood 
moves, as discussed for the STOP-criterion. For instance, we may choose to 
perform A iterations of lines 12-16, and add another B iterations whenever a 
solution which improves the ND-set (perhaps ignoring indifference thresholds) 
for a certain achievement value is found. One should be aware, however, that 
such repeated moves imitate a different neighborhood function, and therefore 
can lead to a solution which is further away in the objective space, thus giving 
a higher domination degree (a higher fluctuation of the current solutions) as 
discussed in the beginning of this section. 

Also, depending on the neighborhood function used, it may be desirable to 
moderate the fluctuation of the points, for instance by using a moving average 
on the weight vector for each solution. Weights for a solution can be set as 
7 Anew+ (1-7)AoJd, where 7 is a constant in (0; 1], Anew being the weight vector 
as set in lines 5- 11, and AoJd - the weight vector used previously for the same 
solution. 

Finally, in line 12 we may prefer to use different ways of evaluating the neigh­
bors as found by the single objective tabu search. In theory, the basic version 
of the procedure may not be good at locating non-supported non-dominated 
points. This theoretical shortcoming will in many cases not present a problem 
because also non-supported points are inserted into the ND-set, but the proce­
dure may be more correct when using an (augmented) Tchebycheff metric. 

4. Usage of general tabu search techniques 

Basically, all tabu search techniques can be used in the TAMOCO procedure. 
Especially, techniques implementing strategic oscillation and intermediate and 
long term memory should be considered. However, the natural interaction be­
tween the current solutions enforces some tactical oscillation by continuously 
modifying the weights in the aggregated objective function for each solution. 
Also the effect of the replacement of points can be regarded as a part of the 
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Since tabu-lists are kept in order to escape local optima and avoid cycling, 
these special elements of TAMOCO may give the possibility for shorter tabu­
lists, thus giving a more effective search. In particular, the risk of cycling can 
be reduced, even with relatively short tabu-lists, if the length of the tabu-lists 
differs between points. 

The aspiration criterion of tabu search may also be used. For instance, it can 
make sense to check more of the neighbors generated in line 12 to see if they can 
contribute to the ND-set, even if they are the results of tabu moves, instead of 
only checking the best, non-tabu neighbor. Likewise, neighbors resulting from 
tabu moves can in some cases be accepted as best neighbors. 

As for normal tabu search, in cases where we have a badly connecting neigh­
borhood function or when the neighborhood function induces wide valleys in 
the objective space, we may need once in a while to sample new solutions in 
order to be able to search the whole feasible set. This can for instance be done 
by creating new, randomly generated solutions instead of duplicating existing 
solutions. But it can (for this particular reason and as in the single objective 
tabu search) be more advantageous, in a systematic or probabilistic fashion, to 
use more than one neighborhood function so that these, in combination, connect 
the whole feasible set. Besides, the problem of wide valleys may present less 
difficulty in TAMOCO due to the continuous variation of the weights. 

With a neighborhood function that contains many neighbors for each so­
lution, it can be more efficient to make moves based on a (probabilistic or 
systematic) sampling of the neighborhood, or in other ways reduce the neigh­
borhood size. While this can be relevant in single objective tabu search, it may 
be even more. so with multiple objectives because we have an n-dimensional ob­
jective frontier to discover and can not remain too long at each locality. With 
neighborhood functions well suited for tabu search, however, we may be able 
to locate the best neighbor without explicitly having to generate all the neigh­
bors. 

More fundamental is the constant designation of the function leading from 
one solution to the other ones as a neighborhood function. In single-objective 
tabu search, it is merely a mapping that assigns a candidate list to each solution. 
This designation, however linguistic, is done in order to underline the importance 
of the fact that the neighborhood function provides solutions with somewhat 
similar points in the objective space. For a given neighborhood function, this 
ability may depend on the problem size.9 

Another possibility can be to impose a limit (step-size) to the changes 
in objective function values, that can result from one move. The limit can 
be more or less strictly enforced (e.g. by forbidding moves that exceed the 
limit versus the more soft reduction in the >.-weighted objective function when-

9For instance, for the traveling salesman problem, a neighborhood function can be to 
remove one city from the tour and then insert it at another place in the tour. This move will 
• -- .J J. - -- •- ""=-- - 1 .. ... _.. .... II ... - .... 1... ................... ;,.... •J...,.. "h~ ..:\,.. t- ~u.o f 11 n,.t;nn ,alno.C! urhlln tht:Jor~ ~rl(:) rn~nv nthP.r 
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ever the step-size is exceeded) and be dynamically set according to the dis­
tance to the nearest current solution in X (where again, proximity is measured 
in the objective space) used in combination with the weight vector. Usage 
of such limits in combination with the above mentioned aspiration criteria is 
obvious. 

5. Usage in interact ive procedures 

It is often argued that interactive procedures, where the solution generation 
phase alternates with the solution evaluation phase, is the future of multiob­
jective programming. Moreover, it is argued that the generation phase should 
consist of a partial generation of the efficient set by e.g. Rosenthal (1985), who 
considers this approach "to be among the most promising approaches to multi­
objective optimization" .10 

One problem in a full generation of the non-dominated set with non-iterative 
solution generation followed by solution evaluation is that the number of non­
dominated solutions normally is large and grows exponentially with the number 
of objectives. But a more fundamental problem is that the size of the mini­
mal sample of that set which, in order to be within a certain desired distance 
(for instance measured by an achievement scalarization function) from a given 
non-dominated point (that could have been the final choice, had it been in 
the sample), is likewise large and can grow exponentially with the number of 
objectives or as the desired distance decreases. 

For guiding the search, the interactive procedures often use a reference point 
(e.g. the discrete light beam search of Jaszkiewicz and Slowinski, 1994), a refer­
ence weighting vector (e.g. as the search principle of the discrete Pareto race of 
Korhonen, 1988) or a reduced weighting vector space (e.g. by using intervals on 
each weight element as in the Tchebycheff method of Steuer and Choo, 1983). 
These reference directions can be included by combining them with the weight 
vector as made by TAMOCO itself. 

If we have a reference weight vector, r, we can do the following: 

11.1 for all objectives k do set dk = nkrk 

11 . 2 normalize (d) 
11.3 for all objectives k do set >...k = rdk + (1- r)>...k 

If we have reference weight vectors describing intervals, r and R (containing 
as elements the minimum and maximum weight levels, respectively), we can do 
the following: 

10This is also a critique on e.g. the traditional Goal Programming (GP) approach, raised 
by for instance Zeleny (1981) and Rosenthal (1985). Ironically, GP has been one of the most 
used techniques in practical applications (Romero, 1991), also in combinatorial optimization 
(Ulungu and Teghem, 1994) . This author has applied an GP-alike approach to a special 
and very large practical assignment problem containing no less than 15 objectives (Hansen 
and Vidal, 1995) . In any case, GP in combinatorial optirni% <r tion c;;n he ;;pproached wi th 
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11.1 for all objectives k do 

if Ak < 1rkrk then set dk = 1rkrk 

else if Ak > 1rk Rk then set dk = 1rk Rk 

else set dk = Ak 

11. 2 normalize (d) 

11.3 for all objectives k do set Ak = "(dk + (1- 'Y)Ak 

M.P. HANSEN 

In both cases above, the multiplication by the range equalization factors is 
only relevant, if the weight vectors do not already contain this scalarization. 

With a reference point, p, we first make the direction-vector from f(x;) top: 

11.1 for all objectives k do set dk = Max{O; 1rk(pk- fk(x;))} 

11.2 normalize(d) I• notice: if d=Q then the r eference point i s equal 
to or dominated by x; •I 
11.3 for all objectives k do set Ak = rdk + (1- r )Ak 

In all cases, the ')'-parameter [0; 1] defines the intensification of the search 
in the reference direction( -s) (or towards the reference point) on behalf of the 
diversification of the current solutions of X and therefore in the resulting ap­
proximation. The ')'-parameter can be a constant or vary; it may for instance 
make sense to start with a low value and then gradually increase it, as the user 
gains insight into the necessary t radeoffs in t he problem and articulates his pref­
erences. As the insight into the problem is gained, it can also be beneficial to 
alter the saturation and minimum levels, as described earlier. 

This flexibility suggests the usage of TAMOCO in many of the interactive 
procedures based on a partial generation of the non-dominated set and also 
in combinations of these methods as for instance in the combined procedure 
by Steuer, Silverman and Whisman (1993) or even in the unified interactive 
program of Gardiner and Steuer (1994). 

In interactive procedures, we will still have to select some of the points from 
the ND-set to present to the user (each interactive procedure has its own way 
of doing this), but now the generation of the alternatives has been intensified in 
the reference direction( -s) (or towards the reference point), so the ND-set will 
contain better solutions here. 

A special usage of TAMOCO can be the algorithm-led usage of obtaining a 
set of well-dispersed solutions (either covering the enUre non-dominated frontier, 
covering an area in the frontier by using minimum and aspiration levels, or 
intensified towards a reference point/in a reference direction(-s), or combinations 
of all these elements). In this case, we fix the number of current solutions, 
disregard the drift component and may again wish to use other measurements 
of distance in line 7 as well as different ways of evaluating neighbors given by the 
single objective tabu search in line 12. The resulting ND-set needs to be filtered 
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6. Computational experiment 

An experiment has been done using the model and the data of Czy:iak and 
Jaszkiewicz (1996). The problem is to select a set of locations from a given, 
larger set of 50 potential candidate sites in order to establish a chain of petrol 
stations under the constraint of a maximum available capital budget. Three 
objectives are formulated: expected short term profit, expected long term profit 
and expert evaluation of negative environmental impact. The problem is mod­
eled as a multiobjective capital budgeting problem with additiv.e cost, profits 
and impact for the selected locations, so the model is equal to a multiobjec­
tive knapsack problem and therefore belongs to the class of NP-complete prob­
lems. Czy:iak and Jaszkiewicz generate an approximation to the whole non­
dominated set containing 1017 points, using their Pareto Simulated Annealing 
(PSA) method. 

In some knapsack problems, relatively good solutions can be found using a 
yield per cost ratio. Therefore, we will use here the same neighborhood function 
as Czy:iak and Jaszkiewicz did, namely from a current solution randomly remove 
a selected location until the most expensive, non-selected location could be 
accepted, and then randomly insert non-selected locations until there is no room 
for any other non-selected location. While this neighborhood function is not well 
suited for tabu search due to randomness and the lack of explicitly exploiting 
e.g. a yield per cost ratio, it does allow us the chance of underlining certain 
aspects of TAMOCO and also to compare the results with the PSA method. 

In order to find a "best" neighbor, we simply pick the best neighbor gen­
erated among a sample of neighbors using the neighborhood function above. 
This sample size thus determines a steepness of the tabu search. Tabu elements 
are the locations which were removed in the best solution by the neighborhood 
function, and these locations are not to be re-inserted in the solution by the 
neighborhood function until they are no longer in the tabu-list. It should be 
noted that, in this particular problem, the neighborhood function will normally 
only remove 1 or 2 stations and will likewise normally only insert 1 or 2 stations. 

The sample size takes on the values 1, 2, 5, 10, 20, 50 and 100, and the tabu 
list length the values 0, 2, 4, 6, 8, 10, a tabu list length of 0 giving an ascent­
like procedure with different degrees of steepness. For each of the 42 resulting 
configurations, TAMOCO generates a fixed number of two million neighbors in 
each experiment. The configurations with high steepness will therefore suffer 
from fewer best moves and, as a partial compensation, we examine each gener­
ated neighbor solution for possible implementation into the ND-set. The solu­
tion generation and drift-scheme is done according to Section 2.1 and with the 
values suggested there. The ADD is computed using a moving average (where 
the previous value of the ADD counts half) and the DRIFT-criterion is set af­
ter 20 iterations for each of the current solutions. Each configuration is solved 
3 times with different start-seeds to the random generator. With the resulting 
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with the one approximation of the PSA procedure, a reference set is generated 
as the best of all 127 approximations. Please note that this reference set is not 
the optimal set of non-dominated solutions and that it is used exclusively to 
measure the relative quality among the 127 sets. 

Table 1 shows the results of the 126 experiments as measured with the 
s* function of Section 1.2 when compared with the reference set and using the 
range equalization factors of the reference set for scalarization. The 126 values 
have been normalized by dividing each value by the value obtained in the best ex­
periment and the average is then computed over the 3 repetitions. Thus, a value 
of e.g. 1.4 means that as an average over the 3 repetit ions, the reference points 
were in average 40% further from the approximation (measured by the s* func­
tion) than they were from the best approximation. The reference set contained 
a total of 2012 non-dominated points. We will briefly comment the results. 

Sample Length of tabu list 
size 0 2 4 6 8 10 

1 254.3 239.1 231.0 255.8 243.6 253.9 
2 82.6 78.2 81.0 88.7 101.2 112.9 
5 21. 7 11.9 11.6 14.2 18.4 25.5 

10 16.8 3.2 2.8 3.2 3.9 5.0 
20 16.7 2.3 1.6 1.3 1.2 1.5 
50 14.4 2.7 2.0 1.4 1.3 1.2 

100 18.8 3.4 2.7 1.8 1.8 2.0 

Table 1. s* values of the 42 configurations (normalized and averaged over 3 
repetitions) 

Having a tabu list greatly improves the results. This finding is obviously 
essential to the proposed multiobjective tabu search method because it indicates 
how a tabu list indeed helps overcome local minima, even when the search 
direction is constantly altered. 

The absence of a tabu-list does not give very good results. However, the 
performance here becomes better using a higher steepness. In general, this can 
imply that random ascent methods in a structured approach improves with the 
steepness of the ascent (until a level, where they too frequently get trapped in 
local optima). 

The approximation generated by the PSA method had a normalized s* func­
tion value of 155.7, which is clearly inferior to the TAMOCO method. However, 
we discourage from generalizing based on this case alone. The approximation 
generated by PSA did not cover the whole non-dominated frontier very well. 
Large parts of it were left virtually undiscovered, which may be assigned to 
some error. More generally, it must the stressed, that each problem (including 
the defining data) is unique and what may prove effective in one instance, may 

• 1 r 1 1 



Tabu search for multiobjective combinatorial optimization: TAMOCO 815 

7. Final remarks 

The motivation of this work is that many real world decision problems are com­
binatorial in their nature and contain a multitude of objectives that can not 
always be meaningfully modeled in a single objective function. While many 
methods exist for helping a user to select a solution among a given set of al­
ternatives, few general procedures exist for the generation of these alternatives, 
especially when dealing with combinatorial problems. 

Tabu search has with its aggressive search in many single-objective combi­
natorial optimization problems shown to give good quality solutions, and doing 
so very fast. This is an appreciated behavior when optimizing over a multi­
dimensional frontier and tabu search may therefore posses a high potential in 
multiobjective optimization. 

This paper has presented a general adaptation of tabu search for generat­
ing an approximation to the non-dominated set for multiobjective optimization 
problems, primarily aimed at solving problems of combinatorial nature. The 
basic TAMOCO procedure is here supplied with extensions, which can be seen 
as examples. Most important, perhaps, is the interactive basis on which the 
procedure could be used, directing and/or restricting the search to certain areas 
of the non-dominated frontier. More natural, however, would be the usage as a 
generator of efficient solutions to established interactive procedures. 

The method presented in this paper could benefit from further research. As 
an example, other ways of setting the weights can be explored. While TAMOCO 
in preliminary tests has shown to be rather robust with respect to the settings, 
this will need to be formally investigated. Some settings concern the neighbor­
hood function used on the problem or the shape of the non-dominated frontier 
and may be adjusted in an adaptive fashion as outlined in the extensions. Fi­
nally, more comparisons need to be made with competing methods on other, 
and more difficult, problems. 
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